1
|
George AT, Rubin DT. Artificial Intelligence in Inflammatory Bowel Disease. Gastrointest Endosc Clin N Am 2025; 35:367-387. [PMID: 40021234 DOI: 10.1016/j.giec.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Artificial intelligence (AI) is being increasingly studied and implemented in gastroenterology. In inflammatory bowel disease (IBD), numerous AI models are being developed to assist with IBD diagnosis, standardization of endoscopic and radiologic disease activity, and predicting outcomes. Further prospective, multicenter studies representing diverse populations and novel applications are needed prior to routine implementation in clinical practice and expected improved outcomes for clinicians and patients.
Collapse
Affiliation(s)
- Alvin T George
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - David T Rubin
- Department of Medicine, Inflammatory Bowel Disease Center, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Silverman AL, Shung D, Stidham RW, Kochhar GS, Iacucci M. How Artificial Intelligence Will Transform Clinical Care, Research, and Trials for Inflammatory Bowel Disease. Clin Gastroenterol Hepatol 2025; 23:428-439.e4. [PMID: 38992406 PMCID: PMC11719376 DOI: 10.1016/j.cgh.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024]
Abstract
Artificial intelligence (AI) refers to computer-based methodologies that use data to teach a computer to solve pre-defined tasks; these methods can be applied to identify patterns in large multi-modal data sources. AI applications in inflammatory bowel disease (IBD) includes predicting response to therapy, disease activity scoring of endoscopy, drug discovery, and identifying bowel damage in images. As a complex disease with entangled relationships between genomics, metabolomics, microbiome, and the environment, IBD stands to benefit greatly from methodologies that can handle this complexity. We describe current applications, critical challenges, and propose future directions of AI in IBD.
Collapse
Affiliation(s)
- Anna L Silverman
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona.
| | - Dennis Shung
- Section of Digestive Diseases, Department of Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Ryan W Stidham
- Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; Michigan Institute for Data Science, University of Michigan, Ann Arbor, Michigan
| | - Gursimran S Kochhar
- Division of Gastroenterology, Hepatology, and Nutrition, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Marietta Iacucci
- University of Birmingham, Institute of Immunology and Immunotherapy, Birmingham, United Kingdom; College of Medicine and Health, University College Cork, and APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
3
|
Carreras J, Roncador G, Hamoudi R. Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks. Cancers (Basel) 2024; 16:4230. [PMID: 39766129 PMCID: PMC11674594 DOI: 10.3390/cancers16244230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. OBJECTIVE This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). METHODS A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. RESULTS Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. CONCLUSIONS CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain;
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Biomedically Informed Artificial Intelligence Laboratory (BIMAI-Lab), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
4
|
Mota J, Almeida MJ, Martins M, Mendes F, Cardoso P, Afonso J, Ribeiro T, Ferreira J, Fonseca F, Limbert M, Lopes S, Macedo G, Castro Poças F, Mascarenhas M. Artificial Intelligence in Coloproctology: A Review of Emerging Technologies and Clinical Applications. J Clin Med 2024; 13:5842. [PMID: 39407902 PMCID: PMC11477032 DOI: 10.3390/jcm13195842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a transformative tool across several specialties, namely gastroenterology, where it has the potential to optimize both diagnosis and treatment as well as enhance patient care. Coloproctology, due to its highly prevalent pathologies and tremendous potential to cause significant mortality and morbidity, has drawn a lot of attention regarding AI applications. In fact, its application has yielded impressive outcomes in various domains, colonoscopy being one prominent example, where it aids in the detection of polyps and early signs of colorectal cancer with high accuracy and efficiency. With a less explored path but equivalent promise, AI-powered capsule endoscopy ensures accurate and time-efficient video readings, already detecting a wide spectrum of anomalies. High-resolution anoscopy is an area that has been growing in interest in recent years, with efforts being made to integrate AI. There are other areas, such as functional studies, that are currently in the early stages, but evidence is expected to emerge soon. According to the current state of research, AI is anticipated to empower gastroenterologists in the decision-making process, paving the way for a more precise approach to diagnosing and treating patients. This review aims to provide the state-of-the-art use of AI in coloproctology while also reflecting on future directions and perspectives.
Collapse
Affiliation(s)
- Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-065 Porto, Portugal;
- DigestAID—Digestive Artificial Intelligence Development, Rua Alfredo Allen n.° 455/461, 4200-135 Porto, Portugal
| | - Filipa Fonseca
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO Lisboa), 1099-023 Lisboa, Portugal; (F.F.); (M.L.)
| | - Manuel Limbert
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO Lisboa), 1099-023 Lisboa, Portugal; (F.F.); (M.L.)
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
| | - Susana Lopes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| | - Fernando Castro Poças
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Department of Gastroenterology, Santo António University Hospital, 4099-001 Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| |
Collapse
|
5
|
Iacucci M, Santacroce G, Zammarchi I, Maeda Y, Del Amor R, Meseguer P, Kolawole BB, Chaudhari U, Di Sabatino A, Danese S, Mori Y, Grisan E, Naranjo V, Ghosh S. Artificial intelligence and endo-histo-omics: new dimensions of precision endoscopy and histology in inflammatory bowel disease. Lancet Gastroenterol Hepatol 2024; 9:758-772. [PMID: 38759661 DOI: 10.1016/s2468-1253(24)00053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 05/19/2024]
Abstract
Integrating artificial intelligence into inflammatory bowel disease (IBD) has the potential to revolutionise clinical practice and research. Artificial intelligence harnesses advanced algorithms to deliver accurate assessments of IBD endoscopy and histology, offering precise evaluations of disease activity, standardised scoring, and outcome prediction. Furthermore, artificial intelligence offers the potential for a holistic endo-histo-omics approach by interlacing and harmonising endoscopy, histology, and omics data towards precision medicine. The emerging applications of artificial intelligence could pave the way for personalised medicine in IBD, offering patient stratification for the most beneficial therapy with minimal risk. Although artificial intelligence holds promise, challenges remain, including data quality, standardisation, reproducibility, scarcity of randomised controlled trials, clinical implementation, ethical concerns, legal liability, and regulatory issues. The development of standardised guidelines and interdisciplinary collaboration, including policy makers and regulatory agencies, is crucial for addressing these challenges and advancing artificial intelligence in IBD clinical practice and trials.
Collapse
Affiliation(s)
- Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland.
