1
|
Hobson SR, Cohen ER, Gandhi S, Jain V, Niles KM, Roy-Lacroix MÈ, Wo BL. Guideline No. 452: Diagnosis and Management of Intrahepatic Cholestasis of Pregnancy. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2024; 46:102618. [PMID: 39089469 DOI: 10.1016/j.jogc.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To summarize the current evidence and to make recommendations for the diagnosis and management of intrahepatic cholestasis of pregnancy. TARGET POPULATION Pregnant people with intrahepatic cholestasis of pregnancy. OPTIONS Diagnosing the condition using fasting or non-fasting bile acids, classifying disease severity, determining what treatment to offer, establishing how to monitor for antenatal fetal wellbeing, identifying when to perform elective birth. BENEFITS, HARMS, AND COSTS Individuals with intrahepatic cholestasis of pregnancy are at increased risk of adverse perinatal outcomes including preterm birth, neonatal respiratory distress and admission to a neonatal intensive care unit, with an increased risk of stillbirth when bile acid levels are ≥100 μmol/L. There is inequity in bile acid testing availability and timely access to results, along with uncertainly of how to treat, monitor. and ultimately deliver these pregnancies. Optimization of diagnostic and management protocols can improve maternal and fetal postnatal outcomes. EVIDENCE Medline, PubMed, Embase, and the Cochrane Library were searched from inception to March 2023, using medical subject headings (MeSH) and keywords related to pregnancy, intrahepatic cholestasis of pregnancy, bile acids, pruritis, ursodeoxycholic acid, and stillbirth. This document presents an abstraction of the evidence rather than a methodological review. VALIDATION METHODS The authors rated the quality of evidence and strength of recommendations using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. See Appendix A (Tables A1 for definitions and A2 for interpretations). INTENDED AUDIENCE Obstetric care providers, including obstetricians, family physicians, nurses, midwives, maternal-fetal medicine specialists, and radiologists. SOCIAL MEDIA ABSTRACT Intrahepatic cholestasis of pregnancy requires adequate diagnosis with non-fasting bile acid levels which guide optimal management and delivery timing. SUMMARY STATEMENTS RECOMMENDATIONS.
Collapse
|
2
|
Hobson SR, Cohen ER, Gandhi S, Jain V, Niles KM, Roy-Lacroix MÈ, Wo BL. Directive clinique n o 452 : Diagnostic et prise en charge de la cholestase intrahépatique de la grossesse. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2024; 46:102619. [PMID: 39089470 DOI: 10.1016/j.jogc.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
|
3
|
Dekker SEI, Bierau J, Giera M, Blomberg N, Drenth JPH, Mayboroda OA, de Fijter JW, Soonawala D. Serum bile acids associate with liver volume in polycystic liver disease and decrease upon treatment with lanreotide. Eur J Clin Invest 2024; 54:e14147. [PMID: 38071418 DOI: 10.1111/eci.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND Polycystic liver disease (PLD) is a common extrarenal manifestation of autosomal dominant polycystic kidney disease (ADPKD). Bile acids may play a role in PLD pathogenesis. We performed a post-hoc exploratory analysis of bile acids in ADPKD patients, who had participated in a trial on the effect of a somatostatin analogue. Our hypothesis was that serum bile acid levels increase in PLD, and that lanreotide, which reduces liver growth, may also reduce bile acid levels. Furthermore, in PLD, urinary excretion of bile acids might contribute to renal disease. METHODS With liquid chromatography-mass spectrometry, 11 bile acids in serum and 6 in urine were quantified in 105 PLD ADPKD patients and 52 age-, sex-, mutation- and eGFR-matched non-PLD ADPKD patients. Sampling was done at baseline and after 120 weeks of either lanreotide or standard care. RESULTS Baseline serum levels of taurine- and glycine-conjugated bile acids were higher in patients with larger livers. In PLD patients, multiple bile acids decreased upon treatment with lanreotide but remained stable in untreated subjects. Changes over time did not correlate with changes in liver volume. Urine bile acid levels did not change and did not correlate with renal disease progression. CONCLUSION In ADPKD patients with PLD, baseline serum bile acids were associated with liver volume. Lanreotide reduced bile acid levels and has previously been shown to reduce liver volume. However, in this study, the decrease in bile acids was not associated with the change in liver volume.
