1
|
Wang C, Gao X, Li Y, Li C, Ma Z, Sun D, Liang X, Zhang X. A molecular subtyping associated with the cGAS-STING pathway provides novel perspectives on the treatment of ulcerative colitis. Sci Rep 2024; 14:12683. [PMID: 38831059 PMCID: PMC11148070 DOI: 10.1038/s41598-024-63695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by an abnormal immune response, and the pathogenesis lacks clear understanding. The cGAS-STING pathway is an innate immune signaling pathway that plays a significant role in various pathophysiological processes. However, the role of the cGAS-STING pathway in UC remains largely unclear. In this study, we obtained transcriptome sequencing data from multiple publicly available databases. cGAS-STING related genes were obtained through literature search, and differentially expressed genes (DEGs) were analyzed using R package limma. Hub genes were identified through protein-protein interaction (PPI) network analysis and module construction. The ConsensuClusterPlus package was utilized to identify molecular subtypes based on hub genes. The therapeutic response, immune microenvironment, and biological pathways of subtypes were further investigated. A total of 18 DEGs were found in UC patients. We further identified IFI16, MB21D1 (CGAS), TMEM173 (STING) and TBK1 as the hub genes. These genes are highly expressed in UC. IFI16 exhibited the highest diagnostic value and predictive value for response to anti-TNF therapy. The expression level of IFI16 was higher in non-responders to anti-TNF therapy. Furthermore, a cluster analysis based on genes related to the cGAS-STING pathway revealed that patients with higher gene expression exhibited elevated immune burden and inflammation levels. This study is a pioneering analysis of cGAS-STING pathway-related genes in UC. These findings provide new insights for the diagnosis of UC and the prediction of therapeutic response.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xin Gao
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yanchen Li
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Chenyang Li
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhimin Ma
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Department of Respirology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Donglei Sun
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xiaonan Liang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xiaolan Zhang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
2
|
Liu D, Yang J, Cristea IM. Liquid-liquid phase separation in innate immunity. Trends Immunol 2024; 45:454-469. [PMID: 38762334 PMCID: PMC11247960 DOI: 10.1016/j.it.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Intrinsic and innate immune responses are essential lines of defense in the body's constant surveillance of pathogens. The discovery of liquid-liquid phase separation (LLPS) as a key regulator of this primal response to infection brings an updated perspective to our understanding of cellular defense mechanisms. Here, we review the emerging multifaceted role of LLPS in diverse aspects of mammalian innate immunity, including DNA and RNA sensing and inflammasome activity. We discuss the intricate regulation of LLPS by post-translational modifications (PTMs), and the subversive tactics used by viruses to antagonize LLPS. This Review, therefore, underscores the significance of LLPS as a regulatory node that offers rapid and plastic control over host immune signaling, representing a promising target for future therapeutic strategies.
Collapse
Affiliation(s)
- Dawei Liu
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Jinhang Yang
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA.
| |
Collapse
|
3
|
Vălean D, Zaharie R, Țaulean R, Usatiuc L, Zaharie F. Recent Trends in Non-Invasive Methods of Diagnosis and Evaluation of Inflammatory Bowel Disease: A Short Review. Int J Mol Sci 2024; 25:2077. [PMID: 38396754 PMCID: PMC10889152 DOI: 10.3390/ijms25042077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammatory bowel diseases are a conglomerate of disorders causing inflammation of the gastrointestinal tract, which have gained a significant increase in prevalence in the 21st century. As they present a challenge in the terms of diagnosis as well as treatment, IBDs can present an overwhelming impact on the individual and can take a toll on healthcare costs. Thus, a quick and precise diagnosis is required in order to prevent the high number of complications that can arise from a late diagnosis as well as a misdiagnosis. Although endoscopy remains the primary method of evaluation for IBD, recent trends have highlighted various non-invasive methods of diagnosis as well as reevaluating previous ones. This review focused on the current non-invasive methods in the diagnosis of IBD, exploring their possible implementation in the near future, with the goal of achieving earlier, feasible, and cheap methods of diagnosis as well as prognosis in IBD.
Collapse
Affiliation(s)
- Dan Vălean
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400162 Cluj-Napoca, Romania; (D.V.); (R.Ț.); (F.Z.)
- Department of General Surgery, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400347 Cluj-Napoca, Romania
| | - Roxana Zaharie
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400162 Cluj-Napoca, Romania; (D.V.); (R.Ț.); (F.Z.)
- Department of Gastroenterology, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400347 Cluj-Napoca, Romania
| | - Roman Țaulean
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400162 Cluj-Napoca, Romania; (D.V.); (R.Ț.); (F.Z.)
- Department of General Surgery, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400347 Cluj-Napoca, Romania
| | - Lia Usatiuc
- Department of Patophysiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400347 Cluj-Napoca, Romania;
| | - Florin Zaharie
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400162 Cluj-Napoca, Romania; (D.V.); (R.Ț.); (F.Z.)
