1
|
Barnes H, Corte TJ, Keir G, Khor YH, Limaye S, Wrobel JP, Veitch E, Harrington J, Dowman L, Beckert L, Milne D, De Losa R, Cooper WA, Bell PT, Balakrishnan P, Troy LK. Diagnosis and management of hypersensitivity pneumonitis in adults: A position statement from the Thoracic Society of Australia and New Zealand. Respirology 2024. [PMID: 39467777 DOI: 10.1111/resp.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Hypersensitivity pneumonitis (HP) is an immune-mediated interstitial lung disease (ILD) relating to specific occupational, environmental or medication exposures. Disease behaviour is influenced by the nature of exposure and the host response, with varying degrees of lung inflammation and fibrosis seen within individuals. The differentiation of HP from other ILDs is important due to distinct causes, pathophysiology, prognosis and management implications. This Thoracic Society of Australia and New Zealand (TSANZ) position statement aims to provide an up-to-date summary of the evidence for clinicians relating to the diagnosis and management of HP in adults, in the Australian and New Zealand context. This document highlights recent relevant findings and gaps in the literature for which further research is required.
Collapse
Affiliation(s)
- Hayley Barnes
- Department of Respiratory Medicine, Alfred Hospital, Melbourne, Victoria, Australia
- Respiratory Research@Alfred, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Monash Centre for Occupational and Environmental Health, Monash University, Melbourne, Victoria, Australia
| | - Tamera J Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Institute for Academic Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Gregory Keir
- Department of Respiratory and Sleep Medicine, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Yet H Khor
- Respiratory Research@Alfred, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Institute for Breathing and Sleep, Heidelberg, Victoria, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Sandhya Limaye
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Immunology, Concord Hospital, Concord, New South Wales, Australia
| | - Jeremy P Wrobel
- Advanced Lung Disease Unit, Fiona Stanley Hospital, Perth, Western Australia, Australia
- School of Medicine, University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Elizabeth Veitch
- Respiratory Department, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- Faculty of Medicine, Macquarie University, Macquarie Park, New South Wales, Australia
| | - John Harrington
- Asthma and Breathing Research Program, The Hunter Medical Research Institute (HMRI), New Lambton, New South Wales, Australia
- Department of Sleep and Respiratory Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Leona Dowman
- Respiratory Research@Alfred, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Institute for Breathing and Sleep, Heidelberg, Victoria, Australia
| | - Lutz Beckert
- Department of Respiratory Medicine, Te Whatu Ora, Panui Canterbury, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - David Milne
- Department of Radiology, Te Toka Tumai, Auckland, New Zealand
| | - Rebekah De Losa
- Respiratory Medicine, Northern Hospital, Epping, Victoria, Australia
| | - Wendy A Cooper
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Institute for Academic Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Peter T Bell
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Respiratory and Sleep Medicine, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia
| | - Pradeep Balakrishnan
- Department of Medicine, St John of God Midland Public Hospital, Perth, Western Australia, Australia
- UWA Medical School, Division of Internal Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Lauren K Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Institute for Academic Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
2
|
Integration and Application of Clinical Practice Guidelines for the Diagnosis of Idiopathic Pulmonary Fibrosis and Fibrotic Hypersensitivity Pneumonitis. Chest 2022; 162:614-629. [DOI: 10.1016/j.chest.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
|
3
|
Wong M. Interstitial lung disease in Africa - a need for recognition and earlier diagnosis. Afr J Thorac Crit Care Med 2022; 28:10.7196/AJTCCM.2022.v28i2.258. [PMID: 35919921 PMCID: PMC9339139 DOI: 10.7196/ajtccm.2022.v28i2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- M Wong
- Division of Pulmonology, Department of Medicine, Chris Hani Baragwanath
Academic Hospital and the School of Clinical Medicine, Faculty of Health
Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Ye H, Pan J, Cai X, Yin Z, Li L, Gong E, Xu C, Zheng H, Cao Z, Chen E, Qian J. IL‑10/IL‑10 receptor 1 pathway promotes the viability and collagen synthesis of pulmonary fibroblasts originated from interstitial pneumonia tissues. Exp Ther Med 2022; 24:518. [PMID: 35837039 PMCID: PMC9257754 DOI: 10.3892/etm.2022.11445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/04/2021] [Indexed: 11/07/2022] Open
Abstract