Collapse
Affiliation(s)
- Shosha E I Dekker
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Darius Soonawala
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Haga Teaching Hospital, The Hague, the Netherlands
| |
Collapse
|
4
|
Gilbert MC, Setayesh T, Wan YJY. The contributions of bacteria metabolites to the development of hepatic encephalopathy. LIVER RESEARCH 2023; 7:296-303. [PMID: 38221945 PMCID: PMC10786625 DOI: 10.1016/j.livres.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over 20% of mortality during acute liver failure is associated with the development of hepatic encephalopathy (HE). Thus, HE is a complication of acute liver failure with a broad spectrum of neuropsychiatric abnormalities ranging from subclinical alterations to coma. HE is caused by the diversion of portal blood into systemic circulation through portosystemic collateral vessels. Thus, the brain is exposed to intestinal-derived toxic substances. Moreover, the strategies to prevent advancement and improve the prognosis of such a liver-brain disease rely on intestinal microbial modulation. This is supported by the findings that antibiotics such as rifaximin and laxative lactulose can alleviate hepatic cirrhosis and/or prevent HE. Together, the significance of the gut-liver-brain axis in human health warrants attention. This review paper focuses on the roles of bacteria metabolites, mainly ammonia and bile acids (BAs) as well as BA receptors in HE. The literature search conducted for this review included searches for phrases such as BA receptors, BAs, ammonia, farnesoid X receptor (FXR), G protein-coupled bile acid receptor 1 (GPBAR1 or TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and cirrhosis in conjunction with the phrase hepatic encephalopathy and portosystemic encephalopathy. PubMed, as well as Google Scholar, was the search engines used to find relevant publications.
Collapse
Affiliation(s)
- Miranda Claire Gilbert
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
5
|
Grove JI, Stephens C, Lucena MI, Andrade RJ, Weber S, Gerbes A, Bjornsson ES, Stirnimann G, Daly AK, Hackl M, Khamina-Kotisch K, Marin JJG, Monte MJ, Paciga SA, Lingaya M, Forootan SS, Goldring CEP, Poetz O, Lombaard R, Stege A, Bjorrnsson HK, Robles-Diaz M, Li D, Tran TDB, Ramaiah SK, Samodelov SL, Kullak-Ublick GA, Aithal GP. Study design for development of novel safety biomarkers of drug-induced liver injury by the translational safety biomarker pipeline (TransBioLine) consortium: a study protocol for a nested case-control study. Diagn Progn Res 2023; 7:18. [PMID: 37697410 PMCID: PMC10496294 DOI: 10.1186/s41512-023-00155-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
A lack of biomarkers that detect drug-induced liver injury (DILI) accurately continues to hinder early- and late-stage drug development and remains a challenge in clinical practice. The Innovative Medicines Initiative's TransBioLine consortium comprising academic and industry partners is developing a prospective repository of deeply phenotyped cases and controls with biological samples during liver injury progression to facilitate biomarker discovery, evaluation, validation and qualification.In a nested case-control design, patients who meet one of these criteria, alanine transaminase (ALT) ≥ 5 × the upper limit of normal (ULN), alkaline phosphatase ≥ 2 × ULN or ALT ≥ 3 ULN with total bilirubin > 2 × ULN, are enrolled. After completed clinical investigations, Roussel Uclaf Causality Assessment and expert panel review are used to adjudicate episodes as DILI or alternative liver diseases (acute non-DILI controls). Two blood samples are taken: at recruitment and follow-up. Sample size is as follows: 300 cases of DILI and 130 acute non-DILI controls. Additional cross-sectional cohorts (1 visit) are as follows: Healthy volunteers (n = 120), controls with chronic alcohol-related or non-alcoholic fatty liver disease (n = 100 each) and patients with psoriasis or rheumatoid arthritis (n = 100, 50 treated with methotrexate) are enrolled. Candidate biomarkers prioritised for evaluation include osteopontin, glutamate dehydrogenase, cytokeratin-18 (full length and caspase cleaved), macrophage-colony-stimulating factor 1 receptor and high mobility group protein B1 as well as bile acids, sphingolipids and microRNAs. The TransBioLine project is enabling biomarker discovery and validation that could improve detection, diagnostic accuracy and prognostication of DILI in premarketing clinical trials and for clinical healthcare application.