| | - Giovanni Santacroce
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| | - Irene Zammarchi
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| | - Yasuharu Maeda
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| | - Rocío Del Amor
- Instituto de Investigación e Innovación en Bioingeniería, HUMAN-tech, Universitat Politècnica de València, València, Spain
| | - Pablo Meseguer
- Instituto de Investigación e Innovación en Bioingeniería, HUMAN-tech, Universitat Politècnica de València, València, Spain; Valencian Graduate School and Research Network of Artificial Intelligence, Valencia, Spain
| | | | | | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, Milan, Italy
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway; Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Enrico Grisan
- School of Engineering, London South Bank University, London, UK
| | - Valery Naranjo
- Instituto de Investigación e Innovación en Bioingeniería, HUMAN-tech, Universitat Politècnica de València, València, Spain
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| |
Collapse
|
6
|
Rimondi A, Gottlieb K, Despott EJ, Iacucci M, Murino A, Tontini GE. Can artificial intelligence replace endoscopists when assessing mucosal healing in ulcerative colitis? A systematic review and diagnostic test accuracy meta-analysis. Dig Liver Dis 2024; 56:1164-1172. [PMID: 38057218 DOI: 10.1016/j.dld.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUNDS AND AIMS Mucosal healing (MH) in inflammatory bowel diseases (IBD) is an important landmark for clinical decision making. Artificial intelligence systems (AI) that automatically deliver the grade of endoscopic inflammation may solve moderate interobserver agreement and the need of central reading in clinical trials. METHODS We performed a systematic review of EMBASE and MEDLINE databases up to 01/12/2022 following PRISMA and the Joanna Briggs Institute methodologies to answer the following question: "Can AI replace endoscopists when assessing MH in IBD?". The research was restricted to ulcerative colitis (UC), and a diagnostic odds ratio (DOR) meta-analysis was performed. Risk of bias was evaluated with QUADAS-2 tool. RESULTS A total of 21 / 739 records were selected for full text evaluation, and 12 were included in the meta-analysis. Deep learning algorithms based on convolutional neural networks architecture achieved a satisfactory performance in evaluating MH on UC, with sensitivity, specificity, DOR and SROC of respectively 0.91(CI95 %:0.86-0.95);0.89(CI95 %:0.84-0.93);92.42(CI95 %:54.22-157.53) and 0.957 when evaluating fixed images (n = 8) and 0.86(CI95 %:0.75-0.93);0.91(CI95 %:0.87-0.94);70.86(CI95 %:24.63-203.86) and 0.941 when evaluating videos (n = 6). Moderate-high levels of heterogeneity were noted, limiting the quality of the evidence. CONCLUSIONS AI systems showed high potential in detecting MH in UC with optimal diagnostic performance, although moderate-high heterogeneity of the data was noted. Standardised and shared AI training may reduce heterogeneity between systems.
Collapse
Affiliation(s)
- Alessandro Rimondi
- Royal Free Unit for Endoscopy, The Royal Free Hospital and University College London Institute for Liver and Digestive Health, Hampstead, London, United Kingdom.
| | | | - Edward J Despott
- Royal Free Unit for Endoscopy, The Royal Free Hospital and University College London Institute for Liver and Digestive Health, Hampstead, London, United Kingdom
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College of Cork, Cork, Ireland
| | - Alberto Murino
- Royal Free Unit for Endoscopy, The Royal Free Hospital and University College London Institute for Liver and Digestive Health, Hampstead, London, United Kingdom; Department of Gastroenterology, Cleveland Clinic London, London, United Kingdom
| | - Gian Eugenio Tontini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Gastroenterology and Endoscopy unit, Milan, Italy
| |
Collapse
|
7
|
Syed S, Boland BS, Bourke LT, Chen LA, Churchill L, Dobes A, Greene A, Heller C, Jayson C, Kostiuk B, Moss A, Najdawi F, Plung L, Rioux JD, Rosen MJ, Torres J, Zulqarnain F, Satsangi J. Challenges in IBD Research 2024: Precision Medicine. Inflamm Bowel Dis 2024; 30:S39-S54. [PMID: 38778628 DOI: 10.1093/ibd/izae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Precision medicine is part of 5 focus areas of the Challenges in IBD Research 2024 research document, which also includes preclinical human IBD mechanisms, environmental triggers, novel technologies, and pragmatic clinical research. Building on Challenges in IBD Research 2019, the current Challenges aims to provide a comprehensive overview of current gaps in inflammatory bowel diseases (IBDs) research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in interception, remission, and restoration for these diseases. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders, and represents a valuable resource for patient-centric research prioritization. In particular, the precision medicine section is focused on the main research gaps in elucidating how to bring the best care to the individual patient in IBD. Research gaps were identified in biomarker discovery and validation for predicting disease progression and choosing the most appropriate treatment for each patient. Other gaps were identified in making the best use of existing patient biosamples and clinical data, developing new technologies to analyze large datasets, and overcoming regulatory and payer hurdles to enable clinical use of biomarkers. To address these gaps, the Workgroup suggests focusing on thoroughly validating existing candidate biomarkers, using best-in-class data generation and analysis tools, and establishing cross-disciplinary teams to tackle regulatory hurdles as early as possible. Altogether, the precision medicine group recognizes the importance of bringing basic scientific biomarker discovery and translating it into the clinic to help improve the lives of IBD patients.
Collapse
Affiliation(s)
- Sana Syed
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - Brigid S Boland
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lauren T Bourke
- Precision Medicine Drug Development, Early Respiratory and Immunology, AstraZeneca, Boston, MA, USA
| | - Lea Ann Chen
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Laurie Churchill
- Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | | | - Adam Greene
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | | | | | | | - Alan Moss
- Crohn's & Colitis Foundation, New York, NY, USA
| | | | - Lori Plung
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - John D Rioux
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Michael J Rosen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Hospital da Luz, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Fatima Zulqarnain
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Jack Satsangi
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Uchikov P, Khalid U, Vankov N, Kraeva M, Kraev K, Hristov B, Sandeva M, Dragusheva S, Chakarov D, Petrov P, Dobreva-Yatseva B, Novakov I. The Role of Artificial Intelligence in the Diagnosis and Treatment of Ulcerative Colitis. Diagnostics (Basel) 2024; 14:1004. [PMID: 38786302 PMCID: PMC11119852 DOI: 10.3390/diagnostics14101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES This review aims to delve into the role of artificial intelligence in medicine. Ulcerative colitis (UC) is a chronic, inflammatory bowel disease (IBD) characterized by superficial mucosal inflammation, rectal bleeding, diarrhoea and abdominal pain. By identifying the challenges inherent in UC diagnosis, we seek to highlight the potential impact of artificial intelligence on enhancing both diagnosis and treatment methodologies for this condition. METHOD A targeted, non-systematic review of literature relating to ulcerative colitis was undertaken. The PubMed and Scopus databases were searched to categorize a well-rounded understanding of the field of artificial intelligence and its developing role in the diagnosis and treatment of ulcerative colitis. Articles that were thought to be relevant were included. This paper only included articles published in English. RESULTS Artificial intelligence (AI) refers to computer algorithms capable of learning, problem solving and decision-making. Throughout our review, we highlighted the role and importance of artificial intelligence in modern medicine, emphasizing its role in diagnosis through AI-assisted endoscopies and histology analysis and its enhancements in the treatment of ulcerative colitis. Despite these advances, AI is still hindered due to its current lack of adaptability to real-world scenarios and its difficulty in widespread data availability, which hinders the growth of AI-led data analysis. CONCLUSIONS When considering the potential of artificial intelligence, its ability to enhance patient care from a diagnostic and therapeutic perspective shows signs of promise. For the true utilization of artificial intelligence, some roadblocks must be addressed. The datasets available to AI may not truly reflect the real-world, which would prevent its impact in all clinical scenarios when dealing with a spectrum of patients with different backgrounds and presenting factors. Considering this, the shift in medical diagnostics and therapeutics is coinciding with evolving technology. With a continuous advancement in artificial intelligence programming and a perpetual surge in patient datasets, these networks can be further enhanced and supplemented with a greater cohort, enabling better outcomes and prediction models for the future of modern medicine.
