1
|
Hashemi Karoii D, Azizi H, Darvari M, Qorbanee A, Hawezy DJ. Identification of novel cytoskeleton protein involved in spermatogenic cells and sertoli cells of non-obstructive azoospermia based on microarray and bioinformatics analysis. BMC Med Genomics 2025; 18:19. [PMID: 39863862 PMCID: PMC11762539 DOI: 10.1186/s12920-025-02087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis. METHODS The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes). To validate these findings, we cross-referenced our results with data from a single-cell genomics database. RESULTS In the microarray analyses of three human cases with different NOA spermatogenic cells, the expression of TBL3, MAGEA8, KRTAP3-2, KRT35, VCAN, MYO19, FBLN2, SH3RF1, ACTR3B, STRC, THBS4, and CTNND2 were upregulated, while expression of NTN1, ITGA1, GJB1, CAPZA1, SEPTIN8, and GOLGA6L6 were downregulated. There was an increase in KIRREL3, TTLL9, GJA1, ASB1, and RGPD5 expression in the Sertoli cells of three human cases with NOA, whereas expression of DES, EPB41L2, KCTD13, KLHL8, TRIOBP, ECM2, DVL3, ARMC10, KIF23, SNX4, KLHL12, PACSIN2, ANLN, WDR90, STMN1, CYTSA, and LTBP3 were downregulated. A combined analysis of Gene Ontology (GO) and STRING, were used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP) mitotic cytokinesis, cytoskeleton-dependent cytokinesis, and positive regulation of cell-substrate adhesion were significantly associated with differentially expressed genes (DEGs) in spermatogenic cells. Moleculare function (MF) of DEGs that were up/down regulated, it was found that tubulin bindings, gap junction channels, and tripeptide transmembrane transport were more significant in our analysis. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. Cell-cell junction assembly, cell-matrix adhesion, and regulation of SNARE complex assembly were significantly correlated with common DEGs for BP. In the study of MF, U3 snoRNA binding, and cadherin binding were significantly associated with common DEGs. CONCLUSION Our analysis, leveraging single-cell data, substantiated our findings, demonstrating significant alterations in gene expression patterns.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Maryam Darvari
- Department of Cellular and Molecular Biology, Islamic Azad University, Ghaemshahr branch, Ghaemshahr, Iran
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Koya KOY45, Iran
| | - Ali Qorbanee
- Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq
| | - Dawan Jamal Hawezy
- Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq
| |
Collapse
|
2
|
Li H, Yuan H, Yang ZP, Song Y, Wang JJ, Wen Q, Zheng YX, Zhang XX, Yu M, Yuan ZG. Differential transcriptome study on the damage of testicular tissues caused by chronic infection of T. gondii in mice. Parasit Vectors 2024; 17:252. [PMID: 38858789 PMCID: PMC11165745 DOI: 10.1186/s13071-024-06247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/15/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Toxoplasma gondii is an intracellular protozoan parasite that is widely distributed in humans and warm-blooded animals. T. gondii chronic infections can cause toxoplasmic encephalopathy, adverse pregnancy, and male reproductive disorders. In male reproduction, the main function of the testis is to provide a stable place for spermatogenesis and immunological protection. The disorders affecting testis tissue encompass abnormalities in the germ cell cycle, spermatogenic retardation, or complete cessation of sperm development. However, the mechanisms of interaction between T. gondii and the reproductive system is unclear. The aims were to study the expression levels of genes related to spermatogenesis, following T. gondii infection, in mouse testicular tissue. METHODS RNA-seq sequencing was carried out on mouse testicular tissues from mice infected or uninfected with the T. gondii type II Prugniaud (PRU) strain and validated in combination with real-time quantitative PCR and immunofluorescence assays. RESULTS The results showed that there were 250 significant differentially expressed genes (DEGs) (P < 0.05, |log2fold change| ≧ 1). Bioinformatics analysis showed that 101 DEGs were annotated to the 1696 gene ontology (GO) term. While there was a higher number of DEGs in the biological process classification as a whole, the GO enrichment revealed a significant presence of DEGs in the cellular component classification. The Arhgap18 and Syne1 genes undergo regulatory changes following T. gondii infection, and both were involved in shaping the cytoskeleton of the blood-testis barrier (BTB). The number of DEGs enriched in the MAPK signaling pathway, the ERK1/2 signaling pathway, and the JNK signaling pathway were significant. The PTGDS gene is located in the Arachidonic acid metabolism pathway, which plays an important role in the formation and maintenance of BTB in the testis. The expression of PTGDS is downregulated subsequent to T. gondii infection, potentially exerting deleterious effects on the integrity of the BTB and the spermatogenic microenvironment within the testes. CONCLUSIONS Overall, our research provides in-depth insights into how chronic T. gondii infection might affect testicular tissue and potentially impact male fertility. These findings offer a new perspective on the impact of T. gondii infection on the male reproductive system.