- Department of General Surgery, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400347 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Chiriac MT, Hracsko Z, Günther C, Gonzalez-Acera M, Atreya R, Stolzer I, Wittner L, Dressel A, Schickedanz L, Gamez-Belmonte R, Erkert L, Hundorfean G, Zundler S, Rath T, Vetrano S, Danese S, Sturm G, Trajanoski Z, Kühl AA, Siegmund B, Hartmann A, Wirtz S, Siebler J, Finotto S, Becker C, Neurath MF. IL-20 controls resolution of experimental colitis by regulating epithelial IFN/STAT2 signalling. Gut 2024; 73:282-297. [PMID: 37884352 PMCID: PMC10850655 DOI: 10.1136/gutjnl-2023-329628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/10/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVE We sought to investigate the role of interleukin (IL)-20 in IBD and experimental colitis. DESIGN Experimental colitis was induced in mice deficient in components of the IL-20 and signal transducer and activator of transcription (STAT)2 signalling pathways. In vivo imaging, high-resolution mini-endoscopy and histology were used to assess intestinal inflammation. We further used RNA-sequencing (RNA-Seq), RNAScope and Gene Ontology analysis, western blot analysis and co-immunoprecipitation, confocal microscopy and intestinal epithelial cell (IEC)-derived three-dimensional organoids to investigate the underlying molecular mechanisms. Results were validated using samples from patients with IBD and non-IBD control subjects by a combination of RNA-Seq, organoids and immunostainings. RESULTS In IBD, IL20 levels were induced during remission and were significantly higher in antitumour necrosis factor responders versus non-responders. IL-20RA and IL-20RB were present on IECs from patients with IBD and IL-20-induced STAT3 and suppressed interferon (IFN)-STAT2 signalling in these cells. In IBD, experimental dextran sulfate sodium (DSS)-induced colitis and mucosal healing, IECs were the main producers of IL-20. Compared with wildtype controls, Il20-/-, Il20ra-/- and Il20rb-/- mice were more susceptible to experimental DSS-induced colitis. IL-20 deficiency was associated with increased IFN/STAT2 activity in mice and IFN/STAT2-induced necroptotic cell death in IEC-derived organoids could be markedly blocked by IL-20. Moreover, newly generated Stat2ΔIEC mice, lacking STAT2 in IECs, were less susceptible to experimental colitis compared with wildtype controls and the administration of IL-20 suppressed colitis activity in wildtype animals. CONCLUSION IL-20 controls colitis and mucosal healing by interfering with the IFN/STAT2 death signalling pathway in IECs. These results indicate new directions for suppressing gut inflammation by modulating IL-20-controlled STAT2 signals.
Collapse
Affiliation(s)
- Mircea Teodor Chiriac
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Zsuzsanna Hracsko
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Leonie Wittner
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Anja Dressel
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Laura Schickedanz
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Gheorghe Hundorfean
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Timo Rath
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefania Vetrano
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Pieve Emanuele, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy & Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Universita Vita Salute San Raffaele, Milano, Italy
| | - Gregor Sturm
- Medical University of Innsbruck, Biocenter, Institute of Bioinformatics, Innsbruck, Austria
| | - Zlatko Trajanoski
- Medical University of Innsbruck, Biocenter, Institute of Bioinformatics, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin, Core Unit of Charité, Campus Benjamin Franklin, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Jürgen Siebler
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Susetta Finotto
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Molecular Pneumology, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
5
|
Azumi Y, Koma YI, Tsukamoto S, Kitamura Y, Ishihara N, Yamanaka K, Nakanishi T, Miyako S, Urakami S, Tanigawa K, Kodama T, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. IFI16 Induced by Direct Interaction between Esophageal Squamous Cell Carcinomas and Macrophages Promotes Tumor Progression via Secretion of IL-1α. Cells 2023; 12:2603. [PMID: 37998338 PMCID: PMC10670642 DOI: 10.3390/cells12222603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Tumor-associated macrophages (TAMs), one of the major components of the tumor microenvironment, contribute to the progression of esophageal squamous cell carcinoma (ESCC). We previously established a direct co-culture system of human ESCC cells and macrophages and reported the promotion of malignant phenotypes, such as survival, growth, and migration, in ESCC cells. These findings suggested that direct interactions between cancer cells and macrophages contribute to the malignancy of ESCC, but its underlying mechanisms remain unclear. In this study, we compared the expression levels of the interferon-induced genes between mono- and co-cultured ESCC cells using a cDNA microarray and found that interferon-inducible protein 16 (IFI16) was most significantly upregulated in co-cultured ESCC cells. IFI16 knockdown suppressed malignant phenotypes and also decreased the secretion of interleukin-1α (IL-1α) from ESCC cells. Additionally, recombinant IL-1α enhanced malignant phenotypes of ESCC cells through the Erk and NF-κB signaling. Immunohistochemistry revealed that high IFI16 expression in human ESCC tissues tended to be associated with disease-free survival and was significantly associated with tumor depth, lymph node metastasis, and macrophage infiltration. The results of this study reveal that IFI16 is involved in ESCC progression via IL-1α and imply the potential of IFI16 as a novel prognostic factor for ESCC.
Collapse
Affiliation(s)
- Yuki Azumi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Yu Kitamura
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Shoji Miyako
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kohei Tanigawa
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Yoshihiro Kakeji
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| |
Collapse
|
6
|
Liu D, Lum KK, Treen N, Núñez CT, Yang J, Howard T, Levine M, Cristea I. IFI16 phase separation via multi-phosphorylation drives innate immune signaling. Nucleic Acids Res 2023; 51:6819-6840. [PMID: 37283074 PMCID: PMC10359621 DOI: 10.1093/nar/gkad449] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
The interferon inducible protein 16 (IFI16) is a prominent sensor of nuclear pathogenic DNA, initiating innate immune signaling and suppressing viral transcription. However, little is known about mechanisms that initiate IFI16 antiviral functions or its regulation within the host DNA-filled nucleus. Here, we provide in vitro and in vivo evidence to establish that IFI16 undergoes liquid-liquid phase separation (LLPS) nucleated by DNA. IFI16 binding to viral DNA initiates LLPS and induction of cytokines during herpes simplex virus type 1 (HSV-1) infection. Multiple phosphorylation sites within an intrinsically disordered region (IDR) function combinatorially to activate IFI16 LLPS, facilitating filamentation. Regulated by CDK2 and GSK3β, IDR phosphorylation provides a toggle between active and inactive IFI16 and the decoupling of IFI16-mediated cytokine expression from repression of viral transcription. These findings show how IFI16 switch-like phase transitions are achieved with temporal resolution for immune signaling and, more broadly, the multi-layered regulation of nuclear DNA sensors.
