1
|
Poulsen A, Ovesen PD, Lu C, Bettenworth D, Jairath V, Feagan BG, Seidelin JB, Rieder F. Serum Extracellular Matrix Molecules and Their Fragments as Biomarkers of Inflammation and Fibrosis in Inflammatory Bowel Diseases: A Systematic Review. J Crohns Colitis 2024; 18:1894-1934. [PMID: 38758527 DOI: 10.1093/ecco-jcc/jjae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND AIM Contemporary techniques to assess disease activity or bowel damage in patients with inflammatory bowel disease [IBD], such as endoscopy and imaging, are either invasive or lack accuracy. Non-invasive biomarkers for this purpose remain an unmet medical need. Herein, we provide a comprehensive systematic review of studies evaluating blood extracellular matrix [ECM] biomarkers and their relevance in IBD. METHODS We conducted a systematic review of PubMed, EMBASE, Web of Science, and Scopus to identify citations pertaining to ECM biomarkers of IBD up to March 1, 2024. Studies were categorized based on marker subtype and clinical use. RESULTS Thirty-one ECM markers were identified, 28 of which demonstrated the ability to differentiate IBD disease activity. Collagen III emerged as the most extensively investigated [1212 IBD patients], with the degradation marker C3M and deposition marker PRO-C3 being associated with IBD and subtypes. Collagen V markers C5M and PRO-C5 emerged as the most accurate single markers for diagnosis of IBD, with an area under the curve of 0.91 and 0.93, respectively. Overall, studies were characterized by variable endpoints. None of the studies included histological grading of intestinal damage, repair, or fibrosis formation as the primary outcome in relation to the ECM blood markers. CONCLUSIONS Multiple ECM markers are linked with IBD and its phenotypes. However, more rigorous study designs and clearly defined endpoints are needed to ensure reproducibility and develop reliable and accurate biomarkers. ECM markers hold promise as they provide a 'window' into transmural tissue remodelling and fibrosis burden, warranting further investigation.
Collapse
Affiliation(s)
- Anja Poulsen
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Dige Ovesen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Cathy Lu
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dominik Bettenworth
- Medical Faculty, University of Münster, Münster, Germany
- CED Schwerpunktpraxis, Münster, Germany
| | - Vipul Jairath
- Division of Gastroenterology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON N6A, Canada
| | - Brian G Feagan
- Division of Gastroenterology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON N6A, Canada
- Alimentiv Inc, London, ON N6A 5B6, Canada
| | - Jakob Benedict Seidelin
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Program for Global Translational Inflammatory Bowel Diseases, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Coppola G, Principessa C, Di Vincenzo F, Puca P, Del Gaudio A, Capobianco I, Bartocci B, Papa A, Cammarota G, Lopetuso LR, Scaldaferri F. Endoscopic Management of Strictures in Crohn's Disease: An Unsolved Case. J Clin Med 2024; 13:4842. [PMID: 39200984 PMCID: PMC11355190 DOI: 10.3390/jcm13164842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease associated with a significant burden in terms of quality of life and health care costs. It is frequently associated with several complications, including the development of intestinal strictures. Stricturing CD requires a careful multidisciplinary approach involving medical therapy and surgery, still posing a continuous management challenge; in this context, endoscopic treatment represents a valuable, in-between opportunity as a minimally invasive strategy endorsed by extensive yet heterogeneous evidence and evolving research and techniques. This review summarizes current knowledge on the role of therapeutic endoscopy in stricturing CD, focusing on evidence gaps, recent updates, and novel techniques intended for optimizing efficacy, safety, and tailoring of this approach in the view of precision endoscopy.
Collapse
Affiliation(s)
- Gaetano Coppola
- CEMAD—IBD Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (I.C.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Chiara Principessa
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Federica Di Vincenzo
- CEMAD—IBD Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (I.C.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Pierluigi Puca
- CEMAD—IBD Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (I.C.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Angelo Del Gaudio
- CEMAD—IBD Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (I.C.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Ivan Capobianco
- CEMAD—IBD Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (I.C.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Bianca Bartocci
- CEMAD—IBD Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (I.C.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Alfredo Papa
- CEMAD—IBD Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (I.C.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Giovanni Cammarota
- CEMAD—IBD Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (I.C.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Loris Riccardo Lopetuso
- CEMAD—IBD Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (I.C.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Dipartimento di Medicina e Scienze dell’Invecchiamento, Università degli Studi “G. D’Annunzio”, 66100 Chieti, Italy
| | - Franco Scaldaferri
- CEMAD—IBD Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (I.C.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
3
|
Lehmann M, Weixler B, Elezkurtaj S, Loddenkemper C, Kühl AA, Siegmund B. Spatial Single Cell Profiling Using Imaging Mass Cytometry: Inflammatory Versus Penetrating Crohn's Disease. J Crohns Colitis 2024; 18:1305-1318. [PMID: 38465390 DOI: 10.1093/ecco-jcc/jjae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND AND AIMS Fistula formation is a major complication in Crohn's disease [CD] and the role of the immune cell compartment remains to be elucidated. Thus, we compared the immune cell compartment of CD fistula to inflammatory CD colitis using imaging mass cytometry [IMC] and immunofluorescence. METHODS A 36-marker panel including structural, functional, and lineage markers for use in IMC was established. This panel was applied to analyse paraffin-embedded CD fistula tract [n = 11], CD colitis [n = 10], and colon samples from non-inflamed controls [n = 12]. Computational methods for cell segmentation, dimensionality reduction, and cell type clustering were used to define cell populations for cell frequency, marker distribution, and spatial neighbourhood analysis. Multiplex immunofluorescence was used for higher resolution spatial analysis. RESULTS Analysis of cell frequencies in CD fistulas compared to CD colitis and control colonic samples revealed a significant increase in neutrophils, effector cytotoxic T cells, and inflammatory macrophages in CD fistula samples, whereas regulatory T cells were decreased. Neutrophils in CD fistula expressed significantly more matrix metalloproteinase 9 [MMP9], correlating with extracellular matrix remodelling. Neighbourhood analysis revealed a strong association between MMP9+ neutrophils and effector cytotoxic T cells in both CD fistulas and colitis. CONCLUSIONS This study presents the first highly multiplexed single cell analysis of the immune cell compartment of CD fistulas and their spatial context. It links immune cell dynamics, particularly MMP9+ neutrophils, to extracellular matrix remodelling in CD fistulas, offering insights into the complex network of cellular interactions and potential therapeutic targets for CD complications.
Collapse
Affiliation(s)
- Malte Lehmann
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Benjamin Weixler
- Department of General and Visceral Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christopher Loddenkemper
- PathoTres, Gemeinschaftspraxis für Pathologie und Neuropathologie, Teltowkanalstr. 2, 12247, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| |
Collapse
|
4
|
Biel C, Faber KN, Bank RA, Olinga P. Matrix metalloproteinases in intestinal fibrosis. J Crohns Colitis 2024; 18:462-478. [PMID: 37878770 PMCID: PMC10906956 DOI: 10.1093/ecco-jcc/jjad178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
Intestinal fibrosis is a common complication in patients with inflammatory bowel disease [IBD], in particular Crohn's disease [CD]. Unfortunately, at present intestinal fibrosis is not yet preventable, and cannot be treated by interventions other than surgical removal. Intestinal fibrosis is characterized by excessive accumulation of extracellular matrix [ECM], which is caused by activated fibroblasts and smooth muscle cells. Accumulation of ECM results from an imbalanced production and degradation of ECM. ECM degradation is mainly performed by matrix metalloproteinases [MMPs], enzymes that are counteracted by tissue inhibitors of MMPs [TIMPs]. In IBD patients, MMP activity [together with other protease activities] is increased. At the same time, CD patients have a generally lower MMP activity compared to ulcerative colitis patients, who usually do not develop intestinal strictures or fibrosis. The exact regulation and role[s] of these MMPs in fibrosis are far from understood. Here, we review the current literature about ECM remodelling by MMPs in intestinal fibrosis and their potential role as biomarkers for disease progression or druggable targets.
Collapse
Affiliation(s)
- Carin Biel
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ruud A Bank
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| |
Collapse
|
5
|
Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y, Cui X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother 2024; 171:116116. [PMID: 38181715 DOI: 10.1016/j.biopha.2023.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Fibrosis is a process of tissue repair that results in the slow creation of scar tissue to replace healthy tissue and can affect any tissue or organ. Its primary feature is the massive deposition of extracellular matrix (mainly collagen), eventually leading to tissue dysfunction and organ failure. The progression of fibrotic diseases has put a significant strain on global health and the economy, and as a result, there is an urgent need to find some new therapies. Previous studies have identified that inflammation, oxidative stress, some cytokines, and remodeling play a crucial role in fibrotic diseases and are essential avenues for treating fibrotic diseases. Among them, matrix metalloproteinases (MMPs) are considered the main targets for the treatment of fibrotic diseases since they are the primary driver involved in ECM degradation, and tissue inhibitors of metalloproteinases (TIMPs) are natural endogenous inhibitors of MMPs. Through previous studies, we found that MMP-9 is an essential target for treating fibrotic diseases. However, it is worth noting that MMP-9 plays a bidirectional regulatory role in different fibrotic diseases or different stages of the same fibrotic disease. Previously identified MMP-9 inhibitors, such as pirfenidone and nintedanib, suffer from some rather pronounced side effects, and therefore, there is an urgent need to investigate new drugs. In this review, we explore the mechanism of action and signaling pathways of MMP-9 in different tissues and organs, hoping to provide some ideas for developing safer and more effective biologics.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Linke Jiao
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Caoxia Qiang
- Department of Traditional Chinese Medicine, Tumor Hospital Affiliated to Nantong University, Jiangsu, China
| | - Chen Chen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Fan Ding
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Zhu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Cusato J, Cafasso C, Antonucci M, Palermiti A, Manca A, Caviglia GP, Vernero M, Armandi A, Saracco GM, D’Avolio A, Ribaldone DG. Correlation between Polymorphisms of Vitamin D Metabolism Genes and Perianal Disease in Crohn's Disease. Biomedicines 2024; 12:320. [PMID: 38397922 PMCID: PMC10886824 DOI: 10.3390/biomedicines12020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Although the role of vitamin D (VD) in the pathogenesis and progression of Crohn's disease (CD) is known, the association between single-nucleotide polymorphisms (SNPs) of genes linked to vitamin D pathway and CD risk is still under study. Furthermore, no significant association has been previously found between these SNPs and perianal CD (pCD), a severe phenotypic manifestation of CD that may present as perianal fistula, abscess, and recto-vaginal fistula. Among the mechanisms involved in its pathogenesis, local inflammation and intestinal microbiota alteration are recognized. VD seems to act on these elements. The aim of this study was to evaluate the presence of an association between SNPs of genes coding for enzymes, transporters, and receptors involved in the VD pathway and the occurrence of pCD. Blood samples of 206 patients with CD, including 34 with pCD, were analyzed for VDR, CYP27B1, CYP24A1, and GC genetic variants. VDR Apal Aa genotype and VDR BsmI Bb genotype resulted in an association with pCD (p = 0.01 and p = 0.02, respectively). Our study demonstrates for the first time the impact of the polymorphisms of genes associated with the VD pathway on the onset of pCD. Future multicenter studies are needed to confirm these data.