Interstitial pneumonia is a pulmonary interstitial inflammatory and fibrosis disease with a variety of causes that causes respiratory disorders and threatens the lives of patients. The present study aimed to investigate the expression of interleukin (IL)-10 in peripheral blood of patients with interstitial pneumonia and its biological functions in pulmonary fibroblasts. A total of 42 patients with idiopathic pulmonary fibrosis (IPF) and 20 healthy subjects were included. ELISA was used to determine IL-10 concentration in serum from the patients and healthy subjects. Primary fibroblasts were isolated from lung tissue successfully and determined by morphology. The CCK-8 assay was performed to determine the effect of IL-10 expression on cell viability. Western blotting was used to determine COL1a1, COL1a2 and IL-10R1 protein expression. Flow cytometry was used for cell cycle analysis and to determine the number of IL-10+ cells. Expression of IL-10 in serum from IPF patients was higher compared to that from healthy subjects. IL-10 promoted the viability and collagen synthesis and secretion of MRC-5 cells and primary pulmonary fibroblasts. IL-10 and IL-10 receptor (R) 1 served regulatory roles in the viability and collagen synthesis of MRC-5 cells. The ratio of peripheral mononuclear lymphocytes with positive expression of IL-10 was elevated in peripheral blood from patients with IPF. The present study demonstrated that IL-10 expression in peripheral blood of patients with IPF is increased significantly compared with healthy subjects. Activation of the IL-10/IL-10R1 signaling pathway promoted the viability and collagen synthesis and secretion of pulmonary fibroblasts, leading to pulmonary fibrosis. The present study provided experimental basis for further understanding the development mechanism of pulmonary fibrosis.
Collapse
Affiliation(s)
- Hong Ye
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Jiongwei Pan
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Xiaoping Cai
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Zhangyong Yin
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Lu Li
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Enhui Gong
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Cunlai Xu
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Hao Zheng
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Zhuo Cao
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Enguo Chen
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Affiliated to Zhejiang University School of Medicine, Hangzhou, Zheijang 310016, P.R. China
| | - Junfeng Qian
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| |
Collapse
|
5
|
Cottin V, Tomassetti S, Valenzuela C, Walsh S, Antoniou K, Bonella F, Brown KK, Collard HR, Corte TJ, Flaherty K, Johannson KA, Kolb M, Kreuter M, Inoue Y, Jenkins G, Lee JS, Lynch DA, Maher TM, Martinez FJ, Molina-Molina M, Myers J, Nathan SD, Poletti V, Quadrelli S, Raghu G, Rajan SK, Ravaglia C, Remy-Jardin M, Renzoni E, Richeldi L, Spagnolo P, Troy L, Wijsenbeek M, Wilson KC, Wuyts W, Wells AU, Ryerson C. Integrating Clinical Probability into the Diagnostic Approach to Idiopathic Pulmonary Fibrosis: An International Working Group Perspective. Am J Respir Crit Care Med 2022; 206:247-259. [PMID: 35353660 DOI: 10.1164/rccm.202111-2607pp] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND When considering the diagnosis of idiopathic pulmonary fibrosis (IPF), experienced clinicians integrate clinical features that help to differentiate IPF from other fibrosing interstitial lung diseases, thus generating a "pre-test" probability of IPF. The aim of this international working group perspective was to summarize these features using a tabulated approach similar to chest HRCT and histopathologic patterns reported in the international guidelines for the diagnosis of IPF, and to help formally incorporate these clinical likelihoods into diagnostic reasoning to facilitate the diagnosis of IPF. METHODS The committee group identified factors that influence the clinical likelihood of a diagnosis of IPF, which was categorized as a pre-test clinical probability of IPF into "high" (70-100%), "intermediate" (30-70%), or "low" (0-30%). After integration of radiological and histopathological features, the post-test probability of diagnosis was categorized into "definite" (90-100%), "high confidence" (70-89%), "low confidence" (51-69%), or "low" (0-50%) probability of IPF. FINDINGS A conceptual Bayesian framework was created, integrating the clinical likelihood of IPF ("pre-test probability of IPF") with the HRCT pattern, the histopathology pattern when available, and/or the pattern of observed disease behavior into a "post-test probability of IPF". The diagnostic probability of IPF was expressed using an adapted diagnostic ontology for fibrotic interstitial lung diseases. INTERPRETATION The present approach will help incorporate the clinical judgement into the diagnosis of IPF, thus facilitating the application of IPF diagnostic guidelines and, ultimately improving diagnostic confidence and reducing the need for invasive diagnostic techniques.