Collapse
Affiliation(s)
- Petar Uchikov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.U.); (I.N.)
| | - Usman Khalid
- Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Nikola Vankov
- University Multiprofile Hospital for Active Treatment “Saint George”, 4000 Plovdiv, Bulgaria;
| | - Maria Kraeva
- Department of Otorhynolaryngology, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Krasimir Kraev
- Department of Propedeutics of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Bozhidar Hristov
- Section “Gastroenterology”, Second Department of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Milena Sandeva
- Department of Midwifery, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Snezhanka Dragusheva
- Department of Nursing Care, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Department of Anesthesiology, Emergency and Intensive Care Medicine, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Dzhevdet Chakarov
- Department of Propaedeutics of Surgical Diseases, Section of General Surgery, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Petko Petrov
- Department of Maxillofacial Surgery, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Bistra Dobreva-Yatseva
- Section “Cardiology”, First Department of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Ivan Novakov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.U.); (I.N.)
| |
Collapse
|
9
|
Pal P, Pooja K, Nabi Z, Gupta R, Tandan M, Rao GV, Reddy N. Artificial intelligence in endoscopy related to inflammatory bowel disease: A systematic review. Indian J Gastroenterol 2024; 43:172-187. [PMID: 38418774 DOI: 10.1007/s12664-024-01531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND AND OBJECTIVES In spite of rapid growth of artificial intelligence (AI) in digestive endoscopy in lesion detection and characterization, the role of AI in inflammatory bowel disease (IBD) endoscopy is not clearly defined. We aimed at systematically reviewing the role of AI in IBD endoscopy and identifying future research areas. METHODS We searched the PubMed and Embase database using keywords ("artificial intelligence" OR "machine learning" OR "computer-aided" OR "convolutional neural network") AND ("inflammatory bowel disease" OR "ulcerative colitis" OR "Crohn's") AND ("endoscopy" or "colonoscopy" or "capsule endoscopy" or "device assisted enteroscopy") between 1975 and September 2023 and identified 62 original articles for detailed review. Review articles, consensus guidelines, case reports/series, editorials, letter to the editor, non-peer-reviewed pre-prints and conference abstracts were excluded. The quality of the included studies was assessed using the MI-CLAIM checklist. RESULTS The accuracy of AI models (25 studies) to assess ulcerative colitis (UC) endoscopic activity ranged between 86.54% and 94.5%. AI-assisted capsule endoscopy reading (12 studies) substantially reduced analyzable images and reading time with excellent accuracy (90.5% to 99.9%). AI-assisted analysis of colonoscopic images can help differentiate IBD from non-IBD, UC from non-UC and UC from Crohn's disease (CD) (three studies) with 72.1%, 98.3% and > 90% accuracy, respectively. AI models based on non-invasive clinical and radiologic parameters could predict endoscopic activity (three studies). AI-assisted virtual chromoendoscopy (four studies) could predict histologic remission and long-term outcomes. Computer-assisted detection (CADe) of dysplasia (two studies) is feasible along with AI-based differentiation of high from low-grade IBD neoplasia (79% accuracy). AI is effective in linking electronic medical record data (two studies) with colonoscopic videos to facilitate widespread machine learning. CONCLUSION AI-assisted IBD endoscopy has the potential to impact clinical management by automated detection and characterization of endoscopic lesions. Large, multi-center, prospective studies and commercially available IBD-specific endoscopic AI algorithms are warranted.
Collapse
Affiliation(s)
- Partha Pal
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India.
| | - Kanapuram Pooja
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Zaheer Nabi
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Rajesh Gupta
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Manu Tandan
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Guduru Venkat Rao
- Surgical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad 500 082, India
| | - Nageshwar Reddy
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| |
Collapse
|
10
|
Pinton P. Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: a perspective and expert opinion. Ann Med 2024; 55:2300670. [PMID: 38163336 PMCID: PMC10763920 DOI: 10.1080/07853890.2023.2300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION Artificial intelligence (AI) is expected to impact all facets of inflammatory bowel disease (IBD) management, including disease assessment, treatment decisions, discovery and development of new biomarkers and therapeutics, as well as clinician-patient communication. AREAS COVERED This perspective paper provides an overview of the application of AI in the clinical management of IBD through a review of the currently available AI models that could be potential tools for prognosis, shared decision-making, and precision medicine. This overview covers models that measure treatment response based on statistical or machine-learning methods, or a combination of the two. We briefly discuss a computational model that allows integration of immune/biological system knowledge with mathematical modeling and also involves a 'digital twin', which allows measurement of temporal trends in mucosal inflammatory activity for predicting treatment response. A viewpoint on AI-enabled wearables and nearables and their use to improve IBD management is also included. EXPERT OPINION Although challenges regarding data quality, privacy, and security; ethical concerns; technical limitations; and regulatory barriers remain to be fully addressed, a growing body of evidence suggests a tremendous potential for integration of AI into daily clinical practice to enable precision medicine and shared decision-making.
Collapse
Affiliation(s)
- Philippe Pinton
- Clinical and Translational Sciences, Ferring Pharmaceuticals, Kastrup, Denmark
| |
Collapse
|
11
|
Jiang X, Luo X, Nan Q, Ye Y, Miao Y, Miao J. Application of deep learning in the diagnosis and evaluation of ulcerative colitis disease severity. Therap Adv Gastroenterol 2023; 16:17562848231215579. [PMID: 38144424 PMCID: PMC10748675 DOI: 10.1177/17562848231215579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Background Achieving endoscopic and histological remission is a critical treatment objective in ulcerative colitis (UC). Nevertheless, interobserver variability can significantly impact overall assessment performance. Objectives We aimed to develop a deep learning algorithm for the real-time and objective evaluation of endoscopic disease activity and prediction of histological remission in UC. Design This is a retrospective diagnostic study. Methods Two convolutional neural network (CNN) models were constructed and trained using 12,257 endoscopic images and biopsy results sourced from 1124 UC patients who underwent colonoscopy at a single center from January 2018 to December 2022. Mayo Endoscopy Subscore (MES) and UC Endoscopic Index of Severity Score (UCEIS) assessments were conducted by two experienced and independent reviewers. Model performance was evaluated in terms of accuracy, sensitivity, and positive predictive value. The output of the CNN models was also compared with the corresponding histological results to assess histological remission prediction performance. Results The MES-CNN model achieved 97.04% accuracy in diagnosing endoscopic remission of UC, while the MES-CNN and UCEIS-CNN models achieved 90.15% and 85.29% accuracy, respectively, in evaluating endoscopic severity of UC. For predicting histological remission, the CNN models achieved accuracy and kappa values of 91.28% and 0.826, respectively, attaining higher accuracy than human endoscopists (87.69%). Conclusion The proposed artificial intelligence model, based on MES and UCEIS evaluations from expert gastroenterologists, offered precise assessment of inflammation in UC endoscopic images and reliably predicted histological remission.
Collapse
Affiliation(s)
- Xinyi Jiang
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xudong Luo
- School of Information Science and Engineering, Yunnan University, Kunming, Yunnan, China
| | - Qiong Nan
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Ye
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiarong Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Lv B, Ma L, Shi Y, Tao T, Shi Y. A systematic review and meta-analysis of artificial intelligence-diagnosed endoscopic remission in ulcerative colitis. iScience 2023; 26:108120. [PMID: 37867944 PMCID: PMC10585391 DOI: 10.1016/j.isci.2023.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Endoscopic remission is an important therapeutic goal in ulcerative colitis (UC). The Ulcerative Colitis Endoscopic Index of Severity (UCEIS) and Mayo Endoscopic Score (MES) are the commonly used endoscopic scoring criteria. This systematic review and meta-analysis aimed to evaluate the accuracy of artificial intelligence (AI) in diagnosing endoscopic remission in UC. We also performed a meta-analysis of each of the four endoscopic remission criteria (UCEIS = 0, MES = 0, UCEIS = <1, MES = <1). Eighteen studies involving 13,687 patients were included. The combined sensitivity and specificity of AI for diagnosing endoscopic remission in UC was 87% (95% confidence interval [CI]:81-92%) and 92% (95% CI: 89-94%), respectively. The area under the curve (AUC) was 0.96 (95% CI: 0.94-0.97). The results showed that the AI model performed well regardless of which criteria were used to define endoscopic remission of UC.