Collapse
Affiliation(s)
- Jessica Cusato
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Turin, Italy; (J.C.); (C.C.); (A.P.); (A.M.); (G.P.C.); (A.A.); (G.M.S.); (A.D.)
| | - Carla Cafasso
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Turin, Italy; (J.C.); (C.C.); (A.P.); (A.M.); (G.P.C.); (A.A.); (G.M.S.); (A.D.)
| | - Miriam Antonucci
- SCDU Infectious Diseases, Amedeo di Savoia Hospital, ASL Città di Torino, 10149 Turin, Italy;
| | - Alice Palermiti
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Turin, Italy; (J.C.); (C.C.); (A.P.); (A.M.); (G.P.C.); (A.A.); (G.M.S.); (A.D.)
| | - Alessandra Manca
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Turin, Italy; (J.C.); (C.C.); (A.P.); (A.M.); (G.P.C.); (A.A.); (G.M.S.); (A.D.)
| | - Gian Paolo Caviglia
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Turin, Italy; (J.C.); (C.C.); (A.P.); (A.M.); (G.P.C.); (A.A.); (G.M.S.); (A.D.)
| | - Marta Vernero
- Gastroenterology-U, “Città della Salute e della Scienza” Hospital, 10126 Turin, Italy;
| | - Angelo Armandi
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Turin, Italy; (J.C.); (C.C.); (A.P.); (A.M.); (G.P.C.); (A.A.); (G.M.S.); (A.D.)
| | - Giorgio Maria Saracco
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Turin, Italy; (J.C.); (C.C.); (A.P.); (A.M.); (G.P.C.); (A.A.); (G.M.S.); (A.D.)
| | - Antonio D’Avolio
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Turin, Italy; (J.C.); (C.C.); (A.P.); (A.M.); (G.P.C.); (A.A.); (G.M.S.); (A.D.)
| | - Davide Giuseppe Ribaldone
- Department of Medical Sciences, Division of Gastroenterology, University of Torino, 10126 Turin, Italy; (J.C.); (C.C.); (A.P.); (A.M.); (G.P.C.); (A.A.); (G.M.S.); (A.D.)
| |
Collapse
|
7
|
Li X, Yu M, Zhao Q, Yu Y. Prospective therapeutics for intestinal and hepatic fibrosis. Bioeng Transl Med 2023; 8:e10579. [PMID: 38023697 PMCID: PMC10658571 DOI: 10.1002/btm2.10579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
Currently, there are no effective therapies for intestinal and hepatic fibrosis representing a considerable unmet need. Breakthroughs in pathogenesis have accelerated the development of anti-fibrotic therapeutics in recent years. Particularly, with the development of nanotechnology, the harsh environment of the gastrointestinal tract and inaccessible microenvironment of fibrotic lesions seem to be no longer considered a great barrier to the use of anti-fibrotic drugs. In this review, we comprehensively summarize recent preclinical and clinical studies on intestinal and hepatic fibrosis. It is found that the targets for preclinical studies on intestinal fibrosis is varied, which could be divided into molecular, cellular, and tissues level, although little clinical trials are ongoing. Liver fibrosis clinical trials have focused on improving metabolic disorders, preventing the activation and proliferation of hepatic stellate cells, promoting the degradation of collagen, and reducing inflammation and cell death. At the preclinical stage, the therapeutic strategies have focused on drug targets and delivery systems. At last, promising remedies to the current challenges are based on multi-modal synergistic and targeted delivery therapies through mesenchymal stem cells, nanotechnology, and gut-liver axis providing useful insights into anti-fibrotic strategies for clinical use.
Collapse
Affiliation(s)
- Xin Li
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Mengli Yu
- Department of Gastroenterology, The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yang Yu
- College of Pharmaceutical SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
8
|
Anandabaskaran S, Hanna L, Iqbal N, Constable L, Tozer P, Hart A. Where Are We and Where to Next?-The Future of Perianal Crohn's Disease Management. J Clin Med 2023; 12:6379. [PMID: 37835022 PMCID: PMC10573672 DOI: 10.3390/jcm12196379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Perianal fistulizing Crohn's Disease (pCD) affects about 25% of patients with Crohn's Disease (CD). It remains a difficult entity to manage with a therapeutic ceiling of treatment success despite improving medical and surgical management. The refractory nature of the disease calls for an imminent need to better understand its immunopathogenesis and classification to better streamline our treatment options. In this article, we overview the current state of pCD management and discuss where the future of its management may lie.
Collapse
Affiliation(s)
- Sulak Anandabaskaran
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, UK
- Robin Phillip’s Fistula Research Unit, St Mark’s Hospital and Academic Institute, London HA1 3UJ, UK
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Luke Hanna
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, UK
- Robin Phillip’s Fistula Research Unit, St Mark’s Hospital and Academic Institute, London HA1 3UJ, UK
| | - Nusrat Iqbal
- Robin Phillip’s Fistula Research Unit, St Mark’s Hospital and Academic Institute, London HA1 3UJ, UK
- Department of Surgery and Cancer, South Kensington Campus, Imperial College London, London SW7 2BX, UK
| | - Laura Constable
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, UK
| | - Phil Tozer
- Robin Phillip’s Fistula Research Unit, St Mark’s Hospital and Academic Institute, London HA1 3UJ, UK
- Department of Surgery and Cancer, South Kensington Campus, Imperial College London, London SW7 2BX, UK
| | - Ailsa Hart
- Robin Phillip’s Fistula Research Unit, St Mark’s Hospital and Academic Institute, London HA1 3UJ, UK
- Department of Surgery and Cancer, South Kensington Campus, Imperial College London, London SW7 2BX, UK
| |
Collapse
|
9
|
Wang X, Sima Y, Zhao Y, Zhang N, Zheng M, Du K, Wang M, Wang Y, Hao Y, Li Y, Liu M, Piao Y, Liu C, Tomassen P, Zhang L, Bachert C. Endotypes of chronic rhinosinusitis based on inflammatory and remodeling factors. J Allergy Clin Immunol 2023; 151:458-468. [PMID: 36272582 DOI: 10.1016/j.jaci.2022.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Previous studies on the endotyping of chronic rhinosinusitis (CRS) that were based on inflammatory factors have broadened our understanding of the disease. However, the endotype of CRS combined with inflammatory and remodeling features has not yet been clearly elucidated. OBJECTIVE We sought to identify the endotypes of patients with CRS according to inflammatory and remodeling factors. METHODS Forty-eight inflammatory and remodeling factors in the nasal mucosal tissues of 128 CRS patients and 24 control subjects from northern China were analyzed by Luminex, ELISA, and ImmunoCAP. Sixteen factors were used to perform the cluster analysis. The characteristics of each cluster were analyzed using correlation analysis and validated by immunofluorescence staining. RESULTS Patients were classified into 5 clusters. Clusters 1 and 2 showed non-type 2 signatures with low biomarker concentrations, except for IL-19 and IL-27. Cluster 3 involved a low type 2 endotype with the highest expression of neutrophil factors, such as granulocyte colony-stimulating factor, IL-8, and myeloperoxidase, and remodeling factors, such as matrix metalloproteinases and fibronectin. Cluster 4 exhibited moderate type 2 inflammation. Cluster 5 exhibited high type 2 inflammation, which was associated with relatively higher levels of neutrophil and remodeling factors. The proportion of CRS with nasal polyps, asthma, allergies, anosmia, aspirin sensitivity, and the recurrence of CRS increased from clusters 1 to 5. CONCLUSION Diverse inflammatory mechanisms result in distinct CRS endotypes and remodeling profiles. The explicit differentiation and accurate description of these endotypes will guide targeted treatment decisions.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yutong Sima
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yan Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Nan Zhang
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Ming Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kun Du
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yue Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yun Hao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Ying Li
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | | | - Yingshi Piao
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chengyao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Peter Tomassen
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Luo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
10
|
Jing M, Chen X, Qiu H, He W, Zhou Y, Li D, Wang D, Jiao Y, Liu A. Insights into the immunomodulatory regulation of matrix metalloproteinase at the maternal-fetal interface during early pregnancy and pregnancy-related diseases. Front Immunol 2023; 13:1067661. [PMID: 36700222 PMCID: PMC9869165 DOI: 10.3389/fimmu.2022.1067661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Trophoblast immune cell interactions are central events in the immune microenvironment at the maternal-fetal interface. Their abnormalities are potential causes of various pregnancy complications, including pre-eclampsia and recurrent spontaneous abortion. Matrix metalloproteinase (MMP) is highly homologous, zinc(II)-containing metalloproteinase involved in altered uterine hemodynamics, closely associated with uterine vascular remodeling. However, the interactions between MMP and the immune microenvironment remain unclear. Here we discuss the key roles and potential interplay of MMP with the immune microenvironment in the embryo implantation process and pregnancy-related diseases, which may contribute to understanding the establishment and maintenance of normal pregnancy and providing new therapeutic strategies. Recent studies have shown that several tissue inhibitors of metalloproteinases (TIMPs) effectively prevent invasive vascular disease by modulating the activity of MMP. We summarize the main findings of these studies and suggest the possibility of TIMPs as emerging biomarkers and potential therapeutic targets for a range of complications induced by abnormalities in the immune microenvironment at the maternal-fetal interface. MMP and TIMPs are promising targets for developing new immunotherapies to treat pregnancy-related diseases caused by immune imbalance.
Collapse
Affiliation(s)
- Mengyu Jing
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Hongxia Qiu
- Department of Obstetrics, Hangzhou Fuyang Women And Children Hospital, Fuyang, China
| | - Weihua He
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Dan Li
- Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Dimin Wang
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| | - Yonghui Jiao
- Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| | - Aixia Liu
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| |
Collapse
|
11
|
Porras AM, Zhou H, Shi Q, Xiao X, Longman R, Brito IL. Inflammatory Bowel Disease-Associated Gut Commensals Degrade Components of the Extracellular Matrix. mBio 2022; 13:e0220122. [PMID: 36445085 PMCID: PMC9765649 DOI: 10.1128/mbio.02201-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular matrix (ECM) remodeling has emerged as a key feature of inflammatory bowel disease (IBD), and ECM fragments have been proposed as markers of clinical disease severity. Recent studies report increased protease activity in the gut microbiota of IBD patients. Nonetheless, the relationship between gut microbiota and ECM remodeling has remained unexplored. We hypothesized that members of the human gut microbiome could degrade the host ECM and that bacteria-driven remodeling, in turn, could enhance colonic inflammation. Through a variety of in vitro assays, we first confirmed that multiple bacterial species found in the human gut are capable of degrading specific ECM components. Clinical stool samples obtained from ulcerative colitis patients also exhibited higher levels of proteolytic activity in vitro, compared to those of their healthy counterparts. Furthermore, culture supernatants from bacteria species that are capable of degrading human ECM accelerated inflammation in dextran sodium sulfate (DSS)-induced colitis. Finally, we identified several of the bacterial proteases and carbohydrate degrading enzymes (CAZymes) that are potentially responsible for ECM degradation in vitro. Some of these protease families and CAZymes were also found in increased abundance in a metagenomic cohort of IBD. These results demonstrate that some commensal bacteria in the gut are indeed capable of degrading components of human ECM in vitro and suggest that this proteolytic activity may be involved in the progression of IBD. A better understanding of the relationship between nonpathogenic gut microbes, host ECM, and inflammation could be crucial to elucidating some of the mechanisms underlying host-bacteria interactions in IBD and beyond. IMPORTANCE Healthy gut epithelial cells form a barrier that keeps bacteria and other substances from entering the blood or tissues of the body. Those cells sit on scaffolding that maintains the structure of the gut and informs our immune system about the integrity of this barrier. In patients with inflammatory bowel disease (IBD), breaks are formed in this cellular barrier, and bacteria gain access to the underlying tissue and scaffolding. In our study, we discovered that bacteria that normally reside in the gut can modify and disassemble the underlying scaffolding. Additionally, we discovered that changes to this scaffolding affect the onset of IBD in mouse models of colitis as well as the abilities of these mice to recover. We propose that this new information will reveal how breaks in the gut wall lead to IBD and will open up new avenues by which to treat patients with IBD.