Collapse
Affiliation(s)
- Dawei Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Krystal K Lum
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Nicholas Treen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Corazón T Núñez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jinhang Yang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Timothy R Howard
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael Levine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Boros É, Hegedűs Z, Kellermayer Z, Balogh P, Nagy I. Global alteration of colonic microRNAome landscape associated with inflammatory bowel disease. Front Immunol 2022; 13:991346. [PMID: 36177008 PMCID: PMC9513375 DOI: 10.3389/fimmu.2022.991346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract that associates with, among others, increased risk of colorectal cancer. There is a growing evidence that miRNAs have important roles in pathological processes, such as inflammation or carcinogenesis. Understanding the molecular mechanisms such as alterations in microRNAome upon chronic intestinal inflammation is critical for understanding the exact pathomechanism of IBD. Hence, we conducted a genome wide microRNAome analysis by applying miRNA-Seq in a rat model of experimental colitis, validated the data by QPCR, examined the expression of a selection of precursor and mature miRNAs, performed in depth biological interpretation using Ingenuity Pathway Analysis and tested the obtained results on samples derived from human patients. We identified specific, interdependent expression pattern of activator/repressor transcription factors, miRNAs and their direct targets in the inflamed colon samples. Particularly, decreased expression of the miR-200 family members (miR-200a/b/c,-141, and -429) and miR-27b correlates with the reduced level of their enhancers (HNF1B, E2F1), elevated expression of their repressors (ZEB2, NFKB1) and increased expression of their target genes (ZEB2, RUNX1). Moreover, the marked upregulation of six miR-27b target genes (IFI16, GCA, CYP1B1, RUNX1, MEF2C and MMP13) in the inflamed colon tissues is a possible direct consequence of the lack of repression due to the downregulated miRNA-27b expression. Our data indicate that changes in microRNAome are associated with the pathophysiology of IBD, consequently, microRNAs offer potential targets for the diagnosis, prognosis and treatment of IBD.
Collapse
Affiliation(s)
- Éva Boros
- Seqomics Biotechnology Ltd., Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - István Nagy
- Seqomics Biotechnology Ltd., Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
8
|
Park SH, Park SH. Personalized medicine in inflammatory bowel disease: Perspectives on Asia. J Gastroenterol Hepatol 2022; 37:1434-1445. [PMID: 35726657 DOI: 10.1111/jgh.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 12/09/2022]
Abstract
Inflammatory bowel diseases are chronic, relapsing inflammatory disorders of the gastrointestinal tract with variable disease courses and complications, which in some cases can result in significant morbidities and disabilities. Etiologies remain unclear due to complex interactions between genetic and environmental factors. Considering the heterogeneity of inflammatory bowel diseases, personalized approaches in diagnosing and managing affected patients would be beneficial in maximizing treatment efficacies and minimizing adverse events. Personalized medicine may also help to stratify patients with a high risk of progression and inflammatory bowel disease-related complications and identify sub-phenotypic mechanisms to facilitate drug discovery and the development of new treatments. In Asia, with a rapidly increasing incidence and prevalence of inflammatory bowel diseases, studies have shown that patients of Asian ethnicity differ from their Western counterparts in terms of genetic and clinical aspects of inflammatory bowel diseases. Therefore, personalized medicine may differ for patients of Asian ethnicity with inflammatory bowel diseases. We reviewed and summarized current evidence concerning personalized medicine for the diagnosis and management of patients with inflammatory bowel diseases and its possible role from an Asian perspective.
Collapse
Affiliation(s)
- Su Hyun Park
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
9
|
Pucinelli CM, Lima RB, Almeida LKY, Lucisano MP, Córdoba AZ, Marchesan JT, da Silva LAB, da Silva RAB. Interferon‐gamma inducible protein 16 and type I interferon receptors expression in experimental apical periodontitis induced in wild type mice. Int Endod J 2022; 55:1042-1052. [DOI: 10.1111/iej.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- C. M. Pucinelli
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - R. B. Lima
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - L. K. Y. Almeida
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - M. P. Lucisano
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - A. Z. Córdoba
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - J. T. Marchesan
- Department of Periodontology ‐ University of North Carolina at Chapel Hill School of Dentistry Chapel Hill NC EUA
| | - L. A. B. da Silva
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| | - R. A. B. da Silva
- Department of Pediatric Dentistry ‐ University of São Paulo School of Dentistry of Ribeirão Preto Ribeirão Preto SP Brazil
| |
Collapse
|
10
|
Bourgonje AR, Vogl T, Segal E, Weersma RK. Antibody signatures in inflammatory bowel disease: current developments and future applications. Trends Mol Med 2022; 28:693-705. [DOI: 10.1016/j.molmed.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
|
11
|
Antibodies Against Glycoprotein 2 Are Specific Biomarkers for Pediatric Crohn's Disease. Dig Dis Sci 2021; 66:2619-2626. [PMID: 32886311 DOI: 10.1007/s10620-020-06589-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/26/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Serological markers can assist in accurate differentiation between Crohn's disease (CD) and ulcerative colitis (UC). One such marker is anti-glycoprotein 2 (anti-GP2) which was shown to be a specific marker for CD in adult patients. The aim of our study was to assess the utility of anti-GP2 and GP2 as biomarkers for pediatric CD, and determine whether they correlate with disease activity. METHODS Serum samples were tested by ELISA for anti-GP2 isoform 4 IgG and IgA, and also for GP2. Results were correlated with demographic and clinical data. RESULTS The cohort consisted of 53 pediatric patients with CD, 42 with UC, and 53 controls. Levels of anti-GP2 were significantly increased in pediatric patients with CD in comparison with patients with UC, and control subjects, with high positive predictive value for both IgG and IgA (97.9% and 82.6%, respectively). While specificity of anti-GP2 IgG and IgA was very high (98.7% and 90.0%, respectively), sensitivity was low (42.0% and 35.5% for IgG and IgA, respectively). In CD, anti-GP2 correlated with disease activity, and decreased in treatment-naïve patients following successful induction therapy. A higher IgA anti-GP2 was also demonstrated in patients with ileo-colonic involvement, and was associated with a younger age. Finally, positive GP2 level was identified in only 1/211 serum samples. CONCLUSIONS A positive anti-GP2 level is highly associated with CD, while a negative result does not exclude CD. Additional studies are required to determine whether these markers can be used in pediatric patients with CD for risk stratification.