Collapse
Affiliation(s)
- Bing Lv
- School of Computer Science and Technology, Shandong University of Technology, NO.266, Xincunxi Road, Zibo, Shandong 255000, China
| | - Lihong Ma
- Department of Gastroenterology, Zibo Central Hospital, No.10 Shanghai Road, Zibo, Shandong 255000, China
| | - Yanping Shi
- Department of Pediatrics, Zhoucun Maternal and Child Health Care Hospital, No.72 Mianhuashi Street, Zibo, Shandong 255000, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, No.10 Shanghai Road, Zibo, Shandong 255000, China
| | - Yanting Shi
- Department of Gastroenterology, Zibo Central Hospital, No.10 Shanghai Road, Zibo, Shandong 255000, China
| |
Collapse
|
13
|
Kim JH, Choe AR, Park Y, Song EM, Byun JR, Cho MS, Yoo Y, Lee R, Kim JS, Ahn SH, Jung SA. Using a Deep Learning Model to Address Interobserver Variability in the Evaluation of Ulcerative Colitis (UC) Severity. J Pers Med 2023; 13:1584. [PMID: 38003899 PMCID: PMC10672717 DOI: 10.3390/jpm13111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The use of endoscopic images for the accurate assessment of ulcerative colitis (UC) severity is crucial to determining appropriate treatment. However, experts may interpret these images differently, leading to inconsistent diagnoses. This study aims to address the issue by introducing a standardization method based on deep learning. We collected 254 rectal endoscopic images from 115 patients with UC, and five experts in endoscopic image interpretation assigned classification labels based on the Ulcerative Colitis Endoscopic Index of Severity (UCEIS) scoring system. Interobserver variance analysis of the five experts yielded an intraclass correlation coefficient of 0.8431 for UCEIS scores and a kappa coefficient of 0.4916 when the UCEIS scores were transformed into UC severity measures. To establish a consensus, we created a model that considered only the images and labels on which more than half of the experts agreed. This consensus model achieved an accuracy of 0.94 when tested with 50 images. Compared with models trained from individual expert labels, the consensus model demonstrated the most reliable prediction results.
Collapse
Affiliation(s)
- Jeong-Heon Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.-H.K.)
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - A Reum Choe
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea; (A.R.C.); (Y.P.)
| | - Yehyun Park
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea; (A.R.C.); (Y.P.)
| | - Eun-Mi Song
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea; (A.R.C.); (Y.P.)
| | - Ju-Ran Byun
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea; (A.R.C.); (Y.P.)
| | - Min-Sun Cho
- Department of Pathology, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea (Y.Y.)
| | - Youngeun Yoo
- Department of Pathology, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea (Y.Y.)
| | - Rena Lee
- Department of Bioengineering, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea
| | - Jin-Sung Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.-H.K.)
- Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - So-Hyun Ahn
- Ewha Medical Research Institute, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea
| | - Sung-Ae Jung
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea; (A.R.C.); (Y.P.)
| |
Collapse
|
14
|
Polat G, Kani HT, Ergenc I, Ozen Alahdab Y, Temizel A, Atug O. Improving the Computer-Aided Estimation of Ulcerative Colitis Severity According to Mayo Endoscopic Score by Using Regression-Based Deep Learning. Inflamm Bowel Dis 2023; 29:1431-1439. [PMID: 36382800 DOI: 10.1093/ibd/izac226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Assessment of endoscopic activity in ulcerative colitis (UC) is important for treatment decisions and monitoring disease progress. However, substantial inter- and intraobserver variability in grading impairs the assessment. Our aim was to develop a computer-aided diagnosis system using deep learning to reduce subjectivity and improve the reliability of the assessment. METHODS The cohort comprises 11 276 images from 564 patients who underwent colonoscopy for UC. We propose a regression-based deep learning approach for the endoscopic evaluation of UC according to the Mayo endoscopic score (MES). Five state-of-the-art convolutional neural network (CNN) architectures were used for the performance measurements and comparisons. Ten-fold cross-validation was used to train the models and objectively benchmark them. Model performances were assessed using quadratic weighted kappa and macro F1 scores for full Mayo score classification and kappa statistics and F1 score for remission classification. RESULTS Five classification-based CNNs used in the study were in excellent agreement with the expert annotations for all Mayo subscores and remission classification according to the kappa statistics. When the proposed regression-based approach was used, (1) the performance of most of the models statistically significantly increased and (2) the same model trained on different cross-validation folds produced more robust results on the test set in terms of deviation between different folds. CONCLUSIONS Comprehensive experimental evaluations show that commonly used classification-based CNN architectures have successful performance in evaluating endoscopic disease activity of UC. Integration of domain knowledge into these architectures further increases performance and robustness, accelerating their translation into clinical use.
Collapse
Affiliation(s)
- Gorkem Polat
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
- Neuroscience and Neurotechnology Center of Excellence, Middle East Technical University, Ankara, Turkey
| | - Haluk Tarik Kani
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ilkay Ergenc
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Yesim Ozen Alahdab
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Alptekin Temizel
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
- Neuroscience and Neurotechnology Center of Excellence, Middle East Technical University, Ankara, Turkey
| | - Ozlen Atug
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
15
|
Wang G, Zhang S, Li J, Zhao K, Ding Q, Tian D, Li R, Zou F, Yu Q. CB-HRNet: A Class-Balanced High-Resolution Network for the evaluation of endoscopic activity in patients with ulcerative colitis. Clin Transl Sci 2023; 16:1421-1430. [PMID: 37154517 PMCID: PMC10432877 DOI: 10.1111/cts.13542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Endoscopic evaluation is the key to the management of ulcerative colitis (UC). However, there is interobserver variability in interpreting endoscopic images among gastroenterologists. Furthermore, it is time-consuming. Convolutional neural networks (CNNs) can help overcome these obstacles and has yielded preliminary positive results. We aimed to develop a new CNN-based algorithm to improve the performance for evaluation tasks of endoscopic images in patients with UC. A total of 12,163 endoscopic images from 308 patients with UC were collected from January 2014 to December 2021. The training set and test set images were randomly divided into 37,515 and 3191 after excluding possible interference and data augmentation. Mayo Endoscopic Subscores (MES) were predicted by different CNN-based models with different loss functions. Their performances were evaluated by several metrics. After comparing the results of different CNN-based models with different loss functions, High-Resolution Network with Class-Balanced Loss achieved the best performances in all MES classification subtasks. It was especially great at determining endoscopic remission in UC, which achieved a high accuracy of 95.07% and good performances in other evaluation metrics with sensitivity 92.87%, specificity 95.41%, kappa coefficient 0.8836, positive predictive value 93.44%, negative predictive value 95.00% and area value under the receiver operating characteristic curve 0.9834, respectively. In conclusion, we proposed a new CNN-based algorithm, Class-Balanced High-Resolution Network (CB-HRNet), to evaluate endoscopic activity of UC with excellent performance. Besides, we made an open-source dataset and it can be a new benchmark in the task of MES classification.