Collapse
Affiliation(s)
- Ana Maria Porras
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Hao Zhou
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Xieyue Xiao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - JRI Live Cell Bank
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, New York, USA
| | - Randy Longman
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, New York, USA
| | - Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Yao H, Tang G. Macrophages in intestinal fibrosis and regression. Cell Immunol 2022; 381:104614. [PMID: 36182587 DOI: 10.1016/j.cellimm.2022.104614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
Abstract
Intestinal macrophages are heterogenous cell populations with different developmental ontogeny and tissue anatomy. The concerted actions of intestinal macrophage subsets are critical to maintaining tissue homeostasis. However, the dysregulation of macrophages following tissue injury or chronic inflammation could also lead to intestinal fibrosis, with few treatment options in the clinic. In this review, we will characterize the features of intestinal macrophages in light of the latest advances in lineage tracing and single-cell sequencing technology. The roles of macrophages in distinct stages of intestinal fibrosis would be also elaborated. Finally, based on the reciprocal interaction between macrophages and intestinal fibrosis, we will propose the potential macrophage targeting anti-intestinal fibrosis therapies.
Collapse
Affiliation(s)
- Hui Yao
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
13
|
Domislovic V, Høg Mortensen J, Lindholm M, Kaarsdal MA, Brinar M, Barisic A, Manon-Jensen T, Krznaric Z. Inflammatory Biomarkers of Extracellular Matrix Remodeling and Disease Activity in Crohn’s Disease and Ulcerative Colitis. J Clin Med 2022; 11:jcm11195907. [PMID: 36233775 PMCID: PMC9572110 DOI: 10.3390/jcm11195907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular matrix (ECM) homeostasis is highly affected in active inflammatory bowel disease (IBD). The aim of the study was to investigate serological biomarkers of type III, IV, and V collagen degradation and formation, and their association with disease activity in IBD. ECM remodeling serum biomarkers were measured in 162 IBD patients, 110 with Crohn’s disease (CD) and 52 with ulcerative colitis (UC), and in 29 healthy donors. Biomarkers of type III collagen degradation (C3M) and formation (PRO-C3), type IV collagen degradation (C4M) and formation (PRO-C4), and type V collagen formation (PRO-C5) were measured using ELISA. Inflammatory activity was assessed using endoscopic, clinical, and biochemical activity indices. The highest diagnostic value was identified in discriminating endoscopically moderate to severe disease in CD (PRO-C3, C3M/PRO-C3, and C4M with AUC of 0.70, 0.73, and 0.69, respectively) and UC (C3M, C3M/PRO-C3, and C4M with AUC of 0.86, 0.80, and 0.76, respectively). C4M and C3M/PRO-C3 in combination yielded AUC of 0.93 (0.66–0.90) in CD and 0.94 (0.65–0.99) in UC. This study confirmed that ECM remodeling reflected disease activity in CD and UC. A combination of C4M, C3M, and PRO-C3 biomarkers may potentially be considered as a biomarker differentiating moderate to severe endoscopic disease.
Collapse
Affiliation(s)
- Viktor Domislovic
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-992815000
| | | | - Majken Lindholm
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark
| | | | - Marko Brinar
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Barisic
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Tina Manon-Jensen
- Biomarkers and Research, Nordic Bioscience A/S, 2730 Herlev, Denmark
| | - Zeljko Krznaric
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Pathogenesis of Fistulating Crohn's Disease: A Review. Cell Mol Gastroenterol Hepatol 2022; 15:1-11. [PMID: 36184031 PMCID: PMC9667304 DOI: 10.1016/j.jcmgh.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 12/10/2022]
Abstract
Sustained, transmural inflammation of the bowel wall may result in the development of a fistula in Crohn's disease (CD). Fistula formation is a recognized complication and cause of morbidity, occurring in 40% of patients with CD. Despite advanced treatment, one-third of patients experience recurrent fistulae. Development of targeting treatment for fistulae will be dependent on a more in depth understanding of its pathogenesis. Presently, pathogenesis of CD-associated fistulae remains poorly defined, in part due to the lack of accepted in vitro tissue models recapitulating the pathogenic cellular lesions linked to fistulae and limited in vivo models. This review provides a synthesis of the existing knowledge of the histopathological, immune, cellular, genetic, and microbial contributions to the pathogenesis of CD-associated fistulae including the widely accredited contribution of epithelial-to-mesenchymal transition, upregulation of matrix metalloproteinases, and overexpression of invasive molecules, resulting in tissue remodeling and subsequent fistula formation. We conclude by exploring how we might utilize advancing technologies to verify and broaden our current understanding while exploring novel causal pathways to provide further inroads to future therapeutic targets.
Collapse
|
15
|
Mortensen JH, Sinkeviciute D, Manon-Jensen T, Domislović V, McCall K, Thudium CS, Brinar M, Önnerfjord P, Goodyear CS, Krznarić Ž, Karsdal MA, Bay-Jensen AC. A Specific Calprotectin Neo-epitope [CPa9-HNE] in Serum from Inflammatory Bowel Disease Patients Is Associated with Neutrophil Activity and Endoscopic Severity. J Crohns Colitis 2022; 16:1447-1460. [PMID: 35304895 PMCID: PMC9455793 DOI: 10.1093/ecco-jcc/jjac047] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Endoscopy and the use of faecal calprotectin [faecal CP] are among the least-favoured methods for assessing disease activity by inflammatory bowel disease [IBD] patients; the handling/processing of faecal samples is also impractical. Therefore, we sought to develop a novel neo-epitope serum calprotectin enzyme-linked immunosorbent assay [ELISA], CPa9-HNE, with the aim of quantifying neutrophil activity and neutrophil extracellular trap [NET]-osis and proposing a non-invasive method for monitoring disease activity in IBD patients. METHODS In vitro cleavage was performed by mixing calprotectin [S100A9/S100A8] with human neutrophil elastase [HNE], and a novel HNE-derived calprotectin neo-epitope [CPa9-HNE] was identified by mass spectrometry for ELISA development. The CPa9-HNE ELISA was quantified in supernatants from ex vivo activated neutrophils and serum samples from patients with ulcerative colitis [UC, n = 43], Crohn's disease [CD, n = 93], and healthy subjects [HS, n = 23]. For comparison, faecal CP and MRP8/14 biomarkers were also measured. RESULTS CPa9-HNE was specific for activated neutrophils ex vivo. Serum CPa9-HNE levels were 4-fold higher in CD [p <0.0001] and UC [p <0.0001] patients than in HS. CPa9-HNE correlated well with the Simple Endoscopic Score [SES]-CD score [r = 0.61, p <0.0001], MES [r = 0.46, p = 0.0141], and the full Mayo score [r = 0.52, p = 0.0013]. CPa9-HNE was able to differentiate between CD and UC patients in endoscopic remission and moderate/severe disease activity (CD: area under the curve [AUC] = 0.82 [p = 0.0003], UC: AUC = 0.87 [p = 0.0004]). The performance of CPa9-HNE was equipotent or slightly better than that of faecal CP. CONCLUSIONS Serum CPa9-HNE levels were highly associated with CD and UC patients. CPa9-HNE correlated with the SES-CD score and the full Mayo score, indicating a strong association with disease activity.
Collapse
Affiliation(s)
| | - Dovile Sinkeviciute
- Nordic Bioscience A/S, Herlev, Denmark
- Lund University, Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences, Lund, Sweden
| | | | - Viktor Domislović
- Clinical Hospital Centre Zagreb, Department of Gastroenterology and Hepatology, Zagreb, Croatia
| | - Kathryn McCall
- University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | | | - Marko Brinar
- Clinical Hospital Centre Zagreb, Department of Gastroenterology and Hepatology, Zagreb, Croatia
| | - Patrik Önnerfjord
- Lund University, Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences, Lund, Sweden
| | - Carl S Goodyear
- University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Željko Krznarić
- Clinical Hospital Centre Zagreb, Department of Gastroenterology and Hepatology, Zagreb, Croatia
| | | | | |
Collapse
|
16
|
Lindholm M, Di Sabatino A, Manon-Jensen T, Mazza G, Madsen GI, Giuffrida P, Pinzani M, Krag A, Karsdal MA, Kjeldsen J, Mortensen JH. A Serological Biomarker of Laminin Gamma 1 Chain Degradation Reflects Altered Basement Membrane Remodeling in Crohn's Disease and DSS Colitis. Dig Dis Sci 2022; 67:3662-3671. [PMID: 34561759 DOI: 10.1007/s10620-021-07252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/08/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The laminin gamma 1 chain (LMγ1) is abundant along the crypt-villus axis in the intestinal basement membrane. AIMS We investigated whether a serological biomarker of laminin degradation was associated with disease activity in patients with Crohn's disease (CD) and in rats with dextran sulfate sodium (DSS)-induced colitis. METHODS Serum samples from CD patients (n = 43), healthy subjects (n = 19), and Sprague Dawley rats receiving 5-6% DSS water for five days and regular drinking water for 11 days were included in this study. The LG1M biomarker, a neo-epitope degradation fragment of the LMγ1 chain generated by matrix metalloproteinases-9 (MMP-9), was measured in serum to estimate the level of laminin degradation. RESULTS Serum LG1M was elevated in CD patients with active and inactive disease compared to healthy subjects (p < 0.0001). LG1M distinguished CD patients from healthy subjects, with an area under the curve (AUC) of 0.81 (p < 0.0001). Serum LG1M was decreased in DSS rats compared to controls 2 days after DSS withdrawal, and increased upon reversal of the disease. CONCLUSIONS Increased serum LG1M in active and inactive CD patients supports the evidence of altered LM expression in both inflamed and non-inflamed tissue. Moreover, lower LG1M levels in the early healing phase of DSS-induced colitis may reflect ongoing mucosal repair.
Collapse
Affiliation(s)
- Majken Lindholm
- Biomarkers and Research, Nordic Bioscience, Herlev hovedgade 205-207, 2730, Herlev, Denmark. .,Department of Medical Gastroenterology, University of Southern Denmark and Odense University Hospital, Odense, Denmark.
| | - Antonio Di Sabatino
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Tina Manon-Jensen
- Biomarkers and Research, Nordic Bioscience, Herlev hovedgade 205-207, 2730, Herlev, Denmark
| | - Giuseppe Mazza
- Institute for Liver and Digestive Health, University College of London, London, UK
| | - Gunvor I Madsen
- Department of Surgical Pathology, Odense University Hospital, Odense, Denmark
| | - Paolo Giuffrida
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Massimo Pinzani
- Institute for Liver and Digestive Health, University College of London, London, UK
| | - Aleksander Krag
- Department of Medical Gastroenterology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Morten A Karsdal
- Biomarkers and Research, Nordic Bioscience, Herlev hovedgade 205-207, 2730, Herlev, Denmark
| | - Jens Kjeldsen
- Department of Medical Gastroenterology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Joachim H Mortensen
- Biomarkers and Research, Nordic Bioscience, Herlev hovedgade 205-207, 2730, Herlev, Denmark
| |
Collapse
|
17
|
Luceri C, D’Ambrosio M, Bigagli E, Cinci L, Russo E, Staderini F, Cricchio M, Giudici F, Scaringi S. Involvement of MIR-126 and MMP9 in the Pathogenesis of Intra-Abdominal Fistulizing Crohn’s Disease: A Brief Research Report. Front Surg 2022; 9:822407. [PMID: 35620197 PMCID: PMC9127299 DOI: 10.3389/fsurg.2022.822407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background Intra-abdominal fistulas are complications that affect a significant proportion of Crohn’s disease patients, often requiring surgery. The aim of the present work was to correlate the occurrence of intestinal fistulization to the clinico-pathological features of these patients and to the plasma levels of MMP9, a gelatinase involved in the pathophysiology of fistula formation, and of miR-126, appearing to modulate MMP9 expression. Methods In a series of 31 consecutive Crohn’s patients admitted to surgery due to therapeutic failure and/or complicated disease, we identified nine cases of abdominal fistulas, mainly entero-enteric fistulas. MMP9 protein was determined in plasma and at the intestinal level using immunometric assays. Circulating miR-126 was also measured in all plasma samples by real-time PCR. Results Comparing patients with and without intra-abdominal fistulas, we did not observe differences in terms of age, gender, disease location and duration, number of previous surgeries and pre-biologic medications. However, cases with intra-abdominal fistulas had a significantly higher CDAI (p < 0.0001) and a significantly lower circulating miR-126 (p < 0.05). Patients with intra-abdominal fistulas had also a significantly higher amount of circulating MMP9 (p < 0.0001) and this data was correlated with an increased expression of MMP9 protein in the mucosa and with reduced levels of circulating miR-126. Receiver operating characteristic (ROC) analysis pointed out the ability of circulating MMP9 to discriminate patients with and without intra-abdominal fistulas. Conclusions These data confirm that circulating MMP9 can be used for the identification of cases with intra-abdominal fistulas and suggest that miR-126 may be also involved in the pathogenesis of this complication and that it may be further investigated as a new therapeutic strategy or for monitoring therapeutic response in these patients.