Collapse
Affiliation(s)
- Haoxin Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Hao Yuan
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Zi-Peng Yang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Yining Song
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Jun-Jie Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Qingyuan Wen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Yu-Xiang Zheng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Xiu-Xiang Zhang
- College of Plant, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Miao Yu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140 People’s Republic of China
| | - Zi-Guo Yuan
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| |
Collapse
|
3
|
Lu T, Mortimer M, Li F, Li Z, Chen L, Li M, Guo LH. Putative adverse outcome pathways of the male reproductive toxicity derived from toxicological studies of perfluoroalkyl acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162439. [PMID: 36848992 DOI: 10.1016/j.scitotenv.2023.162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Adverse outcome pathway (AOP) as a conceptual framework is a powerful tool in the field of toxicology to connect seemingly discrete events at different levels of biological organizations into an organized pathway from molecular interactions to whole organism toxicity. Based on numerous toxicological studies, eight AOPs for reproductive toxicity have been endorsed by the Organization for Economic Co-operation and Development (OECD) Task Force on Hazard Assessment. We have conducted a literature survey on the mechanistic studies on male reproductive toxicity of perfluoroalkyl acids (PFAAs), a class of global environmental contaminants with high persistence, bioaccumulation and toxicity. Using the AOP development strategy, five new AOPs for male reproductive toxicity were proposed here, namely (1) changes in membrane permeability leading to reduced sperm motility, (2) disruption of mitochondrial function leading to sperm apoptosis, (3) decreased gonadotropin-releasing hormone (GnRH) expression in hypothalamus leading to reduced testosterone production in male rats, (4) activation of the p38 signaling pathway leading to disruption of BTB in mice, (5) inhibition of p-FAK-Tyr407 activity leading to the destruction of BTB. The molecular initiating events in the proposed AOPs are different from those in the endorsed AOPs, which are either receptor activation or enzyme inhibition. Although some of the AOPs are still incomplete, they can serve as a building block upon which full AOPs can be developed and applied to not only PFAAs but also other chemical toxicants with male reproductive toxicity.
Collapse
Affiliation(s)
- Tingyu Lu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Zhi Li
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Lu Chen
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
4
|
Mechanisms underlying impaired spermatogenic function in orchitis induced by busulfan. Reprod Toxicol 2023; 115:1-7. [PMID: 36372306 DOI: 10.1016/j.reprotox.2022.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Busulfan is an alkylating agent commonly used in cancer chemotherapy. It is also an ideal agent for preparing transplant recipients of spermatogonial stem cells because of its high efficiency in destroying endogenous germ cells in the testis. However, its toxicity mechanism remains unclear, affecting its clinical use and applications. Based on reports of busulfan causing orchitis and a previous study by our team, this article summarizes the relationship between busulfan and orchitis, cytokines, the blood-testis barrier, and the cytoskeleton, unravels the regulatory pathways and mechanism behind busulfan-induced orchitis, and reveals the molecular mechanism underlying impaired spermatogenic function in orchitis, providing new ideas for the clinical application of busulfan while reducing its testicular toxicity.