Collapse
Affiliation(s)
- Ge Wang
- Department of GastroenterologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Shujiao Zhang
- School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jie Li
- Department of GastroenterologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Kai Zhao
- Department of GastroenterologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Qiang Ding
- Department of GastroenterologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Dean Tian
- Department of GastroenterologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ruixuan Li
- School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Fuhao Zou
- School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Qin Yu
- Department of GastroenterologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
16
|
Jahagirdar V, Bapaye J, Chandan S, Ponnada S, Kochhar GS, Navaneethan U, Mohan BP. Diagnostic accuracy of convolutional neural network-based machine learning algorithms in endoscopic severity prediction of ulcerative colitis: a systematic review and meta-analysis. Gastrointest Endosc 2023; 98:145-154.e8. [PMID: 37094691 DOI: 10.1016/j.gie.2023.04.2074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/06/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND AND AIMS Endoscopic assessment of ulcerative colitis (UC) can be performed by using the Mayo Endoscopic Score (MES) or the Ulcerative Colitis Endoscopic Index of Severity (UCEIS). In this meta-analysis, we assessed the pooled diagnostic accuracy parameters of deep machine learning by means of convolutional neural network (CNN) algorithms in predicting UC severity on endoscopic images. METHODS Databases including MEDLINE, Scopus, and Embase were searched in June 2022. Outcomes of interest were the pooled accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Standard meta-analysis methods used the random-effects model, and heterogeneity was assessed using the I2statistics. RESULTS Twelve studies were included in the final analysis. The pooled diagnostic parameters of CNN-based machine learning algorithms in endoscopic severity assessment of UC were as follows: accuracy 91.5% (95% confidence interval [CI], 88.3-93.8; I2 = 84%), sensitivity 82.8% (95% CI, 78.3-86.5; I2 = 89%), specificity 92.4% (95% CI, 89.4-94.6; I2 = 84%), PPV 86.6% (95% CI, 82.3-90; I2 = 89%), and NPV 88.6% (95% CI, 85.7-91; I2 = 78%). Subgroup analysis revealed significantly better sensitivity and PPV with the UCEIS scoring system compared with the MES (93.6% [95% CI, 87.5-96.8; I2 = 77%] vs 82% [95% CI, 75.6-87; I2 = 89%], P = .003, and 93.6% [95% CI, 88.7-96.4; I2 = 68%] vs 83.6% [95% CI, 76.8-88.8; I2 = 77%], P = .007, respectively). CONCLUSIONS CNN-based machine learning algorithms demonstrated excellent pooled diagnostic accuracy parameters in the endoscopic severity assessment of UC. Using UCEIS scores in CNN training might offer better results than the MES. Further studies are warranted to establish these findings in real clinical settings.
Collapse
Affiliation(s)
- Vinay Jahagirdar
- Department of Internal Medicine, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Jay Bapaye
- Department of Internal Medicine, Rochester General Hospital, Rochester, New York, USA
| | - Saurabh Chandan
- Department of Gastroenterology, Creighton University Medical Center, Creighton, Nebraska, USA
| | - Suresh Ponnada
- Internal Medicine, Roanoke Carilion Hospital, Roanoke, Virginia, USA
| | - Gursimran S Kochhar
- Department of Gastroenterology & Hepatology, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | | | - Babu P Mohan
- Department of Gastroenterology & Hepatology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Kim JE, Choi YH, Lee YC, Seong G, Song JH, Kim TJ, Kim ER, Hong SN, Chang DK, Kim YH, Shin SY. Deep learning model for distinguishing Mayo endoscopic subscore 0 and 1 in patients with ulcerative colitis. Sci Rep 2023; 13:11351. [PMID: 37443370 PMCID: PMC10344868 DOI: 10.1038/s41598-023-38206-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to address the issue of differentiating between Mayo endoscopic subscore (MES) 0 and MES 1 using a deep learning model. A dataset of 492 ulcerative colitis (UC) patients who demonstrated MES improvement between January 2018 and December 2019 at Samsung Medical Center was utilized. Specifically, two representative images of the colon and rectum were selected from each patient, resulting in a total of 984 images for analysis. The deep learning model utilized in this study consisted of a convolutional neural network (CNN)-based encoder, with two auxiliary classifiers for the colon and rectum, as well as a final MES classifier that combined image features from both inputs. In the internal test, the model achieved an F1-score of 0.92, surpassing the performance of seven novice classifiers by an average margin of 0.11, and outperforming their consensus by 0.02. The area under the receiver operating characteristic curve (AUROC) was calculated to be 0.97 when considering MES 1 as positive, with an area under the precision-recall curve (AUPRC) of 0.98. In the external test using the Hyperkvasir dataset, the model achieved an F1-score of 0.89, AUROC of 0.86, and AUPRC of 0.97. The results demonstrate that the proposed CNN-based model, which integrates image features from both the colon and rectum, exhibits superior performance in accurately discriminating between MES 0 and MES 1 in patients with UC.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Yoon Ho Choi
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Jacksonville, FL, USA
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Yeong Chan Lee
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Gyeol Seong
- Department of Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, South Korea
| | - Joo Hye Song
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Tae Jun Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Eun Ran Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Dong Kyung Chang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Soo-Yong Shin
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
18
|
Qi J, Ruan G, Ping Y, Xiao Z, Liu K, Cheng Y, Liu R, Zhang B, Zhi M, Chen J, Xiao F, Zhao T, Li J, Zhang Z, Zou Y, Cao Q, Nian Y, Wei Y. Development and validation of a deep learning-based approach to predict the Mayo endoscopic score of ulcerative colitis. Therap Adv Gastroenterol 2023; 16:17562848231170945. [PMID: 37251086 PMCID: PMC10214058 DOI: 10.1177/17562848231170945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/04/2023] [Indexed: 05/31/2023] Open
Abstract
Background The ulcerative colitis (UC) Mayo endoscopy score is a useful tool for evaluating the severity of UC in patients in clinical practice. Objectives We aimed to develop and validate a deep learning-based approach to automatically predict the Mayo endoscopic score using UC endoscopic images. Design A multicenter, diagnostic retrospective study. Methods We collected 15120 colonoscopy images of 768 UC patients from two hospitals in China and developed a deep model based on a vision transformer named the UC-former. The performance of the UC-former was compared with that of six endoscopists on the internal test set. Furthermore, multicenter validation from three hospitals was also carried out to evaluate UC-former's generalization performance. Results On the internal test set, the areas under the curve of Mayo 0, Mayo 1, Mayo 2, and Mayo 3 achieved by the UC-former were 0.998, 0.984, 0.973, and 0.990, respectively. The accuracy (ACC) achieved by the UC-former was 90.8%, which is higher than that achieved by the best senior endoscopist. For three multicenter external validations, the ACC was 82.4%, 85.0%, and 83.6%, respectively. Conclusions The developed UC-former could achieve high ACC, fidelity, and stability to evaluate the severity of UC, which may provide potential application in clinical practice. Registration This clinical trial was registered at the ClinicalTrials.gov (trial registration number: NCT05336773).