Collapse
Affiliation(s)
- Vincent Cottin
- Louis Pradel University Hospital, Respiratory Medicine, Lyon, France;
| | | | - Claudia Valenzuela
- Servicio de Neumología, Hospital Universitario de La Princesa, Instituto de Investigación Princesa, Madrid, Spain
| | - Simon Walsh
- Imperial College London, 4615, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Katerina Antoniou
- Medical School, University of Crete, Heraklion, Greece, Department of Thoracic Medicine, Laboratory of Molecular and Cellular Pneumonology, Heraklion, Greece.,University Hospital of Heraklion, Heraklion, Greece, Department of Thoracic Medicine, Heraklion, Greece
| | | | - Kevin K Brown
- National Jewish Health, 2930, Denver, Colorado, United States
| | - Harold R Collard
- University of California, San Francisco, Department of Medicine, San Francisco, California, United States
| | - Tamera J Corte
- Royal Prince Alfred Hospital, Department of Respiratory Medicine, Sydney, New South Wales, Australia.,University of Sydney, 4334, Medical School, Sydney, New South Wales, Australia
| | - Kevin Flaherty
- University of Michigan, Division of Pulmonary and Critical Care Medicine, Ann Arbor, Michigan, United States
| | | | - Martin Kolb
- McMaster University, Hamilton, Ontario, Canada
| | - Michael Kreuter
- Center for interstitial and rare lung diseases, Pneumology, Thoraxklinik, University of Heidelberg, Member of the German Center for Lung Research Germany, Heidelberg, Germany
| | - Yoshikazu Inoue
- National Hospital Organization, Kinki-Chuo Chest Medical Center, Clinical Research Center, Osaka, Japan
| | - Gisli Jenkins
- Imperial College London, 4615, National Heart & Lung Institute, London, United Kingdom of Great Britain and Northern Ireland.,NIHR Nottingham Biomedical Research Centre, 574111, Respiratory Research Unit, Nottingham, United Kingdom of Great Britain and Northern Ireland.,University of Nottingham School of Medicine, 170718, Division of Respiratory Medicine, Nottingham, United Kingdom of Great Britain and Northern Ireland
| | - Joyce S Lee
- University of Colorado, School of Medicine, Department of Medicine, Aurora, Colorado, United States
| | - David A Lynch
- National Jewish Health, Radiology, Denver, Colorado, United States
| | - Toby M Maher
- University of Southern California Keck School of Medicine, 12223, PCCSM, Los Angeles, California, United States
| | | | - Maria Molina-Molina
- Pneumology, ILD Unit. University Hospital of Bellvitge, Hospitalet de Llobregat, Spain
| | - Jeff Myers
- University of Michigan, Division of Anatomic Pathology, Ann Arbor, Michigan, United States
| | - Steven D Nathan
- Inova Fairfax Hospital, 23146, Advanced Lung Disease and Transplant Program, Falls Church, Virginia, United States
| | - Venerino Poletti
- GB MORGAGNI HOSPITAL, Department of Diseases of the Thorax, FORLI, Italy
| | - Silvia Quadrelli
- Sanatorio Guemes, 62948, Pulmonary Medicine, Buenos Aires, Argentina
| | - Ganesh Raghu
- University of Washington Medical Center, 21617, Division of Pulmonary and Critical Care Medicine, Seattle, Washington, United States
| | - Sujeet K Rajan
- Bombay Hospital Institute f Medical Sciences and Bhatia Hospital, Mumbai, India
| | | | | | - Elisabetta Renzoni
- Royal Brompton Hospital, Interstitial Lung Disease Unit, London, United Kingdom of Great Britain and Northern Ireland
| | - Luca Richeldi
- Universita Cattolica del Sacro Cuore Sede di Roma, 96983, Pulmonary Medicine, Roma, Italy
| | - Paolo Spagnolo
- Canton Hospital Baselland, and University of Basel, Medical University Clinic, Liestal, Switzerland
| | - Lauren Troy
- Royal Prince Alfred Hospital, 2205, Respiratory Medicine, Sydney, New South Wales, Australia
| | - Marlies Wijsenbeek
- Erasmus University Rotterdam, 6984, Rotterdam, Zuid-Holland, Netherlands
| | - Kevin C Wilson
- American Thoracic Society, 44197, Documents Department, New York, New York, United States.,Boston University, Medicine, Boston, Massachusetts, United States
| | - Wim Wuyts
- K U Leuven, respiratory medicine, Leuven, Belgium
| | - Athol U Wells
- Royal Brompton Hospital, Interstitial Lung Disease Unit, London, United Kingdom of Great Britain and Northern Ireland
| | - Christopher Ryerson