Collapse
|
12
|
Treatments of inflammatory bowel disease toward personalized medicine. Arch Pharm Res 2021; 44:293-309. [PMID: 33763844 DOI: 10.1007/s12272-021-01318-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammatory disease characterized by intestinal inflammation and epithelial injury. For the treatment of IBD, 5-aminosalicylic acids, corticosteroids, immunomodulators, and biologic agents targeting tumor necrosis factor (TNF)-α, α4β7-integrin, and interleukin (IL)-12/23 have been widely used. Especially, anti-TNF-α antibodies are the first biologic agents that presently remain at the forefront. However, 10-30% of patients resist biologic agents, including anti-TNF-α agents (primary non-responder; PNR), and 20-50% of primary responders develop treatment resistance within one year (secondary loss of response; SLR). Nonetheless, the etiologies of PNR and SLR are not clearly understood, and predictors of response to biologic agents are also not defined yet. Numerous studies are being performed to discover prediction markers of the response to biologic agents, and this review will introduce currently available therapeutic options for IBD, biologics under investigation, and recent studies exploring various predictive factors related to PNR and SLR.
Collapse
|
13
|
Atreya R, Neurath MF, Siegmund B. Personalizing Treatment in IBD: Hype or Reality in 2020? Can We Predict Response to Anti-TNF? Front Med (Lausanne) 2020; 7:517. [PMID: 32984386 PMCID: PMC7492550 DOI: 10.3389/fmed.2020.00517] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The advent of anti-TNF agents as the first approved targeted therapy in the treatment of inflammatory bowel disease (IBD) patients has made a major impact on our existing therapeutic algorithms. They have not only been approved for induction and maintenance treatment in IBD patients, but have also enabled us to define and achieve novel therapeutic outcomes, such as combination of clinical symptom control and endoscopic remission, as well as mucosal healing. Nevertheless, approximately one third of treated patients do not respond to initiated anti-TNF therapy and these treatments are associated with sometimes severe systemic side-effects. There is therefore the currently unmet clinical need do establish predictive markers of response to identify the subgroup of IBD patients, that have a heightened probability of response. There have so far been approaches from different fields of IBD research, to descry markers that would empower us to apply TNF-inhibitors in a more rational manner. These markers encompass findings from disease-related and clinical factors, pharmacokinetics, biochemical markers, blood and stool derived parameters, pharmacogenomics, microbial species, metabolic compounds, and mucosal factors. Furthermore, changes in the intestinal immune cell composition in response to therapeutic pressure of anti-TNF treatment have recently been implicated in the process of molecular resistance to these drugs. Insights into factors that determine resistance to anti-TNF therapy give reasonable hope, that a more targeted approach can then be utilized in these non-responders. Here, IL-23 could be identified as one of the key factors determining resistance to TNF-inhibitors. Growing insights into the molecular mechanism of action of TNF-inhibitors might also enable us to derive critical molecular markers that not only mediate the clinical effects of anti-TNF therapy, but which level of expression might also correlate with its therapeutic efficacy. In this narrative review, we present an overview of currently identified possible predictive markers for successful anti-TNF therapy and discuss identified molecular pathways that drive resistance to these substances. We will also point out the necessity and difficulty of developing and validating a diagnostic marker concerning clinically relevant outcome parameters, before they can finally enter daily clinical practice and enable a more personalized therapeutic approach.
Collapse
Affiliation(s)
- Raja Atreya
- Department of Medicine, Medical Clinic 1, University Hospital Erlangen, University of Erlangen-Nürnberg Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.,The Transregio 241 IBDome Consortium, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine, Medical Clinic 1, University Hospital Erlangen, University of Erlangen-Nürnberg Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Britta Siegmund
- The Transregio 241 IBDome Consortium, Berlin, Germany.,Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
14
|
Iannucci A, Caneparo V, Raviola S, Debernardi I, Colangelo D, Miggiano R, Griffante G, Landolfo S, Gariglio M, De Andrea M. Toll-like receptor 4-mediated inflammation triggered by extracellular IFI16 is enhanced by lipopolysaccharide binding. PLoS Pathog 2020; 16:e1008811. [PMID: 32903274 PMCID: PMC7505474 DOI: 10.1371/journal.ppat.1008811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/21/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules activating the immune system upon release from injured cells. Here we show that the IFI16 protein, once freely released in the extracellular milieu of chronically inflamed tissues, can function as a DAMP either alone or upon binding to lipopolysaccharide (LPS). Specifically, using pull-down and saturation binding experiments, we show that IFI16 binds with high affinity to the lipid A moiety of LPS. Remarkably, IFI16 DAMP activity is potentiated upon binding to subtoxic concentrations of strong TLR4-activating LPS variants, as judged by TLR4-MD2/TIRAP/MyD88-dependent IL-6, IL-8 and TNF-α transcriptional activation and release in stimulated monocytes and renal cells. Consistently, using co-immunoprecipitation (co-IP) and surface plasmon resonance (SPR) approaches, we show that IFI16 is a specific TLR4-ligand and that IFI16/LPS complexes display a faster stimulation turnover on TLR4 than LPS alone. Altogether, our findings point to a novel pathomechanism of inflammation involving the formation of multiple complexes between extracellular IFI16 and subtoxic doses of LPS variants, which then signal through TLR4.