Collapse
Affiliation(s)
- Jing Qi
- Department of Digital Medicine, School of
Biomedical Engineering and Imaging Medicine, Army Medical University,
Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key
Laboratory of Digestive Malignancies, Daping Hospital, Army Medical
University (Third Military Medical University), Chongqing, China
| | - Yi Ping
- Department of Gastroenterology, Chongqing Key
Laboratory of Digestive Malignancies, Daping Hospital, Army Medical
University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key
Laboratory of Digestive Malignancies, Daping Hospital, Army Medical
University (Third Military Medical University), Chongqing, China
| | - Kaijun Liu
- Department of Gastroenterology, Chongqing Key
Laboratory of Digestive Malignancies, Daping Hospital, Army Medical
University (Third Military Medical University), Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key
Laboratory of Digestive Malignancies, Daping Hospital, Army Medical
University (Third Military Medical University), Chongqing, China
| | - Rongbei Liu
- Department of Gastroenterology, Sir Run Run
Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingqiang Zhang
- Department of Gastroenterology, The First
Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhi
- Department of Gastroenterology, Guangdong
Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth
Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junrong Chen
- Department of Gastroenterology, Guangdong
Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth
Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fang Xiao
- Department of Gastroenterology, Tongji
Hospital of Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
| | - Tingting Zhao
- School of Basic Medicine, Army Medical
University (Third Military Medical University), Chongqing, China
| | - Jiaxing Li
- School of Basic Medicine, Army Medical
University (Third Military Medical University), Chongqing, China
| | - Zhou Zhang
- Department of Gastroenterology, Sir Run Run
Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxin Zou
- Department of Digital Medicine, School of
Biomedical Engineering and Imaging Medicine, Army Medical University,
Chongqing, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run
Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016,
China
| | - Yongjian Nian
- Department of Digital Medicine, School of
Biomedical Engineering and Imaging Medicine, Army Medical University (Third
Military Medical University), Chongqing, 400038, China
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key
Laboratory of Digestive Malignancies, Daping Hospital, Army Medical
University (Third Military Medical University), 10 Changjiang Branch Road,
Chongqing, 400042, China
| |
Collapse
|
19
|
Diaconu C, State M, Birligea M, Ifrim M, Bajdechi G, Georgescu T, Mateescu B, Voiosu T. The Role of Artificial Intelligence in Monitoring Inflammatory Bowel Disease-The Future Is Now. Diagnostics (Basel) 2023; 13:735. [PMID: 36832222 PMCID: PMC9954871 DOI: 10.3390/diagnostics13040735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Crohn's disease and ulcerative colitis remain debilitating disorders, characterized by progressive bowel damage and possible lethal complications. The growing number of applications for artificial intelligence in gastrointestinal endoscopy has already shown great potential, especially in the field of neoplastic and pre-neoplastic lesion detection and characterization, and is currently under evaluation in the field of inflammatory bowel disease management. The application of artificial intelligence in inflammatory bowel diseases can range from genomic dataset analysis and risk prediction model construction to the disease grading severity and assessment of the response to treatment using machine learning. We aimed to assess the current and future role of artificial intelligence in assessing the key outcomes in inflammatory bowel disease patients: endoscopic activity, mucosal healing, response to treatment, and neoplasia surveillance.
Collapse
Affiliation(s)
- Claudia Diaconu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica State
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania
| | - Mihaela Birligea
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Madalina Ifrim
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Georgiana Bajdechi
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Teodora Georgescu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Bogdan Mateescu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania
| | - Theodor Voiosu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania
| |
Collapse
|
20
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
21
|
Qi J, Ruan G, Liu J, Yang Y, Cao Q, Wei Y, Nian Y. PHF 3 Technique: A Pyramid Hybrid Feature Fusion Framework for Severity Classification of Ulcerative Colitis Using Endoscopic Images. Bioengineering (Basel) 2022; 9:632. [PMID: 36354543 PMCID: PMC9687195 DOI: 10.3390/bioengineering9110632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/25/2024] Open
Abstract
Evaluating the severity of ulcerative colitis (UC) through the Mayo endoscopic subscore (MES) is crucial for understanding patient conditions and providing effective treatment. However, UC lesions present different characteristics in endoscopic images, exacerbating interclass similarities and intraclass differences in MES classification. In addition, inexperience and review fatigue in endoscopists introduces nontrivial challenges to the reliability and repeatability of MES evaluations. In this paper, we propose a pyramid hybrid feature fusion framework (PHF3) as an auxiliary diagnostic tool for clinical UC severity classification. Specifically, the PHF3 model has a dual-branch hybrid architecture with ResNet50 and a pyramid vision Transformer (PvT), where the local features extracted by ResNet50 represent the relationship between the intestinal wall at the near-shot point and its depth, and the global representations modeled by the PvT capture similar information in the cross-section of the intestinal cavity. Furthermore, a feature fusion module (FFM) is designed to combine local features with global representations, while second-order pooling (SOP) is applied to enhance discriminative information in the classification process. The experimental results show that, compared with existing methods, the proposed PHF3 model has competitive performance. The area under the receiver operating characteristic curve (AUC) of MES 0, MES 1, MES 2, and MES 3 reached 0.996, 0.972, 0.967, and 0.990, respectively, and the overall accuracy reached 88.91%. Thus, our proposed method is valuable for developing an auxiliary assessment system for UC severity.
Collapse
Affiliation(s)
- Jing Qi
- Department of Digital Medicine, School of Biomedical Engineering and Imaging Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Guangcong Ruan
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Jia Liu
- Department of Digital Medicine, School of Biomedical Engineering and Imaging Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yi Yang
- Department of Digital Medicine, School of Biomedical Engineering and Imaging Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yanling Wei
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Yongjian Nian
- Department of Digital Medicine, School of Biomedical Engineering and Imaging Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
22
|
Ortiz Zúñiga O, Fernández Esparrach MG, Daca M, Pellisé M. Artificial intelligence in gastrointestinal endoscopy - Evolution to a new era. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2022; 114:605-615. [PMID: 35770604 DOI: 10.17235/reed.2022.8961/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial intelligence (AI) systems based on machine learning have evolved in the last few years with an increasing applicability in gastrointestinal endoscopy. Thanks to AI, an image (input) can be transformed into a clinical decision (output). Although AI systems have been initially studied to improve detection (CADe) and characterization of colorectal lesions (CADx), other indications are being currently investigated as detection of blind spots, scope guidance, or delineation/measurement of lesions. The objective of these review is to summarize the current evidence on applicability of AI systems in gastrointestinal endoscopy, highlight strengths and limitations of the technology and review regulatory and ethical aspects for its general implementation in gastrointestinal endoscopy.