Collapse
Affiliation(s)
- Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Mario D’Ambrosio
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| | - Fabio Staderini
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| | - Marta Cricchio
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| | - Francesco Giudici
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
- Correspondence: Francesco Giudici
| | - Stefano Scaringi
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| |
Collapse
|
18
|
Mamie C, Bruckner RS, Lang S, Shpigel NY, Turina M, Rickenbacher A, Cabalzar-Wondberg D, Chvatchko Y, Rogler G, Scharl M. MMP9 expression in intestinal fistula from patients with fistulizing CD and from human xenograft mouse model. Tissue Barriers 2022; 10:1994350. [PMID: 34709129 PMCID: PMC9067458 DOI: 10.1080/21688370.2021.1994350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022] Open
Abstract
Fistula treatment represents a major unmet medical need in the therapy of Crohn's disease (CD). Current medical therapies, such as anti-TNF antibody treatments, are often insufficient and do not achieve permanent fistula closure. Previously published data point toward a critical role for metalloproteinase-9 (MMP-9)/gelatinase B in fistula pathogenesis. The aim of this project was to investigate in detail MMP-9 expression in different fistula types and to confirm that MMP-9 is a potential target for fistula therapy in CD patients.Immunohistochemistry for total and active MMP-9, Cytokeratin 8 (CK-8) and co-staining of active MMP-9/CK-8 was performed in specimen derived from perianal fistulas, entero-enteric fistulas and fistulas from patients not responding to anti-TNF therapy. In addition, fistulas from the xenograft mouse model (anti-TNF treated or untreated) were analyzed.Total and active MMP-9 protein was detectable in cells lining the tracts of perianal and entero-enteric fistulas. Of note, total and active MMP-9 was also expressed in fistulas of CD patients non-responding to anti-TNF treatment. Interestingly, we detected considerable co-staining of active MMP-9 and CK-8 in particular in cells lining the fistula tract and in transitional cells around the fistulas. Furthermore, total and active MMP-9 are detectable in both anti-TNF treated and untreated xenograft fistulas.Taken together, our data suggest that MMP-9 is involved in fistula pathogenesis in CD patients, in fistulas of different origins and particularly in patients non-responding to anti-TNF therapy. Our xenograft fistula model is suitable for in vivo studies investigating a possible therapeutic role for MMP-9 targeting as fistula therapy.
Collapse
Affiliation(s)
- Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ramona S. Bruckner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nahum Y. Shpigel
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Matthias Turina
- Department of Visceral and Transplantation Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas Rickenbacher
- Department of Visceral and Transplantation Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniela Cabalzar-Wondberg
- Department of Visceral and Transplantation Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Development of a CHO cell line for stable production of recombinant antibodies against human MMP9. BMC Biotechnol 2022; 22:8. [PMID: 35255869 PMCID: PMC8903741 DOI: 10.1186/s12896-022-00738-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Human matrix metalloproteinase 9 (hMMP9) is a biomarker in several diseases, including cancer, and the need for developing detectors and inhibitors of hMMP9 is increasing. As an antibody against hMMP9 can be selectively bound to hMMP9, the use of anti-MMP9 antibody presents new possibilities to address hMMP9-related diseases. In this study, we aimed to establish a stable Chinese hamster ovary (CHO) cell line for the stable production of antibodies against hMMP9. Results Weconstructed recombinant anti-hMMP9 antibody fragment-expressing genes and transfected these to CHO cells. We chose a single clone, and successfully produced a full-sized antibody against hMMP9 with high purity, sensitivity, and reproducibility. Subsequently, we confirmed the antigen-binding efficiency of the antibody. Conclusions We developed a novel recombinant anti-hMMP9 antibody via a CHO cell-based mammalian expression system, which has a high potential to be used in a broad range of medical and industrial areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00738-6.
Collapse
|
20
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
21
|
Qiao L, Fang L, Zhu J, Xiang Y, Xu H, Sun X, Chen H, Yang B. Total Flavone of Abelmoschus manihot Ameliorates TNBS-Induced Colonic Fibrosis by Regulating Th17/Treg Balance and Reducing Extracellular Matrix. Front Pharmacol 2022; 12:769793. [PMID: 35002710 PMCID: PMC8735858 DOI: 10.3389/fphar.2021.769793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background and Aims: Surgery remains the major available strategy in inflammatory bowel disease (IBD) fibrotic strictures because no available drugs have sufficient prevention and treatment in this complication. This study aimed to evaluate the efficacy of the total flavone of Abelmoschus manihot L. Medic (TFA) on the development of colonic fibrosis in mice and its possible mechanism. Methods: The 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced chronic colonic inflammation-associated fibrosis mice were used to evaluate anti-fibrosis of TFA using macroscopic, histological, immunohistochemical analyses, ELISA, Masson staining, Verhoeff’s von Gieson staining, transcription-quantitative polymerase chain reaction, and immunoblot analysis. Results: Oral administration of TFA attenuated body weight loss, reduced colon length shortening, lowered the morphological damage index score, and notably ameliorated the inflammatory response. TFA downregulated proinflammatory cytokines IL-6, IL-17, TNF-α, IFN-γ productions, and increased the levels of anti-inflammatory cytokine IL-10 and TGF-β. The histological severity of the colonic fibrosis was also notably improved by the TFA treatment and associated with a significant reduction in the colonic expression of col1a2, col3a2, and hydroxyproline. TFA inhibits α-SMA, TGF-β, vimentin, TIMP-1 expression, increasing MMPs, thereby inhibiting activated intestinal mesenchymal cells and extracellular matrix (ECM) deposition. Conclusion: Together, we herein provide the evidence to support that TFA may restore the imbalance of Th17/Treg and decrease the generation of ECM. This may be a potential mechanism by which TFA protects the intestine under inflammatory conditions and acts as a therapeutic agent for the treatment of intestinal fibrosis in Crohn’s disease.
Collapse
Affiliation(s)
- Lichao Qiao
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Fang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junyi Zhu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Xiang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haixia Xu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueliang Sun
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Colorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Hongjin Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bolin Yang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Abstract
Intestinal fibrosis is one of the most common intestinal complications observed in inflammatory bowel disease, especially Crohn’s disease (CD). Intestinal fibrosis in CD is associated with chronic inflammation resulting from immunologic abnormalities and occurs as a form of tissue repair during the anti-inflammatory process. Various types of immune cells and mesenchymal cells, including myofibroblasts, are intricately involved in causing intestinal fibrosis. It is often difficult to treat intestinal fibrosis as intestinal stricture may develop despite treatment aimed at controlling inflammation. Detailed analysis of the pathogenesis of intestinal fibrosis is critical towards advancing the development of future therapeutic applications.
Collapse
|
23
|
Zhao Y, Ma T, Zou D. Identification of Unique Transcriptomic Signatures and Hub Genes Through RNA Sequencing and Integrated WGCNA and PPI Network Analysis in Nonerosive Reflux Disease. J Inflamm Res 2021; 14:6143-6156. [PMID: 34848992 PMCID: PMC8627320 DOI: 10.2147/jir.s340452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/12/2021] [Indexed: 01/17/2023] Open
Abstract
Purpose Transcriptomic studies on gastroesophageal reflux disease are scarce, and gene expression signatures in nonerosive reflux disease (NERD) remain elusive. The aim of the study was to identify gene expression profiles and potential hub genes in NERD. Patients and Methods We performed RNA sequencing on biopsy samples from nine consecutive patients with NERD and six healthy controls. Differentially expressed genes (DEGs) were analysed with the DESeq2 R package. A DEG-based protein-protein interaction (PPI) network was constructed to filter hub genes using Cytoscape. Weighted gene coexpression network analysis (WGCNA) was conducted to identify the coexpression relationships of all modules and explore the relationship between gene sets and clinical traits. Results In total, 1195 DEGs were identified, including 649 upregulated and 546 downregulated genes involved in regulating the inflammatory response and epithelial cell differentiation. Overlap of the PPI and WGCNA networks identified five shared genes, namely, THY1, BMP2, LOX, KDR and MMP9, as candidate hub genes in NERD. Quantitative PCR analysis of the expression of these five genes confirmed the sequencing results. Receiver operating characteristic analyses indicated that these hub genes had diagnostic potential for NERD patients. Gene set enrichment analysis confirmed that each hub gene was closely associated with the pathophysiological processes of NERD. In addition, a regulatory network comprising 42 transcription factors (TFs), 28 miRNAs and 5 hub genes was established. Conclusion The five core genes may be promising biomarkers of NERD. The TF/miRNA/hub gene network can improve the understanding of the molecular mechanisms underlying disease progression.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Teng Ma
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
24
|
Rubbino F, Greco L, di Cristofaro A, Gaiani F, Vetrano S, Laghi L, Bonovas S, Piovani D. Journey through Crohn's Disease Complication: From Fistula Formation to Future Therapies. J Clin Med 2021; 10:jcm10235548. [PMID: 34884247 PMCID: PMC8658128 DOI: 10.3390/jcm10235548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Crohn’s Disease (CD) is a chronic inflammatory disorder in which up to 50% of patients develop fistula within 20 years after the initial diagnosis, and half of these patients suffer perianal fistulizing disease. The etiopathogenesis of CD-related perianal fistula is still unclear, and its phenotypical and molecular characteristics are even more indefinite. A better understanding would be crucial to develop targeted and more effective therapeutic strategies. At present, the most accredited theory for the formation of CD-related fistula identifies the epithelial-to-mesenchymal transition (EMT) as the driving force. It has been well recognized that CD carries an increased risk of malignancy, particularly mucinous adenocarcinoma is often associated with long-standing fistula in CD patients. Despite the availability of multiple treatment options, perianal fistulizing CD represents a therapeutic challenge and is associated with an important impact on patients’ quality of life. To date, the most effective management is multidisciplinary with the cooperation of gastroenterologists, surgeons, radiologists, and nutritionists and the best recommended treatment is a combination of medical and surgical approaches.
Collapse
Affiliation(s)
- Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (A.d.C.); (L.L.)
- Correspondence: (F.R.); (S.B.)
| | - Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (A.d.C.); (L.L.)
| | - Alessio di Cristofaro
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (A.d.C.); (L.L.)
| | - Federica Gaiani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (S.V.); (D.P.)
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (A.d.C.); (L.L.)