Collapse
|
5
|
Wei Y, Zhou Y, Long C, Wu H, Hong Y, Fu Y, Wang J, Wu Y, Shen L, Wei G. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117904. [PMID: 34371264 DOI: 10.1016/j.envpol.2021.117904] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
It has been found that polystyrene microplastics (PS-MPs) exposure leads to decreased sperm quality and quantity, and we aim to explore the underlying mechanisms. Therefore, we gave 20 mg/kg body weight (bw) and 40 mg/kg bw 4 μm and 10 μm PS-MPs to male Balb/c mice by gavage. RNA sequencing of testes was performed. After PS-MPs exposure, blood-testis barrier (BTB) integrity was impaired. Since cytoskeleton was closely related to BTB integrity maintenance, and cytoskeleton disorganization could be induced by PS-MPs exposure in the testis, which resulted in the truncation of actin filaments and disruption of BTB integrity. Such processes were attributed to the differential expression of Arp3 and Eps8 (two of the most important actin-binding proteins). According to the transcriptome sequencing results, we examined the oxidative stress level in the testes and Sertoli cells. We found that PS-MPs exposure induced increased reactive oxygen species (ROS) level, which destroyed the balance between mTORC1 and mTORC2 (the mTORC1 activity was increased, while the mTORC2 activity was decreased). In conclusion, PS-MPs induced the imbalance of mTORC1 and mTORC2 via the ROS burst, and altered the expression profile of actin-binding proteins, resulting in F-actin disorganization and reduced expression of junctional proteins in the BTB. Eventually PS-MPs led to BTB integrity disruption and spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Huan Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yan Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|
6
|
Yu J, Li S, Wang L, Dong Z, Si L, Bao L, Wu L. Pathogenesis of Brucella epididymoorchitis-game of Brucella death. Crit Rev Microbiol 2021; 48:96-120. [PMID: 34214000 DOI: 10.1080/1040841x.2021.1944055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonotic disease caused by Brucella spp. Human infection often results from direct contact with tissues from infected animals or by consumption of undercooked meat and unpasteurised dairy products, causing serious economic losses and public health problems. The male genitourinary system is a common involved system in patients with brucellosis. Among them, unilateral orchitis and epididymitis are the most common. Although the clinical and imaging aspect of orchi-epididymitis caused by brucellosis have been widely described, the cellular and molecular mechanisms involved in the damage and the immune response in testis and epididymis have not been fully elucidated. In this review, we first summarised the clinical characteristics of Brucella epididymo-orchitis and the composition of testicular and epididymal immune system. Secondly, with regard to the mechanism of Brucella epididymoorchitis, we mainly discussed the process of Brucella invading testis and epididymis in temporal and spatial order, including i) Brucella evades innate immune recognition of testicular PRRs;ii) Brucella overcomes the immune storm triggered by the invasion of testis through bacterial lipoproteins and virulence factors, and changes the secretion mode of cytokines; iii) Brucella breaks through the blood-testis barrier with the help of macrophages, and inflammatory cytokines promote the oxidative stress of Sertoli cells, damaging the integrity of BTB; iv) Brucella inhibits apoptosis of testicular phagocytes. Finally, we revealed the structure and sequence of testis invaded by Brucella at the tissue level. This review will enable us to better understand the pathogenesis of orchi-epididymitis caused by brucellosis and shed light on the development of new treatment strategies for the treatment of brucellosis and the prevention of transition to chronic form. Facing the testicle with immunity privilege, Brucella is like Bruce Lee in the movie Game of Death, winning is survival while losing is death.HIGHLIGHTSWe summarized the clinical features and pathological changes of Brucellaepididymoorchitis.Our research reveals the pathogenesis of Brucella epididymoorchitis, which mainly includes the subversion of testicular immune privilege by Brucella and a series of destructive reactions derived from it.As a basic framework and valuable resource, this study can promote the exploration of the pathogenesis of Brucella and provide reference for determining new therapeutic targets for brucellosis in the future.