Collapse
Affiliation(s)
| | | | - María Daca
- Gastroenterología, Hospital Clínic Barcelona, España
| | - María Pellisé
- Gastroenterología, Hospital Clínic Barcelona, España
| |
Collapse
|
23
|
Del Amor R, Meseguer P, Parigi TL, Villanacci V, Colomer A, Launet L, Bazarova A, Tontini GE, Bisschops R, de Hertogh G, Ferraz JG, Götz M, Gui X, Hayee B, Lazarev M, Panaccione R, Parra-Blanco A, Bhandari P, Pastorelli L, Rath T, Røyset ES, Vieth M, Zardo D, Grisan E, Ghosh S, Iacucci M, Naranjo V. Constrained multiple instance learning for ulcerative colitis prediction using histological images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:107012. [PMID: 35843078 DOI: 10.1016/j.cmpb.2022.107012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) affecting the colon and the rectum characterized by a remitting-relapsing course. To detect mucosal inflammation associated with UC, histology is considered the most stringent criteria. In turn, histologic remission (HR) correlates with improved clinical outcomes and has been recently recognized as a desirable treatment target. The leading biomarker for assessing histologic remission is the presence or absence of neutrophils. Therefore, the finding of this cell in specific colon structures indicates that the patient has UC activity. However, no previous studies based on deep learning have been developed to identify UC based on neutrophils detection using whole-slide images (WSI). METHODS The methodological core of this work is a novel multiple instance learning (MIL) framework with location constraints able to determine the presence of UC activity using WSI. In particular, we put forward an effective way to introduce constraints about positive instances to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. In addition, we propose a new weighted embedding to enlarge the relevance of the positive instances. RESULTS Extensive experiments on a multi-center dataset of colon and rectum WSIs, PICASSO-MIL, demonstrate that using the location information we can improve considerably the results at WSI-level. In comparison with prior MIL settings, our method allows for 10% improvements in bag-level accuracy. CONCLUSION Our model, which introduces a new form of constraints, surpass the results achieved from current state-of-the-art methods that focus on the MIL paradigm. Our method can be applied to other histological concerns where the morphological features determining a positive WSI are tiny and similar to others in the image.
Collapse
Affiliation(s)
- Rocío Del Amor
- Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valéncia, Valencia, Spain.
| | - Pablo Meseguer
- Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valéncia, Valencia, Spain
| | - Tommaso Lorenzo Parigi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; University of Birmingham, Immunology and Immunotherapy, Birmingham, United Kingdom
| | - Vincenzo Villanacci
- Institute of Pathology, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Adrián Colomer
- Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valéncia, Valencia, Spain
| | - Laëtitia Launet
- Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valéncia, Valencia, Spain
| | - Alina Bazarova
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Gian Eugenio Tontini
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Raf Bisschops
- Division of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - Gert de Hertogh
- Division of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - Jose G Ferraz
- Division of Gastroenterology, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Martin Götz
- Division of Gastroenterology, Klinikum, Böblingen, Germany
| | - Xianyong Gui
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Bu'Hussain Hayee
- Division of Gastroenterology, Kings College London, London, United Kingdom
| | - Mark Lazarev
- Division of Gastroenterology, Johns Hopkins Hospital, Baltimore, United States
| | - Remo Panaccione
- Division of Gastroenterology, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Adolfo Parra-Blanco
- Division of Gastroenterology, University of Nottingham, Nottingham, United Kingdom
| | - Pradeep Bhandari
- Division of Gastroenterology, Queen Alexandra Hospital, Portsmouth, United Kingdom
| | - Luca Pastorelli
- Liver and Gastroenterology Unit, Universita' degli Studi di Milano, ASST Santi Paolo E Carlo, University Hospital San Paolo, Milan, Italy
| | - Timo Rath
- Division of Gastroenterology, University of Erlangen, Erlangen, Germany
| | - Elin Synnøve Røyset
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Michael Vieth
- Klinikum Bayreuth, Bayreuth, Germany; Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Nuremberg, Germany
| | - Davide Zardo
- Department of Pathology, San Bortolo Hospital, Vicenza, Italy
| | - Enrico Grisan
- Department of Information Engineering, Padova, Italy; School of Engineering, London South Bank University, London, UK
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, Cork, Ireland; Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Marietta Iacucci
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; National Institute for Health Research (NIHR) Biomedical Research Centre, Birmingham, United Kingdom; Department of Gastroenterology, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Valery Naranjo
- Instituto de Investigación e Innovación en Bioingeniería, Universitat Politécnica de Valéncia, Valencia, Spain
| |
Collapse
|
24
|
Yang LS, Perry E, Shan L, Wilding H, Connell W, Thompson AJ, Taylor ACF, Desmond PV, Holt BA. Clinical application and diagnostic accuracy of artificial intelligence in colonoscopy for inflammatory bowel disease: systematic review. Endosc Int Open 2022; 10:E1004-E1013. [PMID: 35845028 PMCID: PMC9286774 DOI: 10.1055/a-1846-0642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background and aims Artificial intelligence (AI) technology is being evaluated for its potential to improve colonoscopic assessment of inflammatory bowel disease (IBD), particularly with computer-aided image classifiers. This review evaluates the clinical application and diagnostic test accuracy (DTA) of AI algorithms in colonoscopy for IBD. Methods A systematic review was performed on studies evaluating AI in colonoscopy of adult patients with IBD. MEDLINE, Embase, Emcare, PsycINFO, CINAHL, Cochrane Library and Clinicaltrials.gov databases were searched on 28 th April 2021 for English language articles published between January 1, 2000 and April 28, 2021. Risk of bias and applicability were assessed with the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Diagnostic accuracy was presented as median (interquartile range). Results Of 1029 records screened, nine studies with 7813 patients were included for review. AI was used to predict endoscopic and histologic disease activity in ulcerative colitis, and differentiation of Crohn's disease from Behcet's disease and intestinal tuberculosis. DTA of AI algorithms ranged between 52-91 %. The sensitivity and specificity for AI algorithms predicting endoscopic severity of disease were 78 % (range 72-83, interquartile range 5.5) and 91 % (range 86-96, interquartile range 5), respectively. Conclusions AI has been primarily used to assess disease activity in ulcerative colitis. The diagnostic performance is promising and suggests potential for other clinical application of AI in IBD colonoscopy such as dysplasia detection. However, current evidence is limited by retrospective data and models trained on still images only. Future prospective multicenter studies with full-motion videos are needed to replicate the real-world clinical setting.
Collapse
Affiliation(s)
- Linda S. Yang
- Department of Gastroenterology, St. Vincent’s Hospital and the University of Melbourne, Fitzroy, Victoria, Australia
| | - Evelyn Perry
- Department of Gastroenterology, St. Vincent’s Hospital and the University of Melbourne, Fitzroy, Victoria, Australia
| | - Leonard Shan
- Department of Surgery, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen Wilding
- Library Service, St. Vincent’s Hospital Melbourne, Fitzroy, Victoria, Australia
| | - William Connell
- Department of Gastroenterology, St. Vincent’s Hospital and the University of Melbourne, Fitzroy, Victoria, Australia
| | - Alexander J. Thompson
- Department of Gastroenterology, St. Vincent’s Hospital and the University of Melbourne, Fitzroy, Victoria, Australia
| | - Andrew C. F. Taylor
- Department of Gastroenterology, St. Vincent’s Hospital and the University of Melbourne, Fitzroy, Victoria, Australia
| | - Paul V. Desmond
- Department of Gastroenterology, St. Vincent’s Hospital and the University of Melbourne, Fitzroy, Victoria, Australia
| | - Bronte A. Holt
- Department of Gastroenterology, St. Vincent’s Hospital and the University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
25
|
Patel M, Gulati S, Iqbal F, Hayee B. Rapid development of accurate artificial intelligence scoring for colitis disease activity using applied data science techniques. Endosc Int Open 2022; 10:E539-E543. [PMID: 35433223 PMCID: PMC9010092 DOI: 10.1055/a-1790-6201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Background and study aims Scoring endoscopic disease activity in colitis represents a complex task for artificial intelligence (AI), but is seen as a worthwhile goal for clinical and research use cases. To date, development attempts have relied on large datasets, achieving reasonable results when comparing normal to active inflammation, but not when generating subscores for the Mayo Endoscopic Score (MES) or ulcerative colitis endoscopic index of severity (UCEIS). Patients and methods Using a multi-task learning framework, with frame-by-frame analysis, we developed a machine-learning algorithm (MLA) for UCEIS trained on just 38,124 frames (73 patients with biopsy-proven ulcerative colitis). Scores generated by the MLA were compared to consensus scores from three independent human reviewers. Results Accuracy and agreement (kappa) were calculated for the following differentiation tasks: (1) normal mucosa vs active inflammation (UCEIS 0 vs ≥ 1; accuracy 0.90, κ = 0.90); (2) mild inflammation vs moderate-severe (UCEIS 0-3 vs ≥ 4; accuracy 0.98, κ = 0.96); (3) generating total UCEIS score (κ = 0.92). Agreement for UCEIS subdomains was also high (κ = 0.80, 0.83 and 0.88 for vascular pattern, bleeding and erosions respectively). Conclusions We have demonstrated that, using modified data science techniques and a relatively smaller datasets, it is possible to achieve high levels of accuracy and agreement with human reviewers (in some cases near-perfect), for AI in colitis scoring. Further work will focus on refining this technique, but we hope that it can be used in other tasks to facilitate faster development.
