1
|
Tang XE, Cheng YQ, Tang CK. Protein tyrosine phosphatase non-receptor type 2 as the therapeutic target of atherosclerotic diseases: past, present and future. Front Pharmacol 2023; 14:1219690. [PMID: 37670950 PMCID: PMC10475599 DOI: 10.3389/fphar.2023.1219690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important member of the protein tyrosine phosphatase family, can regulate various signaling pathways and biological processes by dephosphorylating receptor protein tyrosine kinases. Accumulating evidence has demonstrated that PTPN2 is involved in the occurrence and development of atherosclerotic cardiovascular disease. Recently, it has been reported that PTPN2 exerts an anti-atherosclerotic effect by regulating vascular endothelial injury, monocyte proliferation and migration, macrophage polarization, T cell polarization, autophagy, pyroptosis, and insulin resistance. In this review, we summarize the latest findings on the role of PTPN2 in the pathogenesis of atherosclerosis to provide a rationale for better future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xiao-Er Tang
- Department of Pathophysiology, Shaoyang University, Shaoyang, Hunan, China
| | - Ya-Qiong Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Multi-Species Probiotic Strain Mixture Enhances Intestinal Barrier Function by Regulating Inflammation and Tight Junctions in Lipopolysaccharides Stimulated Caco-2 Cells. Microorganisms 2023; 11:microorganisms11030656. [PMID: 36985228 PMCID: PMC10056128 DOI: 10.3390/microorganisms11030656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Although leaky gut syndrome is not recognized as an official diagnosis for human diseases, it is now believed that dysfunction of the cell barrier causes increased permeability of intestinal epithelial cells leading to this condition. Probiotics have been widely used to improve gut health, and studies have investigated the relevance of protecting the intestinal barrier by taking probiotic strains in vitro and in vivo. However, most studies have restricted the use of single or several probiotic strains and do not consider commercially available probiotic products composed of multi-species. In this study, we provide experimental evidence that a multi-species probiotic mixture composed of eight different strains and a heat-treated probiotic strain is effective in preventing leaky gut conditions. We employed an in vitro co-culture model system utilizing two different differentiated cell lines to mimic human intestinal tissue. The integrity of epithelial barrier function was protected by the preserving the occludin protein level and activating the AMPK signaling pathway, associated with tight junctions (TJs), through treatment with the probiotic strain mixture in Caco-2 cells. Moreover, we confirmed that application of the multi-species probiotic mixture reduced the expression of proinflammatory cytokine genes by inhibiting NFκB signaling pathway when artificial inflammation was induced in an in vitro co-culture model system. Finally, we proved that the epithelial permeability measured by trans-epithelial electrical resistance (TEER) was significantly decreased in the probiotic mixture treated cells, indicating that the integrity of the epithelial barrier function was not compromised. The multi-species probiotic strain mixture exhibited the protective effect on the integrity of intestinal barrier function via enhancing TJ complexes and reducing inflammatory responses in the human intestinal cells.
Collapse
|
3
|
Ko SH, Lim Y, Kim EJ, Ko YW, Hong IS, Kim S, Jung Y. Antarctic Marine Algae Extracts as a Potential Natural Resource to Protect Epithelial Barrier Integrity. Mar Drugs 2022; 20:562. [PMID: 36135751 PMCID: PMC9503798 DOI: 10.3390/md20090562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
The intestine and skin provide crucial protection against the external environment. Strengthening the epithelial barrier function of these organs is critical for maintaining homeostasis against inflammatory stimuli. Recent studies suggest that polar marine algae are a promising bioactive resource because of their adaptation to extreme environments. To investigate the bioactive properties of polar marine algae on epithelial cells of the intestine and skin, we created extracts of the Antarctic macroalgae Himantothallus grandifolius, Plocamium cartilagineum, Phaeurus antarcticus, and Kallymenia antarctica, analyzed the compound profiles of the extracts using gas chromatography-mass spectrometry, and tested the protective activities of the extracts on human intestinal and keratinocyte cell lines by measuring cell viability and reactive oxygen species scavenging. In addition, we assessed immune responses modulated by the extracts by real-time polymerase chain reaction, and we monitored the barrier-protective activities of the extracts on intestinal and keratinocyte cell lines by measuring transepithelial electrical resistance and fluorescence-labeled dextran flux, respectively. We identified bioactive compounds, including several fatty acids and lipid compounds, in the extracts, and found that the extracts perform antioxidant activities that remove intracellular reactive oxygen species and scavenge specific radicals. Furthermore, the Antarctic marine algae extracts increased cell viability, protected cells against inflammatory stimulation, and increased the barrier integrity of cells damaged by lipopolysaccharide or ultraviolet radiation. These results suggest that Antarctic marine algae have optimized their composition for polar environments, and furthermore, that the bioactive properties of compounds produced by Antarctic marine algae can potentially be used to develop therapeutics to promote the protective barrier function of the intestine and skin.