Collapse
Affiliation(s)
- Jiuwang Yu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Sha Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lu Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lengge Si
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lan Wu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
7
|
Vanderhout SM, Rastegar Panah M, Garcia-Bailo B, Grace-Farfaglia P, Samsel K, Dockray J, Jarvi K, El-Sohemy A. Nutrition, genetic variation and male fertility. Transl Androl Urol 2021; 10:1410-1431. [PMID: 33850777 PMCID: PMC8039611 DOI: 10.21037/tau-20-592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infertility affects nearly 50 million couples worldwide, with 40-50% of cases having a male factor component. It is well established that nutritional status impacts reproductive development, health and function, although the exact mechanisms have not been fully elucidated. Genetic variation that affects nutrient metabolism may impact fertility through nutrigenetic mechanisms. This review summarizes current knowledge on the role of several dietary components (vitamins A, B12, C, D, E, folate, betaine, choline, calcium, iron, caffeine, fiber, sugar, dietary fat, and gluten) in male reproductive health. Evidence of gene-nutrient interactions and their potential effect on fertility is also examined. Understanding the relationship between genetic variation, nutrition and male fertility is key to developing personalized, DNA-based dietary recommendations to enhance the fertility of men who have difficulty conceiving.
Collapse
Affiliation(s)
| | | | | | | | - Konrad Samsel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Judith Dockray
- Murray Koffler Urologic Wellness Centre, Department of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Keith Jarvi
- Murray Koffler Urologic Wellness Centre, Department of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Liu Y, Fan J, Yan Y, Dang X, Zhao R, Xu Y, Ding Z. JMY expression by Sertoli cells contributes to mediating spermatogenesis in mice. FEBS J 2020; 287:5478-5497. [PMID: 32279424 DOI: 10.1111/febs.15328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/27/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Sertoli cells are crucial for spermatogenesis in the seminiferous epithelium because their actin cytoskeleton supports vesicular transport, cell junction formation, protein anchoring, and spermiation. Here, we show that a junction-mediating and actin-regulatory protein (JMY) affects the blood-tissue barrier (BTB) function through remodeling of the Sertoli cell junctional integrity and it also contributes to controlling endocytic vesicle trafficking. These functions are critical for the maintenance of sperm fertility since loss of Sertoli cell-specific Jmy function induced male subfertility in mice. Specifically, these mice have (a) impaired BTB integrity and spermatid adhesion in the seminiferous tubules; (b) high incidence of sperm structural deformity; and (c) reduced sperm count and poor sperm motility. Moreover, the cytoskeletal integrity was compromised along with endocytic vesicular trafficking. These effects impaired junctional protein recycling and reduced Sertoli cell BTB junctional integrity. In addition, JMY interaction with actin-binding protein candidates α-actinin1 and sorbin and SH3 domain containing protein 2 was related to JMY activity, and in turn, actin cytoskeletal organization. In summary, JMY affects the control of spermatogenesis through the regulation of actin filament organization and endocytic vesicle trafficking in Sertoli cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Jiaying Fan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China.,Center for Experimental Medical Science Education, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Yan
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Xuening Dang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Ran Zhao
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yimei Xu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
9
|
Yang T, Yang WX. The dynamics and regulation of microfilament during spermatogenesis. Gene 2020; 744:144635. [PMID: 32244053 DOI: 10.1016/j.gene.2020.144635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Spermatogenesis is a highly complex physiological process which contains spermatogonia proliferation, spermatocyte meiosis and spermatid morphogenesis. In the past decade, actin binding proteins and signaling pathways which are critical for regulating the actin cytoskeleton in testis had been found. In this review, we summarized 5 actin-binding proteins that have been proven to play important roles in the seminiferous epithelium. Lack of them perturbs spermatids polarity and the transport of spermatids. The loss of Arp2/3 complex, Formin1, Eps8, Palladin and Plastin3 cause sperm release failure suggesting their irreplaceable role in spermatogenesis. Actin regulation relies on multiple signal pathways. The PI3K/Akt signaling pathway positively regulate the mTOR pathway to promote actin reorganization in seminiferous epithelium. Conversely, TSC1/TSC2 complex, the upstream of mTOR, is activated by the LKB1/AMPK pathway to inhibit cell proliferation, differentiation and migration. The increasing researches focus on the function of actin binding proteins (ABPs), however, their collaborative regulation of actin patterns and potential regulatory signaling networks remains unclear. We reviewed ABPs that play important roles in mammalian spermatogenesis and signal pathways involved in the regulation of microfilaments. We suggest that more relevant studies should be performed in the future.