Collapse
Affiliation(s)
- Mehul Patel
- Department of Endoscopy, King’s College Hospital NHS Foundation Trust, London
| | - Shraddha Gulati
- Department of Endoscopy, King’s College Hospital NHS Foundation Trust, London
| | | | - Bu'Hussain Hayee
- Department of Endoscopy, King’s College Hospital NHS Foundation Trust, London
| |
Collapse
|
26
|
Luo X, Zhang J, Li Z, Yang R. Diagnosis of ulcerative colitis from endoscopic images based on deep learning. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Artificial Endoscopy and Inflammatory Bowel Disease: Welcome to the Future. J Clin Med 2022; 11:jcm11030569. [PMID: 35160021 PMCID: PMC8836846 DOI: 10.3390/jcm11030569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is assuming an increasingly important and central role in several medical fields. Its application in endoscopy provides a powerful tool supporting human experiences in the detection, characterization, and classification of gastrointestinal lesions. Lately, the potential of AI technology has been emerging in the field of inflammatory bowel disease (IBD), where the current cornerstone is the treat-to-target strategy. A sensible and specific tool able to overcome human limitations, such as AI, could represent a great ally and guide precision medicine decisions. Here we reviewed the available literature on the endoscopic applications of AI in order to properly describe the current state-of-the-art and identify the research gaps in IBD at the dawn of 2022.
Collapse
|
28
|
Shah N, Jyala A, Patel H, Makker J. Utility of artificial intelligence in colonoscopy. Artif Intell Gastrointest Endosc 2021; 2:79-88. [DOI: 10.37126/aige.v2.i3.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the major causes of death worldwide. Colonoscopy is the most important tool that can identify neoplastic lesion in early stages and resect it in a timely manner which helps in reducing mortality related to colorectal cancer. However, the quality of colonoscopy findings depends on the expertise of the endoscopist and thus the rate of missed adenoma or polyp cannot be controlled. It is desirable to standardize the quality of colonoscopy by reducing the number of missed adenoma/polyps. Introduction of artificial intelligence (AI) in the field of medicine has become popular among physicians nowadays. The application of AI in colonoscopy can help in reducing miss rate and increasing colorectal cancer detection rate as per recent studies. Moreover, AI assistance during colonoscopy has also been utilized in patients with inflammatory bowel disease to improve diagnostic accuracy, assessing disease severity and predicting clinical outcomes. We conducted a literature review on the available evidence on use of AI in colonoscopy. In this review article, we discuss about the principles, application, limitations, and future aspects of AI in colonoscopy.
Collapse
Affiliation(s)
- Niel Shah
- Department of Internal Medicine, BronxCare Hospital Center, Bronx, NY 10457, United States
| | - Abhilasha Jyala
- Department of Internal Medicine, BronxCare Hospital Center, Bronx, NY 10457, United States
| | - Harish Patel
- Department of Internal Medicine, Gastroenterology, BronxCare Hospital Center, Bronx, NY 10457, United States
| | - Jasbir Makker
- Department of Internal Medicine, Gastroenterology, BronxCare Hospital Center, Bronx, NY 10457, United States
| |
Collapse
|
29
|
Shah N, Jyala A, Patel H, Makker J. Utility of artificial intelligence in colonoscopy. Artif Intell Gastrointest Endosc 2021. [DOI: 10.37126/aige.v2.i3.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
30
|
Gubatan J, Levitte S, Patel A, Balabanis T, Wei MT, Sinha SR. Artificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directions. World J Gastroenterol 2021; 27:1920-1935. [PMID: 34007130 PMCID: PMC8108036 DOI: 10.3748/wjg.v27.i17.1920] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex and multifaceted disorder of the gastrointestinal tract that is increasing in incidence worldwide and associated with significant morbidity. The rapid accumulation of large datasets from electronic health records, high-definition multi-omics (including genomics, proteomics, transcriptomics, and metagenomics), and imaging modalities (endoscopy and endomicroscopy) have provided powerful tools to unravel novel mechanistic insights and help address unmet clinical needs in IBD. Although the application of artificial intelligence (AI) methods has facilitated the analysis, integration, and interpretation of large datasets in IBD, significant heterogeneity in AI methods, datasets, and clinical outcomes and the need for unbiased prospective validations studies are current barriers to incorporation of AI into clinical practice. The purpose of this review is to summarize the most recent advances in the application of AI and machine learning technologies in the diagnosis and risk prediction, assessment of disease severity, and prediction of clinical outcomes in patients with IBD.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Steven Levitte
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Akshar Patel
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Tatiana Balabanis
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Mike T Wei
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Sidhartha R Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| |
Collapse
|
31
|
Sundaram S, Choden T, Mattar MC, Desai S, Desai M. Artificial intelligence in inflammatory bowel disease endoscopy: current landscape and the road ahead. Ther Adv Gastrointest Endosc 2021; 14:26317745211017809. [PMID: 34345816 PMCID: PMC8283211 DOI: 10.1177/26317745211017809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease is a complex chronic inflammatory disorder with challenges in diagnosis, choosing appropriate therapy, determining individual responsiveness, and prediction of future disease course to guide appropriate management. Artificial intelligence has been examined in the field of inflammatory bowel disease endoscopy with promising data in different domains of inflammatory bowel disease, including diagnosis, assessment of mucosal activity, and prediction of recurrence and complications. Artificial intelligence use during endoscopy could be a step toward precision medicine in inflammatory bowel disease care pathways. We reviewed available data on use of artificial intelligence for diagnosis of inflammatory bowel disease, grading of severity, prediction of recurrence, and dysplasia detection. We examined the potential role of artificial intelligence enhanced endoscopy in various aspects of inflammatory bowel disease care and future perspectives in this review.
Collapse
Affiliation(s)
- Suneha Sundaram
- Department of Gastroenterology, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Tenzin Choden
- Division of Gastroenterology, Department of Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Mark C Mattar
- Division of Gastroenterology, Department of Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Sanjal Desai
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Madhav Desai
- Assistant Professor of Clinical Medicine, University of Kansas School of Medicine, Kansas City VA Medical Center, 4801 Linwood Blvd, Kansas City, MO 64128, USA
| |
Collapse
|