Collapse
Affiliation(s)
- Andrea Iannucci
- CAAD—Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Valeria Caneparo
- CAAD—Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Stefano Raviola
- CAAD—Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Isacco Debernardi
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, Italy
| | - Gloria Griffante
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Marisa Gariglio
- CAAD—Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- CAAD—Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| |
Collapse
|
15
|
Gisbert JP, Chaparro M. Predictors of Primary Response to Biologic Treatment [Anti-TNF, Vedolizumab, and Ustekinumab] in Patients With Inflammatory Bowel Disease: From Basic Science to Clinical Practice. J Crohns Colitis 2020; 14:694-709. [PMID: 31777929 DOI: 10.1093/ecco-jcc/jjz195] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Inflammatory bowel diseases [IBD]-ulcerative colitis and Crohn's disease-are commonly treated with biologic drugs. However, only approximately two-thirds of patients have an initial response to these therapies. Personalised medicine has the potential to optimise efficacy, decrease the risk of adverse drug events, and reduce costs by establishing the most suitable therapy for a selected patient. AIM The present study reviews the potential predictors of short-term primary response to biologic treatment, including not only anti-tumour necrosis factor [TNF] agents [such as infliximab, adalimumab, certolizumab, and golimumab] but also vedolizumab and ustekinumab. METHODS We performed a systematic bibliographical search to identify studies investigating predictive factors of response to biologic therapy. RESULTS For anti-TNF agents, most of the evaluated factors have not demonstrated usefulness, and many others are still controversial. Thus, only a few factors may have a potential role in the prediction of the response, including disease behaviour/phenotype, disease severity, C-reactive protein, albumin, cytokine expression in serum, previous anti-TNF therapy, some proteomic markers, and some colorectal mucosa markers. For vedolizumab, the availability of useful predictive markers seems to be even lower, with only some factors showing a limited value, such as the expression of α4β7 integrin in blood, the faecal microbiota, some proteomic markers, and some colorectal mucosa markers. Finally, in the case of ustekinumab, no predictive factor has been reported yet to be helpful in clinical practice. CONCLUSION In summary, currently no single marker fulfils all criteria for being an appropriate prognostic indicator of response to any biologic treatment in IBD.
Collapse
Affiliation(s)
- Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa [IIS-IP], Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa [IIS-IP], Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Madrid, Spain
| |
Collapse
|
16
|
Colombo G, Clemente N, Zito A, Bracci C, Colombo FS, Sangaletti S, Jachetti E, Ribaldone DG, Caviglia GP, Pastorelli L, De Andrea M, Naviglio S, Lucafò M, Stocco G, Grolla AA, Campolo M, Casili G, Cuzzocrea S, Esposito E, Malavasi F, Genazzani AA, Porta C, Travelli C. Neutralization of extracellular NAMPT (nicotinamide phosphoribosyltransferase) ameliorates experimental murine colitis. J Mol Med (Berl) 2020; 98:595-612. [PMID: 32338310 DOI: 10.1007/s00109-020-01892-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is increased in inflammatory bowel disease (IBD) patients, and its serum levels correlate with a worse prognosis. In the present manuscript, we show that eNAMPT serum levels are increased in IBD patients that fail to respond to anti-TNFα therapy (infliximab or adalimumab) and that its levels drop in patients that are responsive to these therapies, with values comparable with healthy subjects. Furthermore, eNAMPT administration in dinitrobenzene sulfonic acid (DNBS)-treated mice exacerbates the symptoms of colitis, suggesting a causative role of this protein in IBD. To determine the druggability of this cytokine, we developed a novel monoclonal antibody (C269) that neutralizes in vitro the cytokine-like action of eNAMPT and that reduces its serum levels in rodents. Of note, this newly generated antibody is able to significantly reduce acute and chronic colitis in both DNBS- and dextran sulfate sodium (DSS)-induced colitis. Importantly, C269 ameliorates the symptoms by reducing pro-inflammatory cytokines. Specifically, in the lamina propria, a reduced number of inflammatory monocytes, neutrophils, Th1, and cytotoxic T lymphocytes are found upon C269 treatment. Our data demonstrate that eNAMPT participates in IBD and, more importantly, that eNAMPT-neutralizing antibodies are endowed with a therapeutic potential in IBD. KEY MESSAGES: What are the new findings? Higher serum eNAMPT levels in IBD patients might decrease response to anti-TNF therapy. The cytokine-like activity of eNAMPT may be neutralized with a monoclonal antibody. Neutralization of eNAMPT ameliorates acute and chronic experimental colitis. Neutralization of eNAMPT limits the expression of IBD inflammatory signature. Neutralization of eNAMPT impairs immune cell infiltration in lamina propria.
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Nausicaa Clemente
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy
| | - Andrea Zito
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Cristiano Bracci
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Federico Simone Colombo
- Flow Cytometry and Cell Sorting Unit, Humanitas Clinical and Research Center - IRCCS, 20089, Rozzano, MI, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Gian Paolo Caviglia
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Luca Pastorelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Gastroenterology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Marco De Andrea
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, 10126, Turin, Italy
| | - Samuele Naviglio
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137, Trieste, Italy
| | - Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34137, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34137, Trieste, Italy
| | - Ambra A Grolla
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Fabio Malavasi
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy.
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy.