Collapse
Affiliation(s)
- Tong Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Wu D, Huang CJ, Jiao XF, Ding ZM, Zhang SX, Miao YL, Huo LJ. Bisphenol AF compromises blood-testis barrier integrity and sperm quality in mice. CHEMOSPHERE 2019; 237:124410. [PMID: 31362132 DOI: 10.1016/j.chemosphere.2019.124410] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The profound influence of environmental chemicals on human health including inducing life-threatening gene mutation has been publicly recognized. Being a substitute for the extensively used endocrine-disrupting chemical BPA, Bisphenol AF (BPAF) has been known as teratogen with developmental toxicities and therefore potentially putting human into the risk of biological hazards. Herein, we deciphered the detrimental effects of BPAF on spermatogenesis and spermiotiliosis in sexual maturity of mice exposing to BPAF (5, 20, 50 mg/kg/d) for consecutive 28 days. BPAF exposure significantly compromises blood-testis barrier integrity and sperm quantity and quality in a dose-dependent manner. Sperms from BPAF exposure mice are featured by severe DNA damage, altered SUMOylation and ubiquitination dynamics and interfered epigenetic inheritance with hypermethylation of H3K27me3 presumably due to the aggregation of cellular reactive oxygen species (ROS). Furthermore, BPAF treatment (50 μM for 24 h) compromises cytoskeleton architecture and tight junction permeability in primary cultured Sertoli cells evidenced by dysfunction of actin regulatory proteins (e.g. Arp3 and Palladin) via activation of ERK signaling, thereby perturbing the privilege microenvironment created by Sertoli cells for spermatogenesis. Overall, our study determines BPAF is deleterious for male fertility, leading to a better appreciation of its toxicological features in our life.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chun-Jie Huang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
11
|
Moreira BP, Oliveira PF, Alves MG. Molecular Mechanisms Controlled by mTOR in Male Reproductive System. Int J Mol Sci 2019; 20:ijms20071633. [PMID: 30986927 PMCID: PMC6480367 DOI: 10.3390/ijms20071633] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
In recent years, the mammalian target of rapamycin (mTOR) has emerged as a master integrator of upstream inputs, such as amino acids, growth factors and insulin availability, energy status and many others. The integration of these signals promotes a response through several downstream effectors that regulate protein synthesis, glucose metabolism and cytoskeleton organization, among others. All these biological processes are essential for male fertility, thus it is not surprising that novel molecular mechanisms controlled by mTOR in the male reproductive tract have been described. Indeed, since the first clinical evidence showed that men taking rapamycin were infertile, several studies have evidenced distinct roles for mTOR in spermatogenesis. However, there is a lack of consensus whether mTOR inhibition, which remains the experimental approach that originates the majority of available data, has a negative or positive impact on male reproductive health. Herein we discuss the latest findings concerning mTOR activity in testes, particularly its role on spermatogonial stem cell (SSC) maintenance and differentiation, as well as in the physiology of Sertoli cells (SCs), responsible for blood–testis barrier maintenance/restructuring and the nutritional support of spermatogenesis. Taken together, these recent advances highlight a crucial role for mTOR in determining the male reproductive potential.
Collapse
Affiliation(s)
- Bruno P Moreira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal.
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal.
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Regulation of Blood-Testis Barrier (BTB) Dynamics, Role of Actin-, and Microtubule-Based Cytoskeletons. Methods Mol Biol 2019; 1748:229-243. [PMID: 29453575 DOI: 10.1007/978-1-4939-7698-0_16] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the testis that supports meiosis and postmeiotic spermatid development since a delay in the establishment of a functional Sertoli cell barrier during postnatal development in rats or mice by 17-20 day postpartum (dpp) would lead to a delay of the first wave of meiosis. Furthermore, irreversible disruption of the BTB by toxicants also induces infertility in rodents. Herein, we summarize recent findings that BTB dynamics (i.e., disassembly, reassembly, and stabilization) are supported by the concerted efforts of the actin- and microtubule (MT)-based cytoskeletons. We focus on the role of two actin nucleation protein complexes, namely, the Arp2/3 (actin-related protein 2/3) complex and formin 1 (or the formin 1/spire 1 complex) known to induce actin nucleation, respectively, by conferring plasticity to actin cytoskeleton. We also focus on the MT plus (+)-end tracking protein (+TIP) EB1 (end-binding protein 1) which is known to confer MT stabilization. Furthermore, we discuss in particular how the interactions of these proteins modulate BTB dynamics during spermatogenesis. These findings also yield a novel hypothetical concept regarding the molecular mechanism that modulates BTB function.
