1
|
Goedeke S, Murphy T, Rush A, Zinn C. Assessing the Nutrient Composition of a Carnivore Diet: A Case Study Model. Nutrients 2024; 17:140. [PMID: 39796574 PMCID: PMC11722875 DOI: 10.3390/nu17010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES The rise in chronic metabolic diseases has led to the exploration of alternative diets. The carnivore diet, consisting exclusively of animal products, has gained attention, anecdotally, for imparting benefit for inflammatory conditions beyond that possible by other restrictive dietary approaches. The aim was to assess the micronutrient adequacy of four versions of the carnivore diet against national nutrient reference values (NRVs). METHODS This study assessed the nutrient adequacy of the carnivore diet against national NRVs from the Australian National Health and Medical Research Council (NHMRC) and New Zealand Ministry of Health. Four meal plans for hypothetical average Australian adults were developed and analysed using Foodworks.online (Version 1, Xyris Pty Ltd., Brisbane, Australia, 2024), dietary software. Two female and two male plans were included; one set including dairy products and the other set including offal. RESULTS The carnivore diet met several NRV thresholds for nutrients such as riboflavin, niacin, phosphorus, zinc, Vitamin B6, Vitamin B12, selenium, and Vitamin A, and exceeded the sodium threshold. However, it fell short in thiamin, magnesium, calcium, and Vitamin C, and in iron, folate, iodine and potassium in some cases. Fibre intake was significantly below recommended levels. CONCLUSION The carnivore diet may offer benefits for managing certain chronic conditions. Whether the metabolic contexts from consuming such a diet facilitates a lower requirement of certain nutrients, or whether it poses risks of micronutrient inadequacies remains to be determined. Tailored nutritional guidance and supplementation strategies are recommended to ensure careful consideration of micronutrient intake to prevent deficiencies.
Collapse
Affiliation(s)
- Sylvia Goedeke
- Human Potential Centre, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0632, New Zealand;
| | | | - Amy Rush
- Type 1 Diabetes Family Centre, Stirling 6021, WA, Australia;
| | - Caryn Zinn
- Human Potential Centre, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0632, New Zealand;
| |
Collapse
|
3
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
4
|
Wang X, Zou C, Hou C, Li M, Bian Z, Zhu L. POU Class 2 Homeobox Associating Factor 1, as a Hub Candidate Gene in OP, Relieves Osteoblast Apoptosis. Appl Biochem Biotechnol 2024; 196:6072-6096. [PMID: 38183606 DOI: 10.1007/s12010-023-04833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Increasing evidence suggests that osteoblast apoptosis contributes to the pathogenesis of postmenopausal osteoporosis (PMOP). This study aimed to identify a hub gene associated with osteoporosis (OP) progression and its functions. We utilized the GSE68303 expression dataset from GEO database and conducted weighted gene co-expression network analysis (WGCNA) to investigate changes in co-expressed genes between sham and ovariectomy (OVX) groups. Differentially expressed genes (DEGs) were identified using the "limma" R package on GSE68303 dataset. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. A protein-protein interaction (PPI) network was constructed using the STRING database, which was visualized by Cytoscape software. The top ten hub genes were screened using the Cytohubba plugin, among which POU class 2 homeobox associating factor 1 (POU2AF1), an OP-related hub gene, showed a significant increase in OVX-induced mouse model based on immunohistochemical staining. Inhibition of POU2AF1 suppressed cell viability, induced cell cycle arrest at the G1 phase, and promoted osteoblast apoptosis as demonstrated by CCK-8 assay, flow cytometry analysis, and TUNEL assay. Moreover, overexpression of POU2AF1 decreased cleaved caspase-3/-8/-9 expression while increasing cyclinD1 and Ki67 expression in MC3T3-E1 and hFOB1.19 cells. Therefore, POU2AF1 may serve as a potential diagnostic biomarker for slowing down the progression of OP.
Collapse
Affiliation(s)
- Xuepeng Wang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang Province, China
| | - Chunchun Zou
- Department of Obstetrics and Gynecology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Changju Hou
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang Province, China
| | - Maoqiang Li
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang Province, China
| | - Zhenyu Bian
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang Province, China
| | - Liulong Zhu
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
9
|
Lennerz BS, Mey JT, Henn OH, Ludwig DS. Behavioral Characteristics and Self-Reported Health Status among 2029 Adults Consuming a "Carnivore Diet". Curr Dev Nutr 2021; 5:nzab133. [PMID: 34934897 PMCID: PMC8684475 DOI: 10.1093/cdn/nzab133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The "carnivore diet," based on animal foods and excluding most or all plant foods, has attracted recent popular attention. However, little is known about the health effects and tolerability of this diet, and concerns for nutrient deficiencies and cardiovascular disease risk have been raised. OBJECTIVES We obtained descriptive data on the nutritional practices and health status of a large group of carnivore diet consumers. METHODS A social media survey was conducted 30 March-24 June, 2020 among adults self-identifying as consuming a carnivore diet for ≥6 mo. Survey questions interrogated motivation, dietary intake patterns, symptoms suggestive of nutritional deficiencies or other adverse effects, satisfaction, prior and current health conditions, anthropometrics, and laboratory data. RESULTS A total of 2029 respondents (median age: 44 y, 67% male) reported consuming a carnivore diet for 14 mo (IQR: 9-20 mo), motivated primarily by health reasons (93%). Red meat consumption was reported as daily or more often by 85%. Under 10% reported consuming vegetables, fruits, or grains more often than monthly, and 37% denied vitamin supplement use. Prevalence of adverse symptoms was low (<1% to 5.5%). Symptoms included gastrointestinal (3.1%-5.5%), muscular (0.3%-4.0%), and dermatologic (0.1%-1.9%). Participants reported high levels of satisfaction and improvements in overall health (95%), well-being (66%-91%), various medical conditions (48%-98%), and median [IQR] BMI (in kg/m2) (from 27.2 [23.5-31.9] to 24.3 [22.1-27.0]). Among a subset reporting current lipids, LDL-cholesterol was markedly elevated (172 mg/dL), whereas HDL-cholesterol (68 mg/dL) and triglycerides (68 mg/dL) were optimal. Participants with diabetes reported benefits including reductions in median [IQR] BMI (4.3 [1.4-7.2]), glycated hemoglobin (0.4% [0%-1.7%]), and diabetes medication use (84%-100%). CONCLUSIONS Contrary to common expectations, adults consuming a carnivore diet experienced few adverse effects and instead reported health benefits and high satisfaction. Cardiovascular disease risk factors were variably affected. The generalizability of these findings and the long-term effects of this dietary pattern require further study.
Collapse
Affiliation(s)
- Belinda S Lennerz
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jacob T Mey
- Integrated Physiology and Molecular Medicine, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Owen H Henn
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|