Collapse
Affiliation(s)
- Seong-Hee Ko
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - YoonHee Lim
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Eun Jae Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - Young Wook Ko
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - In-Sun Hong
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| |
Collapse
|
4
|
Gou HZ, Zhang YL, Ren LF, Li ZJ, Zhang L. How do intestinal probiotics restore the intestinal barrier? Front Microbiol 2022; 13:929346. [PMID: 35910620 PMCID: PMC9330398 DOI: 10.3389/fmicb.2022.929346] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
The intestinal barrier is a structure that prevents harmful substances, such as bacteria and endotoxins, from penetrating the intestinal wall and entering human tissues, organs, and microcirculation. It can separate colonizing microbes from systemic tissues and prevent the invasion of pathogenic bacteria. Pathological conditions such as shock, trauma, stress, and inflammation damage the intestinal barrier to varying degrees, aggravating the primary disease. Intestinal probiotics are a type of active microorganisms beneficial to the health of the host and an essential element of human health. Reportedly, intestinal probiotics can affect the renewal of intestinal epithelial cells, and also make cell connections closer, increase the production of tight junction proteins and mucins, promote the development of the immune system, regulate the release of intestinal antimicrobial peptides, compete with pathogenic bacteria for nutrients and living space, and interact with the host and intestinal commensal flora to restore the intestinal barrier. In this review, we provide a comprehensive overview of how intestinal probiotics restore the intestinal barrier to provide new ideas for treating intestinal injury-related diseases.
Collapse
Affiliation(s)
- Hong-Zhong Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yu-Lin Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Long-Fei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhen-Jiao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
5
|
Wang Y, Moon A, Huang J, Sun Y, Qiu HJ. Antiviral Effects and Underlying Mechanisms of Probiotics as Promising Antivirals. Front Cell Infect Microbiol 2022; 12:928050. [PMID: 35734576 PMCID: PMC9207339 DOI: 10.3389/fcimb.2022.928050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics exert a variety of beneficial effects, including maintaining homeostasis and the balance of intestinal microorganisms, activating the immune system, and regulating immune responses. Due to the beneficial effects of probiotics, a wide range of probiotics have been developed as probiotic agents for animal and human health. Viral diseases cause serious economic losses to the livestock every year and remain a great challenge for animals. Moreover, strategies for the prevention and control of viral diseases are limited. Viruses enter the host through the skin and mucosal surface, in which are colonized by hundreds of millions of microorganisms. The antiviral effects of probiotics have been proved, including modulation of chemical, microbial, physical, and immune barriers through various probiotics, probiotic metabolites, and host signaling pathways. It is of great significance yet far from enough to elucidate the antiviral mechanisms of probiotics. The major interest of this review is to discuss the antiviral effects and underlying mechanisms of probiotics and to provide targets for the development of novel antivirals.