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, Università degli Studi di Pavia, 27100, Pavia, Italy.
| |
Collapse
|
17
|
Chen P, Zhou G, Lin J, Li L, Zeng Z, Chen M, Zhang S. Serum Biomarkers for Inflammatory Bowel Disease. Front Med (Lausanne) 2020; 7:123. [PMID: 32391365 PMCID: PMC7188783 DOI: 10.3389/fmed.2020.00123] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic, inflammatory disorder of the gastrointestinal tract. As the novel therapeutic goal and biologicals are widely recognized, accurate assessment of disease and prediction of therapeutic response have become a crucial challenge in clinical practice. Also, because of the continuously rising incidence, convenient and economical methods of diagnosis and clinical assessment are urgently needed. Recently, serum biomarkers have made a great progress and become a focus in IBD study because they are non-invasive, convenient, and relatively inexpensive than are markers in biopsy tissue, stool, breath, and other body fluids. Aims: To review the available data on serological biomarkers for IBD. Methods: We searched PubMed using predefined key words on relevant literatures of serum biomarkers regarding diagnosis, evaluation of therapeutic efficacy, surveillance of disease activity, and assessment of prognosis for IBD. Results: We reviewed serological biomarkers that are well-established and widely used (e.g., C-reactive protein), newly discovered biomarkers (e.g., cytokines, antibodies, and non-coding RNAs), and also recently advancements in serological biomarkers (e.g., metabolomics and proteomics) that are used in different aspects of IBD management. Conclusions: With such a wealth of researches, to date, there are still no ideal serum biomarkers for IBD. Serum profiling and non-coding RNAs are just starting to blossom but reveal great promise for future clinical practice. Combining different biomarkers can be valuable in improving performance of disease evaluation.
Collapse
Affiliation(s)
- Peng Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxia Lin
- Division of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Gkiouras K, Grammatikopoulou MG, Theodoridis X, Pagkalidou E, Chatzikyriakou E, Apostolidou AG, Rigopoulou EI, Sakkas LI, Bogdanos DP. Diagnostic and clinical significance of antigen-specific pancreatic antibodies in inflammatory bowel diseases: A meta-analysis. World J Gastroenterol 2020; 26:246-265. [PMID: 31988587 PMCID: PMC6962435 DOI: 10.3748/wjg.v26.i2.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-invasive criteria are needed for Crohn's disease (CD) diagnosis, with several biomarkers being tested. Results of individual diagnostic test accuracy studies assessing the diagnostic value of pancreatic autoantibodies-to-glycoprotein-2 (anti-GP2) tests for the diagnosis of CD appear promising. AIM To systematically review and meta-analyze evidence on the diagnostic accuracy of anti-GP2 tests in patients with suspected/confirmed CD. METHODS An electronic search was conducted on PubMed, Cochrane-CENTRAL and grey literature (CRD42019125947). The structured research question in PICPTR format was "Population" including patients with symptoms akin to CD, the "Index test" being anti-GP2 testing, the "Comparator" involved standard CD diagnosis, the "Purpose of test" being diagnostic, "Target disorder" was CD, and the "Reference standard" included standard clinical, radiological, endoscopical, and histological CD diagnostic criteria. Quality was assessed with the Quality Assessment of Diagnostic Accuracy Studies-2 tool and hierarchical models were employed to synthesize the data. RESULTS Out of 722 studies retrieved, 15 were meta-analyzed. Thirteen studies had industry-related conflicts-of-interest, and most included healthy donors as controls (spectrum bias). For the combination of IgA and/or IgG anti-GP2 test, the summary sensitivity was 20% (95% confidence interval: 10%-29%) at a median specificity of 97%. If the test was applied in 10000 suspected patients, 9669 would be true negatives and in 26, the diagnosis would be missed. In this hypothetical cohort, the anti-GP2 would fail to produce a diagnosis for 81.3% of the positive cases. Low summary points of sensitivity and high specificity were estimated for the IgG or IgA anti-GP2 test. Analogous results were observed when the analyses were restricted using specific cut-offs, or when ulcerative colitis patients were used as comparators. CONCLUSION Anti-GP2 tests demonstrate low sensitivity and high specificity. These results indicate that caution is required before relying on its diagnostic value. Additionally, the need for improving the methodology of diagnostic test accuracy studies is evident.
Collapse
Affiliation(s)
- Konstantinos Gkiouras
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa GR41110, Greece
- Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki GR54124, Greece
| | - Maria G Grammatikopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa GR41110, Greece
- Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki GR54124, Greece
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Sindos Campus, Thessaloniki GR57400, Greece
| | - Xenophon Theodoridis
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa GR41110, Greece
- Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki GR54124, Greece
| | - Eirini Pagkalidou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki GR54124, Greece
| | - Evangelia Chatzikyriakou
- Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki GR54124, Greece
- Laboratory of Clinical Neurophysiology, AHEPA University Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, Thessaloniki GR54124, Greece
| | - Anna G Apostolidou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Sindos Campus, Thessaloniki GR57400, Greece
| | - Eirini I Rigopoulou
- Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Biopolis, Larissa GR41110, Greece
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa GR41110, Greece
| | - Dimitrios Petrou Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa GR41110, Greece
- Division of Transplantation, Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London Medical School, London GR41110, United Kingdom
| |
Collapse
|
19
|
De Andrea M, De Santis M, Caneparo V, Generali E, Sirotti S, Isailovic N, Guidelli GM, Ceribelli A, Fabbroni M, Simpatico A, Cantarini L, Gisondi P, Idolazzi L, Gariglio M, Selmi C. Serum IFI16 and anti-IFI16 antibodies in psoriatic arthritis. Clin Exp Immunol 2019; 199:88-96. [PMID: 31571199 DOI: 10.1111/cei.13376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Nuclear interferon-inducible protein 16 (IFI16) and anti-IFI16 antibodies have been detected in subjects with several rheumatic diseases, often correlating with disease severity, and in this study we investigated their prevalence and clinical associations in psoriatic arthritis (PsA) compared to psoriasis (Pso). We tested sera and synovial fluids of patients with PsA for IFI16 protein levels by capture enzyme-linked immunosorbent assay (ELISA) and for anti-IFI16 immunoglobulin (Ig)G and IgA by ELISA, protein radio-immunoprecipitation and immunoprecipitation-Western blot of IgG. Sera from patients with Pso and healthy subjects were used as controls, and in a subgroup of patients with PsA we also studied sera after treatment with etanercept. IFI16 was detectable in the sera of 66% of patients with Pso, 46% with PsA and 19% of controls. Among PsA cases, 51% of IFI16-positive cases had elevated levels of C-reactive protein (CRP) compared to 31% of patients with undetectable IFI16. Anti-IFI16 of both IgG and IgA isoforms were detected with significantly higher frequency in PsA and Pso compared to healthy controls, with higher IgG titres in patients with elevated C-reactive protein (CRP) (P = 0·015). Immunoprecipitation confirmed the presence of anti-IFI16 IgG antibodies and these preferentially recognized epitopes outside the N-terminus of the protein. Lastly, IFI16 was detected in one of seven and anti-IFI16 in three of seven synovial fluids from patients with PsA. Therefore, IFI16 and anti-IFI16 are detectable in serum and synovial fluid of PsA patients, especially in cases of elevated CRP.