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (S.V.); (D.P.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Correspondence: (F.R.); (S.B.)
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (S.V.); (D.P.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
25
|
Ke J, Ye J, Li M, Zhu Z. The Role of Matrix Metalloproteinases in Endometriosis: A Potential Target. Biomolecules 2021; 11:1739. [PMID: 34827737 PMCID: PMC8615881 DOI: 10.3390/biom11111739] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is a condition that is influenced by hormones and involves stroma and glands being found outside the uterus; there are increases in proliferation, invasion, internal bleeding, and fibrosis. Matrix metalloproteinases (MMPs) have been suggested to be crucial in the progression of invasion. The MMP family includes calcium-dependent zinc-containing endopeptidases, some of which not only affect the process of cell invasion but also participate in other physiological and pathological processes, such as angiogenesis and fibrosis. MMPs act as downstream-targeted molecules and their expression can be regulated by numerous factors such as estrogen, oxidative stress, cytokines, and environmental contaminants. Given their unique roles in endometriosis, MMPs may become effective biomarkers of endometriosis in the future. In the present review, we summarize the current literature on MMPs regarding their classification, function, and potential value for endometriosis, which may contribute to our knowledge of MMPs and MMP-targeted interventions.
Collapse
Affiliation(s)
- Junya Ke
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jiangfeng Ye
- Division of Obstetrics and Gynecology, KK Women’s and Children’s Hospital, Singapore 229899, Singapore;
| | - Mingqing Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Zhiling Zhu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
26
|
Extracellular Matrix Components as Diagnostic Tools in Inflammatory Bowel Disease. BIOLOGY 2021; 10:biology10101024. [PMID: 34681123 PMCID: PMC8533508 DOI: 10.3390/biology10101024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary For decades, the extracellular matrix (ECM) has been defined as a structure component playing a rather neglected role in the human body. In recent years, research has shed light on the role of ECM within cellular processes, including proliferation, migration and differentiation, as well as in inflammation. In inflammation, ECM composition is constantly being remodeled and undergoes dynamic and rapid changes. Tracking these changes could serve as a novel diagnostic tool. Inflammatory bowel disease is accompanied by complications such as fibrosis, stenosis and fistulas. All of these structural complications involve excessive synthesis or degradation of ECM. With this review, we explored whether the analysis of ECM composition can be of support in diagnosing inflammatory bowel disease and whether changes within ECM can help to predict a complicated disease course early on. Abstract Work from the last years indicates that the extracellular matrix (ECM) plays a direct role in various cellular processes, including proliferation, migration and differentiation. Besides homeostatic processes, its regulatory function in inflammation becomes more and more evident. In inflammation, such as inflammatory bowel disease, the ECM composition is constantly remodeled, and this can result in a structuring of fistulizing disease course. Thus, tracking early ECM changes might bear the potential to predict the disease course. In this review, we provide an overview of relevant diagnostic methods, focusing on ECM changes.
Collapse
|
27
|
Karsdal MA, Genovese F, Rasmussen DGK, Bay-Jensen AC, Mortensen JH, Holm Nielsen S, Willumsen N, Jensen C, Manon-Jensen T, Jennings L, Reese-Petersen AL, Henriksen K, Sand JM, Bager C, Leeming DJ. Considerations for understanding protein measurements: Identification of formation, degradation and more pathological relevant epitopes. Clin Biochem 2021; 97:11-24. [PMID: 34453894 DOI: 10.1016/j.clinbiochem.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES There is a need for precision medicine and an unspoken promise of an optimal approach for identification of the right patients for value-based medicine based on big data. However, there may be a misconception that measurement of proteins is more valuable than measurement of fewer selected biomarkers. In population-based research, variation may be somewhat eliminated by quantity. However, this fascination of numbers may limit the attention to and understanding of the single. This review highlights that protein measurements (with collagens as examples) may mean different things depending on the targeted epitope - formation or degradation of tissues, and even signaling potential of proteins. DESIGN AND METHODS PubMed was searched for collagen, neo-epitope, biomarkers. RESULTS Ample examples of assays with specific epitopes, either pathological such as HbA1c, or domain specific such as pro-peptides, which total protein arrays would not have identified were evident. CONCLUSIONS We suggest that big data may be considered as the funnel of data points, in which most important parameters will be selected. If the technical precision is low or the biological accuracy is limited, and we include suboptimal quality of biomarkers, disguised as big data, we may not be able to fulfill the promise of helping patients searching for the optimal treatment. Alternatively, if the technical precision of the total protein quantification is high, but we miss the functional domains with the most considerable biological meaning, we miss the most important and valuable information of a given protein. This review highlights that measurements of the same protein in different ways may provide completely different meanings. We need to understand the pathological importance of each epitope quantified to maximize protein measurements.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark.
| | - F Genovese
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - D G K Rasmussen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - A C Bay-Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - J H Mortensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - S Holm Nielsen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - N Willumsen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - C Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | | | | | - K Henriksen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - J M Sand
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - C Bager
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - D J Leeming
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| |
Collapse
|
28
|
Jeong HJ, Kim EJ, Kim JK, Kim YG, Lee CS, Ko BJ, Kim BG. Expression of soluble recombinant human matrix metalloproteinase 9 and generation of its monoclonal antibody. Protein Expr Purif 2021; 187:105931. [PMID: 34197919 DOI: 10.1016/j.pep.2021.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
We have successfully produced a recombinant human matrix metalloproteinase 9 (hMMP9) antigen with high yield and purity and used it to generate a hybridoma cell-culture-based monoclonal anti-hMMP9 antibody. We selected the most effective antibody for binding antigens and successfully identified its nucleotide sequence. The entire antigen and antibody developmental procedures described herein can be a practical approach for producing large amounts of monoclonal antibodies against hMMP9 and other antigens of interest. Additionally, the nucleotide sequence information of the anti-hMMP9 monoclonal antibody revealed herein will be useful for the generation of recombinant antibodies or antibody fragments against hMMP9.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea.
| | - Eun-Jung Kim
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
| | - Joo-Kyung Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, South Korea
| | - Byung-Gee Kim
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
29
|
The Citrullinated and MMP-degraded Vimentin Biomarker (VICM) Predicts Early Response to Anti-TNFα Treatment in Crohn's Disease. J Clin Gastroenterol 2021; 55:59-66. [PMID: 32301833 DOI: 10.1097/mcg.0000000000001341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND In Crohn's disease (CD), 10% to 40% of patients do not respond to anti-tumor necrosis factor-α (TNFα) treatment. Currently, there are no biomarkers with adequate sensitivity to separate responders from nonresponders at an early stage. AIM The aim of this study was to investigated whether early changes in the VICM (citrullinated and matrix metalloproteinase-degraded vimentin) biomarker were associated with response to anti-TNFα treatment in patients with CD. METHODS Serum VICM levels were measured by ELISA in 2 independent cohorts of CD patients (n=42) treated with anti-TNFα (infliximab or adalimumab). Response was determined by achieving clinical remission (Harvey Bradshaw Index<5). RESULTS Compared with baseline, VICM serum levels were reduced by anti-TNFα in the infliximab cohort (week 6 and 14) and in the adalimumab cohort (week 8). VICM was lower in the responders compared with the nonresponders [infliximab: week 6, P<0.05; area under the curve (AUC)=0.90; adalimumab: week 1, P<0.01 (AUC=0.91), and week 8, P<0.05 (AUC=0.86)], and were able to predict response to treatment after 1 week of treatment with an odds ratio of 42.5. CONCLUSIONS The VICM biomarker was time dependently reduced in CD patients responding to anti-TNFα treatment. We suggest that VICM may be used as a marker for monitoring early response to anti-TNFα in patients with CD.
Collapse
|
30
|
Yano H, Nishimiya D, Kawaguchi Y, Tamura M, Hashimoto R. Discovery of potent and specific inhibitors targeting the active site of MMP-9 from the engineered SPINK2 library. PLoS One 2020; 15:e0244656. [PMID: 33373399 PMCID: PMC7771667 DOI: 10.1371/journal.pone.0244656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) contribute to many physiological and pathological phenomena via the proteolysis of extracellular matrix components. Specific blocking of the active site of each MMP sheds light on its particular role. However, it remains difficult to acquire an active-site inhibitor with high specificity for only the target MMP due to the highly conserved structure around the active site of MMPs. Recently, we reported that potent and specific inhibitors of serine proteases were obtained from our proprietary engineered serine protease inhibitor Kazal type 2 (SPINK2) library. In this research, using this library, we succeeded in obtaining potent and specific MMP-9 inhibitors. The obtained inhibitors bound to the active site of MMP-9 and inhibited MMP-9 with low nanomolar Ki values. The inhibitors did not cross-react with other MMPs that we tested. Further analysis using MMP-9 mutants demonstrated that the inhibitors recognize not only the residues around the conserved active site of MMP-9 but also different and unique residues in exosites that are distant from each other. This unique recognition manner, which can be achieved by the large interface provided by engineered SPINK2, may contribute to the generation of specific active-site inhibitors of MMPs.
Collapse
Affiliation(s)
- Hidenori Yano
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Daisuke Nishimiya
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yoshirou Kawaguchi
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masakazu Tamura
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Ryuji Hashimoto
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
31
|
Frolova AS, Petushkova AI, Makarov VA, Soond SM, Zamyatnin AA. Unravelling the Network of Nuclear Matrix Metalloproteinases for Targeted Drug Design. BIOLOGY 2020; 9:E480. [PMID: 33352765 PMCID: PMC7765953 DOI: 10.3390/biology9120480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are responsible for the degradation of a wide range of extracellular matrix proteins, which are involved in many cellular processes to ensure the normal development of tissues and organs. Overexpression of MMPs has been observed to facilitate cellular growth, migration, and metastasis of tumor cells during cancer progression. A growing number of these proteins are being found to exist in the nuclei of both healthy and tumor cells, thus highlighting their localization as having a genuine purpose in cellular homeostasis. The mechanism underlying nuclear transport and the effects of MMP nuclear translocation have not yet been fully elucidated. To date, nuclear MMPs appear to have a unique impact on cellular apoptosis and gene regulation, which can have effects on immune response and tumor progression, and thus present themselves as potential therapeutic targets in certain types of cancer or disease. Herein, we highlight and evaluate what progress has been made in this area of research, which clearly has some value as a specific and unique way of targeting the activity of nuclear matrix metalloproteinases within various cell types.
Collapse
Affiliation(s)
- Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| |
Collapse
|
32
|
Fischer T, Riedl R. Challenges with matrix metalloproteinase inhibition and future drug discovery avenues. Expert Opin Drug Discov 2020; 16:75-88. [PMID: 32921161 DOI: 10.1080/17460441.2020.1819235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Matrix metalloproteinases have been in the scope of pharmaceutical drug discovery for decades as promising targets for drug development. Until present, no modulator of the enzyme class survived clinical trials, all failing for various reasons. Nevertheless, the target family did not lose its attractiveness and there is ever more evidence that MMP modulators are likely to overcome the hurdles and result in successful clinical therapies. AREAS COVERED This review provides an overview of past efforts that were taken in the development of MMP inhibitors and insight into promising strategies that might enable drug discovery in the field in the future. Small molecule inhibitors as well as biomolecules are reviewed. EXPERT OPINION Despite the lack of successful clinical trials in the past, there is ongoing research in the field of MMP modulation, proving the target class has not lost its appeal to pharmaceutical research. With ever-growing insights from different scientific fields that shed light on previously unknown correlations, it is now time to use synergies deriving from biological knowledge, chemical structure generation, and clinical application to reach the ultimate goal of bringing MMP derived drugs on a broad front for the benefit of patients into therapeutic use.