Collapse
Affiliation(s)
| | | | | | - Yuan Sun
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| | - Hua-Ji Qiu
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| |
Collapse
|
6
|
Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Paez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr 2021; 8:718093. [PMID: 34778332 PMCID: PMC8582318 DOI: 10.3389/fnut.2021.718093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
There is converging and increasing evidence, but also uncertainty, for the role of abnormal intestinal epithelial barrier function in the origin and development of a growing number of human gastrointestinal and extraintestinal inflammatory disorders, and their related complaints. Despite a vast literature addressing factors and mechanisms underlying changes in intestinal permeability in humans, and its connection to the appearance and severity of clinical symptoms, the ultimate link remains to be established in many cases. Accordingly, there are no directives or clinical guidelines related to the therapeutic management of intestinal permeability disorders that allow health professionals involved in the management of these patients to carry out a consensus treatment based on clinical evidence. Instead, there are multiple pseudoscientific approaches and commercial propaganda scattered on the internet that confuse those affected and health professionals and that often lack scientific rigor. Therefore, in this review we aim to shed light on the different therapeutic options, which include, among others, dietary management, nutraceuticals and medical devices, microbiota and drugs, and epigenetic and exosomes-manipulation, through an objective evaluation of the scientific publications in this field. Advances in the knowledge and management of intestinal permeability will sure enable better options of dealing with this group of common disorders to enhance quality of life of those affected.
Collapse
Affiliation(s)
- Marina Fortea
- Laboratory for Enteric NeuroScience, Translational Research Center for GastroIntestinal Disorders, University of Leuven, Leuven, Belgium
| | - Mercé Albert-Bayo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Abril-Gil
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - John-Peter Ganda Mall
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xavier Serra-Ruiz
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Alejandro Henao-Paez
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Danila Guagnozzi
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Jergens AE, Parvinroo S, Kopper J, Wannemuehler MJ. Rules of Engagement: Epithelial-Microbe Interactions and Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:669913. [PMID: 34513862 PMCID: PMC8432614 DOI: 10.3389/fmed.2021.669913] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex, multifactorial disorders that lead to chronic and relapsing intestinal inflammation. The exact etiology remains unknown, however multiple factors including the environment, genetic, dietary, mucosal immunity, and altered microbiome structure and function play important roles in disease onset and progression. Supporting this notion that the gut microbiota plays a pivotal role in IBD pathogenesis, studies in gnotobiotic mice have shown that mouse models of intestinal inflammation require a microbial community to develop colitis. Additionally, antimicrobial therapy in some IBD patients will temporarily induce remission further demonstrating an association between gut microbes and intestinal inflammation. Finally, a dysfunctional intestinal epithelial barrier is also recognized as a key pathogenic factor in IBD. The intestinal epithelium serves as a barrier between the luminal environment and the mucosal immune system and guards against harmful molecules and microorganisms while being permeable to essential nutrients and solutes. Beneficial (i.e., mutualists) bacteria promote mucosal health by strengthening barrier integrity, increasing local defenses (mucin and IgA production) and inhibiting pro-inflammatory immune responses and apoptosis to promote mucosal homeostasis. In contrast, pathogenic bacteria and pathobionts suppress expression and localization of tight junction proteins, cause dysregulation of apoptosis/proliferation and increase pro-inflammatory signaling that directly damages the intestinal mucosa. This review article will focus on the role of intestinal epithelial cells (IECs) and the luminal environment acting as mediators of barrier function in IBD. We will also share some of our translational observations of interactions between IECs, immune cells, and environmental factors contributing to maintenance of mucosal homeostasis, as it relates to GI inflammation and IBD in different animal models.
Collapse
Affiliation(s)
- Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Shadi Parvinroo
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Lei H, Crawford MS, McCole DF. JAK-STAT Pathway Regulation of Intestinal Permeability: Pathogenic Roles and Therapeutic Opportunities in Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2021; 14:840. [PMID: 34577540 PMCID: PMC8466350 DOI: 10.3390/ph14090840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
The epithelial barrier forms the interface between luminal microbes and the host immune system and is the first site of exposure to many of the environmental factors that trigger disease activity in chronic inflammatory bowel disease (IBD). Disruption of the epithelial barrier, in the form of increased intestinal permeability, is a feature of IBD and other inflammatory diseases, including celiac disease and type 1 diabetes. Variants in genes that regulate or belong to the JAK-STAT signaling pathway are associated with IBD risk. Inhibitors of the JAK-STAT pathway are now effective therapeutic options in IBD. This review will discuss emerging evidence that JAK inhibitors can be used to improve defects in intestinal permeability and how this plays a key role in resolving intestinal inflammation.