- University of British Columbia, Medicine, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Barnes H, Troy L, Lee CT, Sperling A, Strek M, Glaspole I. Hypersensitivity pneumonitis: Current concepts in pathogenesis, diagnosis, and treatment. Allergy 2022; 77:442-453. [PMID: 34293188 DOI: 10.1111/all.15017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
Hypersensitivity pneumonitis is an immune-mediated interstitial lung disease caused by an aberrant response to an inhaled exposure, which results in mostly T cell-mediated inflammation, granuloma formation, and fibrosis in some cases. HP is diagnosed by exposure identification, HRCT findings of ground-glass opacities, centrilobular nodules, and mosaic attenuation, with traction bronchiectasis and honeycombing in fibrotic cases. Additional testing including serum IgG testing for the presence of antigen exposure, bronchoalveolar lavage lymphocytosis, and lung biopsy demonstrating granulomas, inflammation, and fibrosis, increases the diagnostic confidence. Treatment for HP includes avoidance of the implicated exposure, immunosuppression, and anti-fibrotic therapy in select cases. This narrative review presents the recent literature in the understanding of the immunopathological mechanisms, diagnosis, and treatment of HP.
Collapse
Affiliation(s)
- Hayley Barnes
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Hospital, Melbourne, VIC, Australia
| | - Lauren Troy
- Royal Prince Alfred Hospital, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| | - Cathryn T Lee
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Anne Sperling
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Mary Strek
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Ian Glaspole
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Raghu G, Remy-Jardin M, Ryerson CJ, Myers JL, Kreuter M, Vasakova M, Bargagli E, Chung JH, Collins BF, Bendstrup E, Chami HA, Chua AT, Corte TJ, Dalphin JC, Danoff SK, Diaz-Mendoza J, Duggal A, Egashira R, Ewing T, Gulati M, Inoue Y, Jenkins AR, Johannson KA, Johkoh T, Tamae-Kakazu M, Kitaichi M, Knight SL, Koschel D, Lederer DJ, Mageto Y, Maier LA, Matiz C, Morell F, Nicholson AG, Patolia S, Pereira CA, Renzoni EA, Salisbury ML, Selman M, Walsh SLF, Wuyts WA, Wilson KC. Diagnosis of Hypersensitivity Pneumonitis in Adults. An Official ATS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med 2020; 202:e36-e69. [PMID: 32706311 PMCID: PMC7397797 DOI: 10.1164/rccm.202005-2032st] [Citation(s) in RCA: 485] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: This guideline addresses the diagnosis of hypersensitivity pneumonitis (HP). It represents a collaborative effort among the American Thoracic Society, Japanese Respiratory Society, and Asociación Latinoamericana del Tórax.Methods: Systematic reviews were performed for six questions. The evidence was discussed, and then recommendations were formulated by a multidisciplinary committee of experts in the field of interstitial lung disease and HP using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach.Results: The guideline committee defined HP, and clinical, radiographic, and pathological features were described. HP was classified into nonfibrotic and fibrotic phenotypes. There was limited evidence that was directly applicable to all questions. The need for a thorough history and a validated questionnaire to identify potential exposures was agreed on. Serum IgG testing against potential antigens associated with HP was suggested to identify potential exposures. For patients with nonfibrotic HP, a recommendation was made in favor of obtaining bronchoalveolar lavage (BAL) fluid for lymphocyte cellular analysis, and suggestions for transbronchial lung biopsy and surgical lung biopsy were also made. For patients with fibrotic HP, suggestions were made in favor of obtaining BAL for lymphocyte cellular analysis, transbronchial lung cryobiopsy, and surgical lung biopsy. Diagnostic criteria were established, and a diagnostic algorithm was created by expert consensus. Knowledge gaps were identified as future research directions.Conclusions: The guideline committee developed a systematic approach to the diagnosis of HP. The approach should be reevaluated as new evidence accumulates.
Collapse
|