Collapse
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| |
Collapse
|
33
|
van Haaften WT, Blokzijl T, Hofker HS, Olinga P, Dijkstra G, Bank RA, Boersema M. Intestinal stenosis in Crohn's disease shows a generalized upregulation of genes involved in collagen metabolism and recognition that could serve as novel anti-fibrotic drug targets. Therap Adv Gastroenterol 2020; 13:1756284820952578. [PMID: 32922514 PMCID: PMC7457685 DOI: 10.1177/1756284820952578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/31/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) can be complicated by intestinal fibrosis. Pharmacological therapies against intestinal fibrosis are not available. The aim of this study was to determine whether pathways involved in collagen metabolism are upregulated in intestinal fibrosis, and to discuss which drugs might be suitable to inhibit excessive extracellular matrix formation targeting these pathways. METHODS Human fibrotic and non-fibrotic terminal ileum was obtained from patients with CD undergoing ileocecal resection due to stenosis. Genes involved in collagen metabolism were analyzed using a microfluidic low-density TaqMan array. A literature search was performed to find potential anti-fibrotic drugs that target proteins/enzymes involved in collagen synthesis, its degradation and its recognition. RESULTS mRNA expression of collagen type I (COL1A1, 0.76 ± 0.28 versus 37.82 ± 49.85, p = 0.02) and III (COL3A1, 2.01 ± 2.61 versus 68.65 ± 84.07, p = 0.02) was increased in fibrotic CD compared with non-fibrotic CD. mRNA expression of proteins involved in both intra- and extracellular post-translational modification of collagens (prolyl- and lysyl hydroxylases, lysyl oxidases, chaperones), collagen-degrading enzymes (MMPs and cathepsin-K), and collagen receptors were upregulated in the fibrosis-affected part. A literature search on the upregulated genes revealed several potential anti-fibrotic drugs. CONCLUSION Expression of genes involved in collagen metabolism in intestinal fibrosis affected terminal ileum of patients with CD reveals a plethora of drug targets. Inhibition of post-translational modification and altering collagen metabolism might attenuate fibrosis formation in the intestine in CD. Which compound has the highest potential depends on a combination anti-fibrotic efficacy and safety, especially since some of the enzymes play key roles in the physiology of collagen.
Collapse
Affiliation(s)
- Wouter Tobias van Haaften
- Department of Gastroenterology and Hepatology,
University Medical Center Groningen, University of Groningen, Groningen, the
Netherlands
- Department of Pharmaceutical Technology and
Biopharmacy, University of Groningen, Groningen, the Netherlands
| | - Tjasso Blokzijl
- Department of Laboratory Medicine, University of
Groningen, University Medical Center Groningen, Groningen, The
Netherlands
| | - Hendrik Sijbrand Hofker
- Department of Surgery, University Medical Center
Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and
Biopharmacy, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713
AV, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology,
University Medical Center Groningen, University of Groningen, Groningen, the
Netherlands
| | - Ruud A. Bank
- Department of Pathology and Medical Biology,
University Medical Center Groningen, University of Groningen, Groningen, the
Netherlands
| | - Miriam Boersema
- Department of Pharmaceutical Technology and
Biopharmacy, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
34
|
Daniluk U, Daniluk J, Guzinska-Ustymowicz K, Pryczynicz A, Lebensztejn D. Usefulness of metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in clinical characterisation of children with newly diagnosed Crohn's disease. J Paediatr Child Health 2020; 56:1233-1241. [PMID: 32364307 DOI: 10.1111/jpc.14908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
AIM The aim of this study was to determine the relation of non-invasive markers representing gut mucosal damage (metalloproteinase-9 (MMP-9)) and remodelling (tissue inhibitor of metalloproteinase-1 (TIMP-1)) with Crohn's disease (CD) phenotype, disease activity scores (clinical and endoscopic) and radiological evaluation of the ileum in newly diagnosed children. METHODS Serum and faecal MMP-9 and TIMP-1 concentrations were determined with the sandwich enzyme-linked immunoassay technique. The performance of each marker with reference to the Paris classification, disease activity scores and magnetic resonance enterography results was assessed using non-parametric tests. RESULTS A total of 32 children with CD demonstrated higher levels of serum and faecal MMP-9 and TIMP-1 compared with a control group including children without gastrointestinal inflammatory disease (all P < 0.05). Only the serum MMP-9 concentration was significantly higher in children with L3 (ileocolonic) compared with children with L1 (distal ileum). The serum TIMP-1 level was significantly higher in patients with an magnetic resonance enterography-detected ileum involvement longer than 51 mm and in children with severe disease activity compared with other patients. The serum MMP-9 level was lower in patients with stenosis combined with prestenotic dilation compared with children without stenosis. CONCLUSION Increased serum and faecal MMP-9 and TIMP-1 concentrations are some reliable markers of inflammation in newly diagnosed children with CD, but without facilitating clear phenotyping of the disease.
Collapse
Affiliation(s)
- Urszula Daniluk
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Jaroslaw Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Pryczynicz
- Department of Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Lebensztejn
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
35
|
Extracellular Matrix Fragments of the Basement Membrane and the Interstitial Matrix Are Serological Markers of Intestinal Tissue Remodeling and Disease Activity in Dextran Sulfate Sodium Colitis. Dig Dis Sci 2019; 64:3134-3142. [PMID: 31123972 DOI: 10.1007/s10620-019-05676-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/15/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chronic intestinal inflammation results in tissue damage partly caused by an increase in matrix metalloproteinases (MMP) activity causing degradation of extracellular matrix (ECM) proteins. We studied intestinal tissue remodeling by quantifying ECM protein fragments in serum in dextran sulfate sodium (DSS)-induced colitis, to investigate ECM protein fragments as serological biomarkers of intestinal tissue remodeling and disease activity. METHODS Male Sprague-Dawley rats received 5% DSS in drinking water for 5 days followed by 11 days with regular water. Disease activity index (DAI) was scored daily. Serum was collected on day 0, 6, 7, and 16. ELISAs were used to quantify MMP-derived remodeling fragments of basement membrane type IV collagen (C4M and PRO-C4) and interstitial matrix type III collagen (C3M and rPRO-C3). RESULTS In DSS rats, serum levels relative to baseline of C4M, PRO-C4, and C3M were elevated (P < 0.01; P < 0.001; P < 0.001) at day 7, which declined at day 16. Levels of rPRO-C3 were lower in DSS rats at day 7 and increased to normal levels at day 16. The ratio between C3M and rPRO-C3 showed an overall degradation (P < 0.0001) of collagen type III in DSS rats at day 7, which correlated to the DAI (r2 = 0.5588, P < 0.0001). CONCLUSION Our data suggest that remodeling of the basement membrane (C4M and PRO-C4) and the interstitial matrix (C3M and rPRO-C3) increased during DSS-induced colitis and declined with reversal of the disease. Thus, serological biochemical biomarkers of the ECM reflect tissue remodeling and could be studied as markers of disease activity in IBD.
Collapse
|
36
|
Mortensen JH, Lindholm M, Langholm LL, Kjeldsen J, Bay-Jensen AC, Karsdal MA, Manon-Jensen T. The intestinal tissue homeostasis - the role of extracellular matrix remodeling in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2019; 13:977-993. [PMID: 31587588 DOI: 10.1080/17474124.2019.1673729] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Extracellular matrix (ECM) remodeling of the intestinal tissue is important in inflammatory bowel disease (IBD) due to the extensive mucosal remodeling. There are still gaps in our knowledge as to how ECM remodeling is related to intestinal epithelium homeostasis and healing of the intestinal mucosa.Areas covered: The aim of this review is to highlight the importance of the ECM in relation to the pathogenesis of IBD, while addressing basement membrane and interstitial matrix remodeling, and the processes of wound healing of the intestinal tissue in IBD.Expert opinion: In IBD, basement membrane remodeling may reflect the integrity of the intestinal epithelial-cell homeostasis. The interstitial matrix remodeling is associated with deep inflammation such as the transmural inflammation as seen in fistulas and intestinal fibrosis leading to fibrostenotic strictures, in patients with CD. The interplay between wound healing processes and ECM remodeling also affects the tissue homeostasis in IBD. The interstitial matrix, produced by fibroblasts, holds a very different biology as compared to the epithelial basement membrane in IBD. In combination with integration of wound healing, quantifying the interplay between damage and repair to these sub compartments may provide essential information in IBD patient profiling, mucosal healing and disease management.
Collapse
Affiliation(s)
- J H Mortensen
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - M Lindholm
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark.,Department of Medical Gastroenterology, Odense University hospital, Odense, Denmark
| | - L L Langholm
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - J Kjeldsen
- Department of Medical Gastroenterology, Odense University hospital, Odense, Denmark
| | - A C Bay-Jensen
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - M A Karsdal
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| |
Collapse
|
37
|
Ehrhardt K, Steck N, Kappelhoff R, Stein S, Rieder F, Gordon IO, Boyle EC, Braubach P, Overall CM, Finlay BB, Grassl GA. Persistent Salmonella enterica Serovar Typhimurium Infection Induces Protease Expression During Intestinal Fibrosis. Inflamm Bowel Dis 2019; 25:1629-1643. [PMID: 31066456 PMCID: PMC6749888 DOI: 10.1093/ibd/izz070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intestinal fibrosis is a common and serious complication of Crohn's disease characterized by the accumulation of fibroblasts, deposition of extracellular matrix, and formation of scar tissue. Although many factors including cytokines and proteases contribute to the development of intestinal fibrosis, the initiating mechanisms and the complex interplay between these factors remain unclear. METHODS Chronic infection of mice with Salmonella enterica serovar Typhimurium was used to induce intestinal fibrosis. A murine protease-specific CLIP-CHIP microarray analysis was employed to assess regulation of proteases and protease inhibitors. To confirm up- or downregulation during fibrosis, we performed quantitative real-time polymerase chain reaction (PCR) and immunohistochemical stainings in mouse tissue and tissue from patients with inflammatory bowel disease. In vitro infections were used to demonstrate a direct effect of bacterial infection in the regulation of proteases. RESULTS Mice develop severe and persistent intestinal fibrosis upon chronic infection with Salmonella enterica serovar Typhimurium, mimicking the pathology of human disease. Microarray analyses revealed 56 up- and 40 downregulated proteases and protease inhibitors in fibrotic cecal tissue. Various matrix metalloproteases, serine proteases, cysteine proteases, and protease inhibitors were regulated in the fibrotic tissue, 22 of which were confirmed by quantitative real-time PCR. Proteases demonstrated site-specific staining patterns in intestinal fibrotic tissue from mice and in tissue from human inflammatory bowel disease patients. Finally, we show in vitro that Salmonella infection directly induces protease expression in macrophages and epithelial cells but not in fibroblasts. CONCLUSIONS In summary, we show that chronic Salmonella infection regulates proteases and protease inhibitors during tissue fibrosis in vivo and in vitro, and therefore this model is well suited to investigating the role of proteases in intestinal fibrosis.