Collapse
Affiliation(s)
- M De Andrea
- Department of Public Health and Paediatric Sciences, Turin Medical School, Turin, Italy.,Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD, Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - M De Santis
- Rheumatology and Clinical Immunology Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - V Caneparo
- Department of Public Health and Paediatric Sciences, Turin Medical School, Turin, Italy.,Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD, Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - E Generali
- Rheumatology and Clinical Immunology Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - S Sirotti
- Rheumatology and Clinical Immunology Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - N Isailovic
- Rheumatology and Clinical Immunology Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - G M Guidelli
- Rheumatology and Clinical Immunology Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - A Ceribelli
- Rheumatology and Clinical Immunology Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - M Fabbroni
- Department of Rheumatology, University of Siena, Siena, Italy
| | - A Simpatico
- Department of Rheumatology, University of Siena, Siena, Italy
| | - L Cantarini
- Department of Rheumatology, University of Siena, Siena, Italy
| | - P Gisondi
- Department of Dermatology, University of Verona, Verona, Italy
| | - L Idolazzi
- Department of Rheumatology, University of Verona, Verona, Italy
| | - M Gariglio
- Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD, Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - C Selmi
- Rheumatology and Clinical Immunology Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.,Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
20
|
Castillo DF, Caicedo R, Gopalareddy V. Liver Abscess in a Pediatric Patient with Ulcerative Colitis: A Case Presentation. J Clin Transl Hepatol 2019; 7:93-96. [PMID: 30944825 PMCID: PMC6441647 DOI: 10.14218/jcth.2018.00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Hepatic abscesses are an uncommon extra-intestinal manifestation of inflammatory bowel disease, the incidence of which has been estimated to be approximately 7 per 10,000 patients with inflammatory bowel disease. It is unclear whether patients with Crohn's disease or patients with ulcerative colitis (UC) are at higher risk of developing this complication. Based on case reports, most cases are found in Crohn's disease; however, a recent cohort study showed an increased risk in UC instead. Hepatic abscesses in the pediatric population are rare, and there have been no reported cases of hepatic abscesses in a pediatric patient with UC. We describe herein a pediatric patient with UC who developed hepatic abscesses and portal vein thrombosis. This patient also had an extended time in remission from his UC despite being off of immunosuppressive therapies, and we speculate on how his clinical course and treatment strategies may have contributed to this.
Collapse
Affiliation(s)
- Daniel F. Castillo
- Department of Pediatrics, Atrium Health- Levine Children’s Hospital, Charlotte, NC, USA
- *Correspondence to: Daniel F. Castillo, Department of Pediatrics, Atrium Health- Levine Children’s Hospital, 1000 Blythe Blvd, Charlotte, NC 28203, USA. Tel: +1-407-314-5294, Fax: +1-704-381-6841, E-mail:
| | - Ricardo Caicedo
- Department of Pediatric Gastroenterology, Atrium Health- Levine Children’s Hospital, Charlotte, NC, USA
| | - Vani Gopalareddy
- Department of Pediatric Gastroenterology, Atrium Health- Levine Children’s Hospital, Charlotte, NC, USA
| |
Collapse
|
21
|
Lupfer CR, Rippee-Brooks MD, Anand PK. Common Differences: The Ability of Inflammasomes to Distinguish Between Self and Pathogen Nucleic Acids During Infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 344:139-172. [PMID: 30798987 DOI: 10.1016/bs.ircmb.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The innate immune system detects the presence of pathogens based on detection of non-self. In other words, most pathogens possess intrinsic differences that can distinguish them from host cells. For example, bacteria and fungi have cell walls comprised of peptidoglycan and carbohydrates (like mannans), respectively. Germline encoded pattern recognition receptors (PRRs) of the Toll-like receptor (TLR) and C-type lectin receptor (CLR) family have the ability to detect such unique pathogen associated features. However, some TLRs and members of the RIG-I-like receptor (RLR), NOD-like receptor (NLR), or AIM2-like receptor (ALR) family can sense pathogen invasion based on pathogen nucleic acids. Nucleic acids are not unique to pathogens, thus raising the question of how such PRRs evolved to detect pathogens but not self. In this chapter, we will examine the PRRs that sense pathogen nucleic acids and subsequently activate the inflammasome signaling pathway. We will examine the selective mechanisms by which these receptors distinguish pathogens from "self" and discuss the importance of such pathways in disease development in animal models and human patients.