Collapse
Affiliation(s)
| | | | - Declan F. McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.L.); (M.S.C.)
| |
Collapse
|
9
|
Zhao X, Li S, Ding J, Wei J, Tian P, Wei H, Chen T. Combination of an engineered Lactococcus lactis expressing CXCL12 with light-emitting diode yellow light as a treatment for scalded skin in mice. Microb Biotechnol 2021; 14:2090-2100. [PMID: 34310856 PMCID: PMC8449663 DOI: 10.1111/1751-7915.13885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Impaired wound closure is an increasingly crucial clinical challenge. Recently, wound healing has shifted towards innovative treatments that exploit nanotechnology, biomaterials, biologics and phototherapy. Here, we constructed an engineered MG1363-pMG36e-mCXCL12 strain with pMG36e plasmid encoding stromal cell-derived factor 1α (named CXCL12) and evaluated the synergistic effects of light-emitting diode (LED) yellow light and MG1363-pMG36e-mCXCL12 on scald wounds in mice. The results indicated that the combined treatment with LED yellow light with mCXCL12 delivering strain accelerated wound closure, tissue remodelling, re-epithelialization and hair follicle regeneration and inhibited over-inflammation oppositely in the central and surrounding wounds by macroscopic, histopathologic and immunohistochemistry parameters. Furthermore, combination therapy increased the epidermal growth factor and Ki67-positive cells and upregulated beta-catenin (β-catenin), cellular-myelocytomatosis (c-Myc), wingless-type MMTV integration site family member 1 (Wnt1), Jagged 1, neurogenic locus notch homolog protein 1 (Notch 1) and hairy and enhancer of split 1 (Hes 1) protein levels of the Wnt and Notch signalling pathways. It also facilitated collagen fibrogenesis and deposition and improved the activities of hydroxyproline, superoxide dismutase and glutathione peroxidase in scalded granulation tissue, in addition to reducing the inflammatory factors interleukin 1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). The combined treatment effectively reduced skin pathogens Ralstonia and Acinetobacter to further reduce the risk of infection. Overall, combination of LED yellow light and MG1363-pMG36e-mCXCL12 represents a potential strategy for the treatment of cutaneous wounds.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shengjie Li
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jianing Ding
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jing Wei
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Puyuan Tian
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
10
|
Manzini R, Schwarzfischer M, Bircher A, Niechcial A, Vavricka SR, Atrott K, Lang S, Scharl M, Spalinger MR. Energy Drink Administration Ameliorates Intestinal Epithelial Barrier Defects and Reduces Acute DSS Colitis. Inflamm Bowel Dis 2021; 27:1139-1152. [PMID: 33501991 DOI: 10.1093/ibd/izaa328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The rise in the prevalence of inflammatory bowel diseases in the past decades coincides with changes in nutritional habits, such as adaptation of a Western diet. However, it is largely unknown how certain nutritional habits, such as energy drink consumption, affect intestinal inflammation. Here, we assessed the effect of energy drink supplementation on the development of intestinal inflammation in vitro and in vivo. METHODS HT-29 and T84 intestinal epithelial cells and THP-1 monocytic cells were treated with IFNγ in presence or absence of different concentrations of an energy drink. Colitis was induced in C57BL/6 mice by addition of dextran sodium sulfate (DSS) to drinking water with or without supplementation of the energy drink. RESULTS Energy drink supplementation caused a dose-dependent decrease in IFNγ-induced epithelial barrier permeability, which was accompanied by upregulation of the pore-forming protein claudin-2. Administration of the energy drink reduced secretion of the pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-α from HT-29, T84, and THP-1 cells. In vivo, energy drink administration reduced clinical symptoms of DSS-induced colitis and epithelial barrier permeability. Endoscopic and histologic colitis scores and expression of pro-inflammatory cytokines were significantly reduced by energy drink co-administration. CONCLUSION Energy drink consumption seems to exert an unexpected anti-inflammatory effect in vitro and in vivo in our experimental setting. However, our experimental approach focuses on intestinal inflammation and neglects additional effects of energy drink consumption on the body (eg, on metabolism or sleep). Therefore, the translation of our findings into the human situation must be taken with caution.