Collapse
Affiliation(s)
- Jane I Grove
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Camilla Stephens
- Servicios de Aparato Digestivo Y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Hospital Universitario Virgen de La Victoria, Universidad de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
| | - M Isabel Lucena
- Servicios de Aparato Digestivo Y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Hospital Universitario Virgen de La Victoria, Universidad de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
| | - Raúl J Andrade
- Servicios de Aparato Digestivo Y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Hospital Universitario Virgen de La Victoria, Universidad de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
| | - Sabine Weber
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Gerbes
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Einar S Bjornsson
- Department of Gastroenterology, Landspitali University Hospital Reykjavik, University of Iceland, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Guido Stirnimann
- University Clinic for Visceral Surgery and Medicine, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Ann K Daly
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | | | | | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Sara A Paciga
- Worldwide Research Development and Medical, Pfizer, NY, USA
| | - Melanie Lingaya
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Shiva S Forootan
- Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | | | | | - Rudolf Lombaard
- ABX-CRO Advanced Pharmaceutical Services, Forschungsgesellschaft mbH, Cape Town, 7441, South Africa
| | - Alexandra Stege
- Charité-Universitätsmedizin Berlin, Central Biobank Charité (ZeBanC), Berlin, Germany
| | - Helgi K Bjorrnsson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mercedes Robles-Diaz
- Servicios de Aparato Digestivo Y Farmacologia Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Hospital Universitario Virgen de La Victoria, Universidad de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
| | - Dingzhou Li
- Worldwide Research Development and Medical, Pfizer, NY, USA
| | | | | | - Sophia L Samodelov
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006, Zurich, Switzerland
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, 4056, Basel, Switzerland
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.
| |
Collapse
|
6
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
7
|
Stewart E, Nydam TL, Hendrickse A, Pomposelli JJ, Pomfret EA, Moore HB. Viscoelastic Management of Coagulopathy during the Perioperative Period of Liver Transplantation. Semin Thromb Hemost 2023; 49:119-133. [PMID: 36318962 PMCID: PMC10366939 DOI: 10.1055/s-0042-1758058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Viscoelastic testing (VET) in liver transplantation (LT) has been used since its origin, in combination with standard laboratory testing (SLT). There are only a few, small, randomized controlled trials that demonstrated a reduction in transfusion rates using VET to guide coagulation management. Retrospective analyses contrasting VET to SLT have demonstrated mixed results, with a recent concern for overtreatment and the increase in postoperative thrombotic events. An oversight of many studies evaluating VET in LT is a single protocol that does not address the different phases of surgery, in addition to pre- and postoperative management. Furthermore, the coagulation spectrum of patients entering and exiting the operating room is diverse, as these patients can have varying anatomic and physiologic risk factors for thrombosis. A single transfusion strategy for all is short sighted. VET in combination with SLT creates the opportunity for personalized resuscitation in surgery which can address the many challenges in LT where patients are at a paradoxical risk for both life-threatening bleeding and clotting. With emerging data on the role of rebalanced coagulation in cirrhosis and hypercoagulability following LT, there are numerous potential roles in VET management of LT that have been unaddressed.