Collapse
Affiliation(s)
- Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany
| | - Natalie Steck
- Institute for Experimental Medicine, Christian-Albrechts University of Kiel, Kiel, Germany, and Research Center Borstel, Borstel, Germany
| | - Reinhild Kappelhoff
- Department of Oral Biological and Medical Sciences, Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Stein
- Institute for Experimental Medicine, Christian-Albrechts University of Kiel, Kiel, Germany, and Research Center Borstel, Borstel, Germany,Present affiliation: Center for Internal Medicine, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute
| | - Ilyssa O Gordon
- Department of Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany,Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany,Address correspondence to: Guntram A. Grassl, PhD, Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ()
| |
Collapse
|
38
|
Fischer T, Riedl R. Inhibitory Antibodies Designed for Matrix Metalloproteinase Modulation. Molecules 2019; 24:molecules24122265. [PMID: 31216704 PMCID: PMC6631688 DOI: 10.3390/molecules24122265] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023] Open
Abstract
The family of matrix metalloproteinases (MMPs) consists of a set of biological targets that are involved in a multitude of severe pathogenic events such as different forms of cancers or arthritis. Modulation of the target class with small molecule drugs has not led to the anticipated success until present, as all clinical trials failed due to unacceptable side effects or a lack of therapeutic outcome. Monoclonal antibodies offer a tremendous therapeutic potential given their high target selectivity and good pharmacokinetic profiles. For the treatment of a variety of diseases there are already antibody therapies available and the number is increasing. Recently, several antibodies were developed for the selective inhibition of single MMPs that showed high potency and were therefore investigated in in vivo studies with promising results. In this review, we highlight the progress that has been achieved toward the design of inhibitory antibodies that successfully modulate MMP-9 and MMP-14.
Collapse
Affiliation(s)
- Thomas Fischer
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
39
|
Treatments for Crohn's Disease-Associated Bowel Damage: A Systematic Review. Clin Gastroenterol Hepatol 2019; 17:847-856. [PMID: 30012430 DOI: 10.1016/j.cgh.2018.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Despite significant advances in the treatment of Crohn's disease (CD), most patients still develop stricturing or penetrating complications that require surgical resections. We performed a systematic review of mechanisms and potential treatments for tissue damage lesions in CD patients. METHODS We searched the PubMed, MBASE, and Cochrane databases from January 1960 to July 2017 for full-length articles on CD, fibrosis, damage lesions, mesenchymal stem cells, and/or treatment. We also searched published conference abstracts and performed manual searches of all reference lists of relevant articles. RESULTS Mechanisms of intestinal damage in patients with CD include fibroblast proliferation and migration, activation of stellate cells, recruitment of intestinal or extra-intestinal fibroblast, and cell trans-differentiation. An altered balance of metalloproteinases and tissue inhibitors of metalloproteinases might contribute to fistula formation. Treatment approaches that reduce excessive transforming growth factor beta (TGFB) activation might be effective in treating established intestinal damage. Stem cell therapies have been effective in tissue damage lesions in CD. Particularly, randomized controlled trials have shown local injections of mesenchymal stem cells to heal perianal fistulas. CONCLUSION In a systematic review of mechanisms and treatments of bowel wall damage in patients with CD, we found a need to test drugs that reduce TGFB and increase healing of transmural damage lesions and to pursue research on local injection of mesenchymal stem cells.
Collapse
|
40
|
Malemud CJ. Inhibition of MMPs and ADAM/ADAMTS. Biochem Pharmacol 2019; 165:33-40. [PMID: 30826330 DOI: 10.1016/j.bcp.2019.02.033] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs), A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) are zinc-dependent endopeptidases that play a critical role in the destruction of extracellular matrix proteins and, the shedding of membrane-bound receptor molecules in various forms of arthritis and other diseases. Under normal conditions, MMP, ADAM and ADAMTS gene expression aids in the maintenance of homeostasis. However, in inflamed synovial joints characteristic of rheumatoid arthritis and osteoarthritis. MMP, ADAM and ADAMTS production is greatly increased under the influence of pro-inflammatory cytokines. Analyses based on medicinal chemistry strategies designed to directly inhibit the activity of MMPs have been largely unsuccessful when these MMP inhibitors were employed in animal models of rheumatoid arthritis and osteoarthritis. This is despite the fact that these MMP inhibitors were largely able to suppress pro-inflammatory cytokine-induced MMP production in vitro. A focus on ADAM and ADAMTS inhibitors has also been pursued. Thus, recent progress has identified the "sheddase" activity of ADAMs as a viable target and the development of GW280264X is an experimental ADAM17 inhibitor. Of note, a monoclonal antibody, GLPG1972, developed as an ADAMTS-5 inhibitor, entered a Phase I OA clinical trial. However, the failure of many of these previously developed inhibitors to move beyond the preclinical testing phase has required that novel strategies be developed that are designed to suppress both MMP, ADAM and ADAMTS production and activity.
Collapse
Affiliation(s)
- Charles J Malemud
- Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Medicine, Division of Rheumatic Diseases, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, United States.
| |
Collapse
|
41
|
Succinate receptor mediates intestinal inflammation and fibrosis. Mucosal Immunol 2019; 12:178-187. [PMID: 30279517 DOI: 10.1038/s41385-018-0087-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/02/2018] [Accepted: 09/01/2018] [Indexed: 02/06/2023]
Abstract
Succinate, an intermediate of the tricarboxylic acid cycle, is accumulated in inflamed areas and its signaling through succinate receptor (SUCNR1) regulates immune function. We analyze SUCNR1 expression in the intestine of Crohn's disease patients and its role in murine intestinal inflammation and fibrosis. We show that both serum and intestinal succinate levels and SUCNR1 expression in intestinal surgical resections were higher in CD patients than in controls. SUCNR1 co-localized with CD86, CD206, and α-SMA+ cells in human intestine and we found a positive and significant correlation between SUCNR1 and α-SMA expression. In human isolated fibroblasts from CD patients SUCNR1 expression was higher than in those from controls and treatment with succinate increased SUCNR1 expression, fibrotic markers and inflammatory cytokines through SUCNR1. This receptor modulated the expression of pro-inflammatory cytokines in resting murine macrophages, macrophage polarization and fibroblast activation and Sucnr1-/- mice were protected against both acute TNBS-colitis and intestinal fibrosis induced by the heterotopic transplant of colonic tissue. We demonstrate increased succinate levels in serum and SUCNR1 expression in intestinal tissue of CD patients and show a role for SUCNR1 in murine intestinal inflammation and fibrosis.
Collapse
|
42
|
Hünerwadel A, Fagagnini S, Rogler G, Lutz C, Jaeger SU, Mamie C, Weder B, Ruiz PA, Hausmann M. Severity of local inflammation does not impact development of fibrosis in mouse models of intestinal fibrosis. Sci Rep 2018; 8:15182. [PMID: 30315190 PMCID: PMC6185984 DOI: 10.1038/s41598-018-33452-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Intestinal fibrosis is thought to be a consequence of excessive tissue repair, and constitutes a common problem in patients with Crohn’s disease (CD). While fibrosis seems to require inflammation as a prerequisite it is unclear whether the severity or persistence of inflammation influences the degree of fibrosis. Our aim was to investigate the role of sustained inflammation in fibrogenesis. For the initiation of fibrosis in vivo the models of Il10−/− spontaneous colitis, dextran sodium sulfate (DSS)-induced chronic colitis and heterotopic transplantation were used. In Il10−/− mice, we determined a positive correlation between expression of pro-inflammatory factors (Il1β, Tnf, Ifnγ, Mcp1 and Il6). We also found a positive correlation between the expression of pro-fibrotic factors (Col3a1 Col1a1, Tgfβ and αSma). In contrast, no significant correlation was determined between the expression of pro-inflammatory Tnf and pro-fibrotic αSma, Col1a1, Col3a1, collagen layer thickness and the hydroxyproline (HYP) content. Results from the DSS-induced chronic colitis model confirmed this finding. In the transplantation model for intestinal fibrosis a pronounced increase in Mcp1, inos and Il6 in Il10−/− as compared to WT grafts was observed, indicating more severe inflammation in Il10−/− grafts. However, the increase of collagen over time was virtually identical in both Il10−/− and WT grafts. Severity of inflammation during onset of fibrogenesis did not correlate with collagen deposition. Although inflammation might be a pre-requisite for the initiation of fibrosis our data suggest that it has a minor impact on the progression of fibrosis. Our results suggest that development of fibrosis and inflammation may be disconnected. This may be important for explaining the inefficacy of anti-inflammatory treatments agents in most cases of fibrotic inflammatory bowel diseases (IBD).
Collapse
Affiliation(s)
- A Hünerwadel
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - S Fagagnini
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - G Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - C Lutz
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - S U Jaeger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - C Mamie
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - B Weder
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - P A Ruiz
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - M Hausmann
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Wang J, Duan L, Gao Y, Zhou S, Liu Y, Wei S, An S, Liu J, Tian L, Wang S. Angiotensin II receptor blocker valsartan ameliorates cardiac fibrosis partly by inhibiting miR-21 expression in diabetic nephropathy mice. Mol Cell Endocrinol 2018; 472:149-158. [PMID: 29233785 DOI: 10.1016/j.mce.2017.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Abstract
Cardiac fibrosis with diabetic nephropathy (DN) is one of major diabetic complications. miR-21 and MMP-9 were closely associated with fibrosis diseases. Angiotensin II receptor blockers (ARB) have cardioprotective effects. However, it remains unclear whether miR-21 was involved in the mechanism of cardiac fibrosis with DN by target MMP-9 and ARB ameliorates cardiac fibrosis partly by inhibiting miR-21 expression. In this study, In Situ Hybridization(ISH), RT-PCR, cell transfection, western blotting and laser confocal telescope were used, respectively. ISH showed that miR-21, concentrated in cytoplasmic foci in the proximity of the nucleus, was mainly localized in cardiac fibroblasts and at relatively low levels in cardiomyocytes within cardiac tissue with DN. RT-PCR showed that miR-21 expression was significantly enhanced in cardiac tissue with DN, accompanied by the increase of col-IV, FN, CVF, PVCA, LVMI, HWI and NT-pro-BNP (p < 0.05). Bioinformatics analysis and Luciferase reporter gene assays showed that MMP-9 was a validated target of miR-21. Furthermore, cell transfection experiments showed that miR-21 overexpression directly decreased MMP-9 expression. Interestingly, miR-21 levels in cardiac tissue was positively correlated with ACR (r = -0.870, P = 0.003), whereas, uncorrelated with SBP, HbA1C and T-Cho (p > 0.05). More importantly, ARB can significantly decrease miR-21 expression in cardiac tissue, cardiac fibroblasts and serum. Overall, our results suggested that miR-21 may contribute to the pathogenesis of cardiac fibrosis with DN by target MMP-9, and that miR-21 may be a new possible therapeutic target for ARB in cardiac fibrosis with DN.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Endocrinology, Gansu Provincial People's Hospital, Gansu Key Laboratory of Endocrine and Metabolism, 204 Donggang West Road, Lanzhou, 730000, PR China.
| | - Lijun Duan
- Department of Gynecology and Obstetrics, Gansu Provincial People's Hospital, 204 Donggang West Road, Lanzhou 730000, PR China.