Collapse
|
13
|
Zhai J, Geng X, Ding T, Li J, Tang J, Chen D, Cui L, Wang Q. An increase of estrogen receptor α protein level regulates BDE-209-mediated blood-testis barrier disruption during spermatogenesis in F1 mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4801-4820. [PMID: 30565106 DOI: 10.1007/s11356-018-3784-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Deca-bromodiphenyl ether (BDE-209) regulates various aspects of spermatogenesis and male fertility through its effect on estrogen receptor α (ERα), but the underlying mechanism remains unclear. Because molecular mechanisms such as remodeling of the blood-testis barrier (BTB) play crucial roles in spermatogenesis, we investigated the disruptive effects of ERα agonists on the BTB in spermatogenesis. In this study, 0, 300, and 500 mg/kg/day of BDE-209 were administered to pregnant adult mice by oral gavage from gestation day 7 to postnatal day 21. SerW3 cells were treated with methylpiperidino pyrazole (MPP) for 30 min before being treated with 50 μg/mL of BDE-209. BDE-209 increases ERα in time- and dose-dependent manners and decreases formin 1 and BTB-associated protein in F1 male mice. Furthermore, BDE-209 impairs the structure and function of the BTB. Activation of ERα signaling could disrupt the BTB, leading to spermatogenesis dysfunction. The results identified the role of ERα in BTB disruption during spermatogenesis and suggested that BTB disruption occurs because of exposure to BDE-209, which could potentially affect spermatogenesis. In conclusion, Sertoli cells seem to be the primary target of BDE-209 in the perinatal period, and this period constitutes a critical window of susceptibility to BDE-209. Also, the SerW3 cell model may not be a particularly useful cell model for studying the function of the cytoskeleton.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| | - Xiya Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Tao Ding
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jun Li
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jing Tang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Daojun Chen
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Longjiang Cui
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Qizhi Wang
- School of Energy and Environment, Southeast University, Sipailou Rd 2, Nanjing, 210018, China
| |
Collapse
|
14
|
He X, Sun Z, Manthari RK, Wu P, Wang J. Fluoride altered rat's blood testis barrier by affecting the F-actin via IL-1α. CHEMOSPHERE 2018; 211:826-833. [PMID: 30099167 DOI: 10.1016/j.chemosphere.2018.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 05/26/2023]
Abstract
Fluoride is known to affect the pro-inflammatory cytokines in the testis. Most of the recent literatures cited that cytokines regulate the blood-testis-barrier (BTB). However, the involvement of cytokines in the fluoride induced toxicity in BTB remains unclear. In order to study this, 60 male Sprague-Dawley (SD) rats were taken and randomly divided into 5 groups which included four fluoride groups exposed to 0, 25, 50, and 100 mg/L NaF in distilled water and one positive control group. On the 29th day of fluoride exposure, the positive control group rats were administered 0.1% CaCl2 solution. Biotin tracer technology and transmission electron microscopy (TEM) analysis were applied to evaluate the function and ultra-structure of BTB. The expression levels of the BTB associated proteins, actin relative protein 3 (Arp3), interleukin-1 alpha (IL-1α), and transforming growth factor beta-3 (TGF-β3) were determined using Western blotting and Enzyme Linked Immunosorbent Assay (ELISA) respectively, meanwhile the actin filament (F-actin) was detected by fluorescent phalloidin conjugates. Our results revealed that the function and the ultra-structure of BTB in all the fluoride treated groups were damaged with a concomitant significant decreases in basal ectoplasmic specialization (basal ES), associated protein β-catenin, and F-actin. Moreover, Arp3 levels were significantly increased in 50 and 100 mg/L NaF groups. Meanwhile, IL-1α significantly increased in all the fluoride treated groups. In summary, we concluded that an increase in IL-1α induced by NaF significantly decreased the expression of F-actin and the organization of F-actin highly branched, which might facilitate the BTB's functional and ultra-structural variations.