Collapse
Affiliation(s)
- Christopher R Lupfer
- Department of Biology, Missouri State University, Springfield, MO, United States.
| | | | - Paras K Anand
- Infectious Diseases and Immunity, Imperial College London, London, United Kingdom.
| |
Collapse
|
22
|
Stevens TW, Matheeuwsen M, Lönnkvist MH, Parker CE, Wildenberg ME, Gecse KB, D'Haens GR. Systematic review: predictive biomarkers of therapeutic response in inflammatory bowel disease-personalised medicine in its infancy. Aliment Pharmacol Ther 2018; 48:1213-1231. [PMID: 30378142 DOI: 10.1111/apt.15033] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/19/2018] [Accepted: 09/29/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterised by substantial heterogeneity in treatment response. With an expanding number of therapeutic agents, identifying optimal treatment at the patient level remains a major challenge. AIM To systematically review the available literature on predictive biomarkers of therapeutic response in IBD. METHODS An electronic literature search was performed on 30 January 2018 using MEDLINE, EMBASE and the Cochrane Library. Retrospective, prospective, uncontrolled and controlled studies reporting on biomarkers predicting therapeutic response in paediatric and adult IBD populations were eligible for inclusion. The methodological quality of the included studies was assessed using the QUIPS tool. Due to anticipated heterogeneity and limited data, a qualitative, rather than quantitative, assessment was planned. RESULTS Of the 10 638 citations identified, 92 articles met the inclusion criteria. Several potential DNA, mRNA and protein markers were evaluated as predictive biomarkers. Most studies focused on predicting response to anti-TNF agents. Substantial between-study heterogeneity was identified with respect to both the biomarkers studied and the definition of response. None of the included studies received a low risk of bias rating for all six domains. Currently, none of the biomarkers is sufficiently predictive for clinical use. CONCLUSIONS The search for predictive biomarkers is still in its infancy and current evidence is limited. Future research efforts should take into account the high patient heterogeneity within prospective trials with objective response assessment. Predictive models will most likely comprise a combination of several molecular markers from integrated omics-levels and clinical characteristics.
Collapse
Affiliation(s)
- Toer W Stevens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mijntje Matheeuwsen
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria H Lönnkvist
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Amsterdam, The Netherlands
| | - Krisztina B Gecse
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert R D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Caneparo V, Landolfo S, Gariglio M, De Andrea M. The Absent in Melanoma 2-Like Receptor IFN-Inducible Protein 16 as an Inflammasome Regulator in Systemic Lupus Erythematosus: The Dark Side of Sensing Microbes. Front Immunol 2018; 9:1180. [PMID: 29892303 PMCID: PMC5985366 DOI: 10.3389/fimmu.2018.01180] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Absent in melanoma 2 (AIM2)-like receptors (ALRs) are a newly characterized class of pathogen recognition receptors (PRRs) involved in cytosolic and nuclear pathogen DNA recognition. In recent years, two ALR family members, the interferon (IFN)-inducible protein 16 (IFI16) and AIM2, have been linked to the pathogenesis of various autoimmune diseases, among which systemic lupus erythematosus (SLE) has recently gained increasing attention. SLE patients are indeed often characterized by constitutively high serum IFN levels and increased expression of IFN-stimulated genes due to an abnormal response to pathogens and/or incorrect self-DNA recognition process. Consistently, we and others have shown that IFI16 is overexpressed in a wide range of autoimmune diseases where it triggers production of specific autoantibodies. In addition, evidence from mouse models supports a model whereby ALRs are required for IFN-mediated host response to both exogenous and endogenous DNA. Following interaction with cytoplasmic or nuclear nucleic acids, ALRs can form a functional inflammasome through association with the adaptor ASC [apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD)] and with procaspase-1. Importantly, inflammasome-mediated upregulation of IL-1β and IL-18 production positively correlates with SLE disease severity. Therefore, targeting ALR sensors and their downstream pathways represents a promising alternative therapeutic approach for SLE and other systemic autoimmune diseases.
Collapse
Affiliation(s)
- Valeria Caneparo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy.,Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy
| | - Marisa Gariglio
- Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy.,Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
24
|
Autoantibodies Against Glycoprotein 2 Isoforms in Pediatric Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2017; 23:1624-1636. [PMID: 28691939 DOI: 10.1097/mib.0000000000001159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anti-Glycoprotein 2 (GP2) antibodies are associated with a more complicated course of Crohn's disease (CD) in adults. Four different GP2 isoforms with different length and antibody-binding sites have been identified so far but not been explored in serological studies. We aimed to investigate the diagnostic utility of autoantibodies against all 4 isoforms of GP2 in an exclusively pediatric population for the first time. METHODS We included 278 children and adolescents with inflammatory bowel disease: 164 with CD, 114 with ulcerative colitis, 83 disease controls (acute gastrointestinal infection, nonspecific gastrointestinal functional disorders), and 219 healthy controls. Sera were tested for anti-GP2 antibodies using 4 different isoforms of GP2 for anti-Saccharomyces cerevisiae antibodies, antineutrophil cytoplasmic antibodies, and pancreatic antibodies. RESULTS Anti-GP2 antibodies were significantly more prevalent in patients with CD than in ulcerative colitis and controls. We found a sensitivity of 38% (with a specificity of 95%) for anti-GP2 IgG against isoform 4 in CD. Anti-GP2 IgA against isoform 1 and anti-GP2 IgG against isoform 4 possessed the best diagnostic values for identification of CD. For the differentiation of CD from ulcerative colitis anti-GP2 IgG against isoforms 3 and 4 proved to be most accurate markers. Anti-GP2 antibodies were associated with a more complicated disease behavior and bowel surgery in CD. In a subgroup of patients with CD, anti-GP2 IgG against isoform 4 proved to be a relatively stable marker over time independent of disease activity. CONCLUSIONS Anti-GP2 antibodies against different isoforms are specific markers for CD and for different phenotypes in pediatric inflammatory bowel disease.
Collapse
|