| | - Yanbin Gao
- Metabolic Disease Center, School of Traditional Chinese Medical, Capital Medical University, Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, PR China
| | - Shuhong Zhou
- Department of Rheumatology and Immunology, Gansu Provincial People's Hospital, 204 Donggang West Road, Lanzhou, 730000, PR China
| | - Yongming Liu
- Department of Geriatric Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, PR China
| | - Suhong Wei
- Department of Endocrinology, Gansu Provincial People's Hospital, Gansu Key Laboratory of Endocrine and Metabolism, 204 Donggang West Road, Lanzhou, 730000, PR China
| | - Siqin An
- Department of Endocrinology, Gansu Provincial People's Hospital, Gansu Key Laboratory of Endocrine and Metabolism, 204 Donggang West Road, Lanzhou, 730000, PR China
| | - Jing Liu
- Department of Endocrinology, Gansu Provincial People's Hospital, Gansu Key Laboratory of Endocrine and Metabolism, 204 Donggang West Road, Lanzhou, 730000, PR China
| | - Liming Tian
- Department of Endocrinology, Gansu Provincial People's Hospital, Gansu Key Laboratory of Endocrine and Metabolism, 204 Donggang West Road, Lanzhou, 730000, PR China
| | - Shaocheng Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Hospital, Tianjin, 300070, PR China
| |
Collapse
|
44
|
Ricard-Blum S, Baffet G, Théret N. Molecular and tissue alterations of collagens in fibrosis. Matrix Biol 2018; 68-69:122-149. [DOI: 10.1016/j.matbio.2018.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023]
|
45
|
Lian L, Huang Q, Zhang L, Qin H, He X, He X, Ke J, Xie M, Lan P. Anti-fibrogenic Potential of Mesenchymal Stromal Cells in Treating Fibrosis in Crohn's Disease. Dig Dis Sci 2018; 63:1821-1834. [PMID: 29704139 DOI: 10.1007/s10620-018-5082-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intestinal fibrosis is a major complication of CD and may result in stricture formation leading to intestinal obstruction. MSCs play multiple roles in active CD and fibrosis-associated diseases. AIMS This study was designed to investigate the role of MSCs in CD-associated intestinal fibrosis. METHODS Intestinal fibrosis was induced over 7 weeks of enema with increasing doses of TNBS and assessed by Masson's trichrome staining. Transcriptome sequencing and gene set enrichment analysis were conducted to reveal the transcriptome changes among groups at the mRNA level. Immunofluorescence assays were used to validate the role of EMT in intestinal fibrosis. Quantitative real-time PCR and immunohistochemistry analyses were performed to clarify the association between the anti-fibrogenic properties of MSCs and the immune microenvironment. Western blotting was used to verify the potential signaling pathways. RESULTS Fibrotic tissue accumulation and inflammatory cell infiltration were detected in the colon tissue after TNBS induction treatment. Prophylactic MSCs treatment inhibited colon shortening, while therapeutic treatment decreased colon weight. Prophylactic treatment with MSCs inhibited the accumulation of fibrotic tissue, the expression of fibrotic proteins and EMT. Therapeutic MSCs treatment reversed the established intestinal fibrosis and reduced EMT. The secretion of the fibrogenic factors IL-1beta, IL-6 and IL-13 was down-regulated after both MSCs treatment approaches, while IL-10, an anti-fibrogenic factor, was up-regulated. Both MSCs therapies inhibited the expression of TGF-beta and the phosphorylation of Smad2 and Smad3 after TNBS induction. CONCLUSION MSCs exert anti-fibrogenic activity against CD-associated fibrosis by regulating the inflammatory environment, inhibiting the TGF-beta/Smad signaling pathway and ameliorating EMT.
Collapse
Affiliation(s)
- Lei Lian
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Qunsheng Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Longjuan Zhang
- Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huabo Qin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Department of General and Pediatric Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaosheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| | - Jia Ke
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minghao Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Afratis NA, Klepfish M, Karamanos NK, Sagi I. The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 2018; 129:4-15. [PMID: 29627371 DOI: 10.1016/j.addr.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Progressive loss of organ function in most organs is associated with fibrosis, a tissue state associated with abnormal matrix buildup. If highly progressive, the fibrotic process eventually leads to organ failure and death. Fibrosis is a basic connective tissue lesion defined by the increase in the amount of fibrillar extracellular matrix (ECM) components in a tissue or organ. In addition, intrinsic changes in important structural cells can induce the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. ECM enzymes belonging to the family of matrix metalloproteinases (MMPs) and lysyl oxidases (LOXs) play a crucial role in ECM remodeling and regeneration. MMPs have a catalytic role in degradation of ECM, whereas LOX/LOXLs mediate ECM, especially collagen, cross-linking and stiffening. Importantly, enzymes from both families are elevated during the fibrotic response to tissue injury and its resolution. Yet, the apparent molecular competition or antagonistic activities of these enzyme families during the various stages of fibrosis is often overlooked. In this review, we discuss the diverse roles of MMPs and LOX/LOXL2 in chronic organ fibrosis. Finally, we review contemporary therapeutic strategies for fibrosis treatment, based on neutralization of MMP and LOX activity, as well as the development of novel drug delivery approaches.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordehay Klepfish
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
47
|
An G, Zhang X, Wang W, Huang Q, Li Y, Shan S, Corrigan CJ, Wang W, Ying S. The effects of interleukin-33 on airways collagen deposition and matrix metalloproteinase expression in a murine surrogate of asthma. Immunology 2018; 154:637-650. [PMID: 29455466 PMCID: PMC6050212 DOI: 10.1111/imm.12911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
It has been suggested that interleukin-33 (IL-33) plays an important role in the pathogenesis of asthma through a variety of pathways, but its role in airways fibrosis in asthma has not been fully elucidated. In the present study we evaluated changes in the expression of extracellular matrix proteins (ECMs) as well as matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in an IL-33-induced, antigen-independent murine surrogate of asthma as well as a conventional surrogate employing per-nasal challenge of mice previously sensitized to produce an IgE response to ovalbumin (OVA). In addition, in in vitro experiments we explored the direct effects of IL-33 on the proliferation and function of murine fibroblasts. Per-nasal administration of IL-33 alone was sufficient to induce airways deposition of ECMs, including collagens I, III, V and fibronectin, to a degree comparable with that observed in the OVA-sensitized and challenged mice. These changes were associated with a local imbalance between the expression of extracellular MMPs and TIMPs. Per-nasal challenge of mice with IL-33 also induced elevated airways expression of connective tissue growth factor and fibroblast growth factor receptor 4, two key facilitators of local fibrosis, again to a degree compatible with that observed in OVA-sensitized and challenged mice. Deletion of the ST2 gene, which encodes the IL-33 receptor, abrogated these fibrotic changes in the airways in the OVA surrogate. In vitro, IL-33 significantly increased the proliferation and expression of collagen III by murine lung fibroblasts. These data suggest that direct exposure of murine airways to IL-33 is able to induce local fibrotic changes, at least partially through effects of signalling through the IL-33/ST2 axis on fibroblast function and local expression of MMPs and their inhibitors, and other fibrosis-related proteins.
Collapse
Affiliation(s)
- Gao An
- Department of ImmunologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xin Zhang
- Department of ImmunologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Wenjun Wang
- Department of Respiratory and Critical Care MedicineBeijing Institute of Respiratory MedicineBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Qiong Huang
- Department of ImmunologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Yan Li
- Department of ImmunologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Shan Shan
- Department of ImmunologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Chris J. Corrigan
- Faculty of Life Sciences & MedicineSchool of Immunology & Microbial SciencesAsthma UK Centre in Allergic Mechanisms of Asthma King's College LondonLondonUK
| | - Wei Wang
- Department of ImmunologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Sun Ying
- Department of ImmunologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina
| |
Collapse
|
48
|
Lutz C, Weder B, Hünerwadel A, Fagagnini S, Lang B, Beerenwinkel N, Rossel JB, Rogler G, Misselwitz B, Hausmann M. Myeloid differentiation primary response gene (MyD) 88 signalling is not essential for intestinal fibrosis development. Sci Rep 2017; 7:17678. [PMID: 29247242 PMCID: PMC5732165 DOI: 10.1038/s41598-017-17755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/29/2017] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of the immune response to microbiota is associated with inflammatory bowel disease (IBD), which can trigger intestinal fibrosis. MyD88 is a key component of microbiota signalling but its influence on intestinal fibrosis has not been clarified. Small bowel resections from donor-mice were transplanted subcutaneously into the neck of recipients C57BL/6 B6-MyD88tm1 Aki (MyD88-/-) and C57BL/6-Tg(UBC-green fluorescence protein (GFP))30Scha/J (GFP-Tg). Grafts were explanted up to 21 days after transplantation. Collagen layer thickness was determined using Sirius Red stained slides. In the mouse model of fibrosis collagen deposition and transforming growth factor-beta 1 (TGF-β1) expression was equal in MyD88+/+ and MyD88-/-, indicating that MyD88 was not essential for fibrogenesis. Matrix metalloproteinase (Mmp)9 expression was significantly decreased in grafts transplanted into MyD88-/- recipients compared to MyD88+/+ recipients (0.2 ± 0.1 vs. 153.0 ± 23.1, respectively, p < 0.05), similarly recruitment of neutrophils was significantly reduced (16.3 ± 4.5 vs. 25.4 ± 3.1, respectively, p < 0.05). Development of intestinal fibrosis appears to be independent of MyD88 signalling indicating a minor role of bacterial wall compounds in the process which is in contrast to published concepts and theories. Development of fibrosis appears to be uncoupled from acute inflammation.
Collapse
Affiliation(s)
- C Lutz
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - B Weder
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - A Hünerwadel
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - S Fagagnini
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - B Lang
- Department of Biosystems Sciences and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - N Beerenwinkel
- Department of Biosystems Sciences and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - J B Rossel
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - G Rogler
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - B Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - M Hausmann
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland.
| |
Collapse
|
49
|
Matrix metalloproteinases as regulators of inflammatory processes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2036-2042. [DOI: 10.1016/j.bbamcr.2017.05.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
|
50
|
Mortensen JH, Manon-Jensen T, Jensen MD, Hägglund P, Klinge LG, Kjeldsen J, Krag A, Karsdal MA, Bay-Jensen AC. Ulcerative colitis, Crohn's disease, and irritable bowel syndrome have different profiles of extracellular matrix turnover, which also reflects disease activity in Crohn's disease. PLoS One 2017; 12:e0185855. [PMID: 29028807 PMCID: PMC5640222 DOI: 10.1371/journal.pone.0185855] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background Increased protease activity is a key pathological feature of inflammatory bowel disease (IBD). However, the differences in extracellular matrix remodelling (ECM) in Crohn’s disease (CD) and ulcerative colitis (UC) are not well described. An increased understanding of the inflammatory processes may provide optimized disease monitoring and diagnostics. We investigated the tissue remodelling in IBD and IBS patients by using novel blood-based biomarkers reflecting ECM remodelling. Methods Five ECM biomarkers (VICM, BGM, EL-NE, C5M, Pro-C5) were measured by competitive ELISAs in serum from 72 CD patients, 60 UC patients, 22 patients with irritable bowel syndrome (IBS), and 24 healthy donors. One-way analysis of variance, Mann-Whitney U-test, logistic regression models, and receiver operator characteristics (ROC) curve analysis was carried out to evaluate the diagnostic accuracy of the biomarkers. Results The ECM remodelling was significantly different in UC compared to CD. The best biomarker combination to differentiate UC from CD and colonic CD was BGM and VICM (AUC = 0.98, P<0.001; AUC = 0.97, P<0.001), and the best biomarker combination to differentiate IBD from IBS patients were BGM, EL-NE, and Pro-C5 (AUC = 0.8, P<0.001). When correcting for the use of immunosuppressant and elevated CRP levels (CRP>5mg/mL), correlation of Pro-C5 (r = 0.36) with CDAI was slightly improved compared to CRP (r = 0.27) corrected for the use of immunosuppressant. Furthermore, BGM and EL-NE biomarkers were highly associated with colon inflammation in CD patients. Conclusion ECM fragments of tissue remodelling in IBD affect UC and CD differently, and may aid in differentiating IBD from IBS (EL-NE, BGM, Pro-C5), and UC from CD patients (BGM, VICM). Formation of type V collagen is related to the level of inflammation in CD and may reflect disease activity in CD.
Collapse
Affiliation(s)
| | | | - Michael Dam Jensen
- Department of Internal Medicine, Lillebaelt Hospital Vejle, Vejle, Denmark
| | - Per Hägglund
- Department of Biotechnology and Biomedicin, Technical University of Denmark
| | | | - Jens Kjeldsen
- Odense University Hospital, Department of Gastroenterology, Odense, Denmark
| | - Aleksander Krag
- Odense University Hospital, Department of Gastroenterology, Odense, Denmark
| | | | | |
Collapse
|