Collapse
Affiliation(s)
- Xinjin He
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi 030801, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi 030801, China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi 030801, China
| | - Panhong Wu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi 030801, China.
| |
Collapse
|
15
|
Wu D, Huang CJ, Jiao XF, Ding ZM, Zhang JY, Chen F, Wang YS, Li X, Huo LJ. Olaquindox disrupts tight junction integrity and cytoskeleton architecture in mouse Sertoli cells. Oncotarget 2017; 8:88630-88644. [PMID: 29179463 PMCID: PMC5687633 DOI: 10.18632/oncotarget.20289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
Sertoli cells, by creating an immune-privileged and nutrition supporting environment, maintain mammalian spermatogenesis and thereby holds the heart of male fertility. Olaquindox, an effective feed additive in livestock industry, could potentially expose human into the risk of biological hazards due to its genotoxicity and cytotoxicity, highlighting the significance of determining its bio-safety regarding human reproduction. Herein, we deciphered the detrimental effects of olaquindox on male fertility by mechanistically unraveling how olaquindox intervenes blood-testis barrier in mouse. Olaquindox (400 μg/ml) exposure significantly compromised tight junction permeability function, decreased or dislocated the junction proteins (e.g., ZO-1, occludin and N-cadherin) and attenuated mTORC2 signaling pathway in primary Sertoli cells. Furthermore, olaquindox disrupted F-actin architecture through interfering with the expression of actin branching protein complex (CDC42-N-WASP-Arp3) and actin bunding protein palladin. Olaquindox also triggered severely DNA damage and apoptosis while inhibiting autophagic flux in Sertoli cell presumably due to the exacerbated generation of reactive oxygen species (ROS). Pre-treatment with antioxidant N-acetylcysteine effectively ameliorated olaquindox-induced exhaustion of ZO-1 and N-Cadherin proteins, DNA damage and apoptosis. More significantly, olaquindox disrupted the epigenetic status in Sertoli cells with hypermethylation and concomitantly hypoacetylation of H3K9 and H3K27. Overall, our study determines olaquindox targets Sertoli cells to affect BTB function through tight junction proteins and F-actin orgnization, which might disrupt the process of spermatogenesis.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Jia-Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, Hubei, China
| |
Collapse
|
16
|
Abstract
Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the testis during spermatogenesis in particular via its ability to recruit branched actin polymerization protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings herein regarding the role of drebrin in actin filament organization at the ES. We also provide the hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in the seminiferous epithelium to support spermatogenesis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - Michelle W M Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
17
|
McCabe MJ, Tarulli GA, Laven-Law G, Matthiesson KL, Meachem SJ, McLachlan RI, Dinger ME, Stanton PG. Gonadotropin suppression in men leads to a reduction in claudin-11 at the Sertoli cell tight junction. Hum Reprod 2016; 31:875-86. [PMID: 26908839 DOI: 10.1093/humrep/dew009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/11/2016] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Are Sertoli cell tight junctions (TJs) disrupted in men undergoing hormonal contraception? SUMMARY ANSWER Localization of the key Sertoli cell TJ protein, claudin-11, was markedly disrupted by 8 weeks of gonadotropin suppression, the degree of which was related to the extent of adluminal germ cell suppression. WHAT IS KNOWN ALREADY Sertoli cell TJs are vital components of the blood-testis barrier (BTB) that sequester developing adluminal meiotic germ cells and spermatids from the vascular compartment. Claudin-11 knockout mice are infertile; additionally claudin-11 is spatially disrupted in chronically gonadotropin-suppressed rats coincident with a loss of BTB function, and claudin-11 is disorganized in various human testicular disorders. These data support the Sertoli cell TJ as a potential site of hormonal contraceptive action. STUDY DESIGN, SIZE, DURATION BTB proteins were assessed by immunohistochemistry (n = 16 samples) and mRNA (n = 18 samples) expression levels in available archived testis tissue from a previous study of 22 men who had undergone 8 weeks of gonadotropin suppression and for whom meiotic and post-meiotic germ cell numbers were available. The gonadotropin suppression regimens were (i) testosterone enanthate (TE) plus the GnRH antagonist, acyline (A); (ii) TE + the progestin, levonorgestrel, (LNG); (iii) TE + LNG + A or (iv) TE + LNG + the 5α-reductase inhibitor, dutasteride (D). A control group consisted of seven additional men, with three archived samples available for this study. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Immunohistochemical localization of claudin-11 (TJ) and other junctional type markers [ZO-1 (cytoplasmic plaque), β-catenin (adherens junction), connexin-43 (gap junction), vinculin (ectoplasmic specialization) and β-actin (cytoskeleton)] and quantitative PCR was conducted using matched frozen testis tissue. MAIN RESULTS AND THE ROLE OF CHANCE Claudin-11 formed a continuous staining pattern at the BTB in control men. Regardless of gonadotropin suppression treatment, claudin-11 localization was markedly disrupted and was broadly associated with the extent of meiotic/post-meiotic germ cell suppression; claudin-11 staining was (i) punctate (i.e. 'spotty' appearance) at the basal aspect of tubules when the average numbers of adluminal germ cells were <15% of control, (ii) presented as short fragments with cytoplasmic extensions when numbers were 15-25% of control or (iii) remained continuous when numbers were >40% of control. Changes in localization of connexin-43 and vinculin were also observed (smaller effects than for claudin-11) but ZO-1, β-catenin and β-actin did not differ, compared with control. LIMITATIONS, REASONS FOR CAUTION Claudin-11 was the only Sertoli cell TJ protein investigated, but it is considered to be the most pivotal of constituent proteins given its known implication in infertility and BTB function. We were limited to testis samples which had been gonadotropin-suppressed for 8 weeks, shorter than the 74-day spermatogenic wave, which may account for the heterogeneity in claudin-11 and germ cell response observed among the men. Longer suppression (12-24 weeks) is known to suppress germ cells further and claudin-11 disruption may be more uniform, although we could not access such samples. WIDER IMPLICATIONS OF THE FINDINGS These findings are important for our understanding of the sites of action of male hormonal contraception, because they suggest that BTB function could be ablated following long-term hormone suppression treatment. STUDY FUNDING/COMPETING INTERESTS National Health and Medical Research Council (Australia) Program Grants 241000 and 494802; Research Fellowship 1022327 (to R.I.M.) and the Victorian Government's Operational Infrastructure Support Program. None of the authors have any conflicts to disclose. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- M J McCabe
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia Applied Biology/Biotechnology, Royal Melbourne Institute of Technology University, Bundoora, VIC 3088, Australia Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia St Vincent's Clinical School, UNSW Australia, Sydney, NSW 2052, Australia
| | - G A Tarulli
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - G Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - K L Matthiesson
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - S J Meachem
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia
| | - R I McLachlan
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - M E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia St Vincent's Clinical School, UNSW Australia, Sydney, NSW 2052, Australia
| | - P G Stanton
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
18
|
França LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 2016; 4:189-212. [PMID: 26846984 DOI: 10.1111/andr.12165] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
It has been one and a half centuries since Enrico Sertoli published the seminal discovery of the testicular 'nurse cell', not only a key cell in the testis, but indeed one of the most amazing cells in the vertebrate body. In this review, we begin by examining the three phases of morphological research that have occurred in the study of Sertoli cells, because microscopic anatomy was essentially the only scientific discipline available for about the first 75 years after the discovery. Biochemistry and molecular biology then changed all of biological sciences, including our understanding of the functions of Sertoli cells. Immunology and stem cell biology were not even topics of science in 1865, but they have now become major issues in our appreciation of Sertoli cell's role in spermatogenesis. We end with the universal importance and plasticity of function by comparing Sertoli cells in fish, amphibians, and mammals. In these various classes of vertebrates, Sertoli cells have quite different modes of proliferation and epithelial maintenance, cystic vs. tubular formation, yet accomplish essentially the same function but in strikingly different ways.
Collapse
Affiliation(s)
- L R França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - R A Hess
- Reproductive Biology and Toxicology, Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - J M Dufour
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - M C Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Griswold
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|