Collapse
Affiliation(s)
- Erin Stewart
- Department of Anesthesia, University of Colorado School of Medicine, Aurora, Colorado
| | - Trevor L. Nydam
- Division of Transplant Surgery, Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Adrian Hendrickse
- Department of Anesthesia, University of Colorado School of Medicine, Aurora, Colorado
| | - James J. Pomposelli
- Division of Transplant Surgery, Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth A. Pomfret
- Division of Transplant Surgery, Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Hunter B. Moore
- Division of Transplant Surgery, Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
8
|
Qin S, Tian J, Wang L, Zhao Y, Wang D, Wang F, Meng J, Liu M, Liang A. Ultra-performance chromatography-electrospray tandem mass spectrometry analysis of bile acid profiles in the enterohepatic circulation following geniposide and acetaminophen-induced liver injury. J Chromatogr A 2022; 1680:463417. [PMID: 35985151 DOI: 10.1016/j.chroma.2022.463417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Bile acids (BAs) play an important role in pre-diagnosing drug-induced liver injury (DILI). However, in clinical practice, different types of liver injury are characterized by different pathogeneses and pathological manifestations. Therefore, whether BAs can be used as biomarkers across different DILIs remains unclear. In this study, an ultra-performance chromatography-mass spectrometry (MS)/MS-based technique was developed for the simultaneous quantitative analysis of 31 BAs in the serum, liver, feces, urine, and intestinal contents of rats treated with acetaminophen (APAP) and geniposide to induce liver injury. The total extraction recovery for representative analytes ranged between 80.60% and 99.23% in the serum, urine, liver, feces, and intestinal contents. The correlation coefficients for all standard curves of the different matrices were at least 0.99. Validation of the BA analytical method including selectivity, residue, lower limit of quantification, accuracy, precision, matrix effect, and stability conformed with the biospecimen quality control standards of the Chinese Pharmacopoeia (version 2020). Serum biochemical and pathohistological analyses revealed APAP- and geniposide-induced hepatocellular and cholestatic DILI, respectively, with different effects on BA profiles in the enterohepatic circulation. Metabolomics further revealed that the trends in BA changes in the serum, feces, urine, and intestinal tissues were consistent between the geniposide- and APAP-treated groups. However, in the liver, the total BAs (TBA) concentration increased by 1.70 fold in the geniposide group but decreased by 43% in the APAP group compared with the control group. Multivariate analysis revealed differentially expressed BAs, including TCA, CA, and GCA, which are potential biomarkers for DILI, in the serum, liver, and urine following treatment with geniposide. Interestingly, the differentially expressed BAs in the APAP group were similar to those in the control group. Additionally, the magnitude of changes in the TBA in the urine (3.3 fold and 15.5 fold in the APAP and geniposide groups, respectively) was higher than that in the blood (290 fold and 640 fold in the APAP and geniposide groups, respectively). However, given the BA profiles after geniposide- and APAP-induced liver injury, BAs were found to be more suitable as biomarkers for diagnosing cholestatic liver injury. Overall, the BA assay developed in this study is rapid, simple, accurate, validated, sensitive, and suitable for analyzing the levels and distribution of BAs in various parts of the enterohepatic circulation.
Collapse
Affiliation(s)
- Shasha Qin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Dunfang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Fang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Meiting Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China.
| |
Collapse
|
9
|
Moreno-Torres M, Quintás G, Castell JV. The Potential Role of Metabolomics in Drug-Induced Liver Injury (DILI) Assessment. Metabolites 2022; 12:metabo12060564. [PMID: 35736496 PMCID: PMC9227129 DOI: 10.3390/metabo12060564] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
Drug-induced liver injury (DILI) is one of the most frequent adverse clinical reactions and a relevant cause of morbidity and mortality. Hepatotoxicity is among the major reasons for drug withdrawal during post-market and late development stages, representing a major concern to the pharmaceutical industry. The current biochemical parameters for the detection of DILI are based on enzymes (alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), alkaline phosphatase (ALP)) and bilirubin serum levels that are not specific of DILI and therefore there is an increasing interest on novel, specific, DILI biomarkers discovery. Metabolomics has emerged as a tool with a great potential for biomarker discovery, especially in disease diagnosis, and assessment of drug toxicity or efficacy. This review summarizes the multistep approaches in DILI biomarker research and discovery based on metabolomics and the principal outcomes from the research performed in this field. For that purpose, we have reviewed the recent scientific literature from PubMed, Web of Science, EMBASE, and PubTator using the terms “metabolomics”, “DILI”, and “humans”. Despite the undoubted contribution of metabolomics to our understanding of the underlying mechanisms of DILI and the identification of promising novel metabolite biomarkers, there are still some inconsistencies and limitations that hinder the translation of these research findings into general clinical practice, probably due to the variability of the methods used as well to the different mechanisms elicited by the DILI causing agent.
Collapse
Affiliation(s)
- Marta Moreno-Torres
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain
- CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (M.M.-T.); (J.V.C.)
| | - Guillermo Quintás
- Unidad Analítica, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain;
- Health and Biomedicine, LEITAT Technological Center, 46026 Valencia, Spain
| | - José V. Castell
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain
- CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
- Correspondence: (M.M.-T.); (J.V.C.)
| |
Collapse
|