Collapse
Affiliation(s)
- Roberto Manzini
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Bircher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Niechcial
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Division of Biomedical Research, School of Medicine, University of California Riverside, Riverside, California, USA
| |
Collapse
|
11
|
Chong PL, Laight D, Aspinall RJ, Higginson A, Cummings MH. A randomised placebo controlled trial of VSL#3 ® probiotic on biomarkers of cardiovascular risk and liver injury in non-alcoholic fatty liver disease. BMC Gastroenterol 2021; 21:144. [PMID: 33794784 PMCID: PMC8015038 DOI: 10.1186/s12876-021-01660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is associated with increased cardiovascular risk irrespective of conventional risk factors. The role of gut-liver interaction is implicated in its development. We investigated the effects of VSL#3® probiotic supplementation on biomarkers of cardiovascular risk and liver injury in patients with NAFLD. METHODS A randomised, double-blinded, placebo-controlled, proof-of-concept study was undertaken. Patients with NAFLD were randomly allocated to take 2 sachets VSL#3® probiotic or placebo twice daily for 10 weeks. Measurements of endothelial function (digital photoplethysmography, sVCAM-1 and cGMP), oxidative stress (glutathione ratio and LHP), inflammation (hsCRP), insulin resistance (HOMA-IR) and liver injury [transaminases, fibrosis risk score and acoustic structure quantification (ASQ)] were undertaken before and after intervention. Difference in baseline characteristics between the treatment groups was analysed using independent t-test or Mann Whitney U test for non-parametric data. Independent t-test was used to compare the outcomes at the end of the study between the two treatment groups. Wilcoxon Signed Rank test was used to determine the difference in fibrosis risk scores before and after treatment. Spearman's correlation was used to determine any association between cardiovascular and hepatic markers at baseline. RESULTS Thirty-five patients completed the study (28 males and 7 females) with a mean age of 57 ± 8 years, body mass index of 32.6 ± 5.0 kg/m2 and a relatively short duration of NAFLD (median duration 0.3 IQR 2.0 years). No significant difference was observed in biomarkers of cardiovascular risk and liver injury following VSL#3® supplementation. Significant correlations were noted between sVCAM-1 and hsCRP (rho = 0.392, p = 0.01), and HOMA-IR and AST (rho = 0.489, p < 0.01) at baseline. CONCLUSIONS This is the first study to evaluate the effect of VSL#3® on ASQ in patients with NAFLD. VSL#3® did not significantly improve markers of cardiovascular risk and liver injury in patients with NAFLD. However, the study supports an association between endothelial dysfunction and inflammation in patients with NAFLD and suggests that NAFLD is linked with insulin resistance. TRIAL REGISTRATION ISRCTN05474560 ( https://doi.org/10.1186/ISRCTN05474560 ) Registered 9 August 2012 (retrospectively registered).
Collapse
Affiliation(s)
- Pui Lin Chong
- Academic Department of Diabetes and Endocrinology, Queen Alexandra Hospital, Portsmouth, UK. .,Raja Isteri Pengiran Anak Saleha Hospital, Bandar Seri Begawan, 1710, Brunei Darussalam.
| | - David Laight
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Richard J Aspinall
- Department of Gastroenterology and Hepatology, Queen Alexandra Hospital, Portsmouth, UK
| | | | - Michael H Cummings
- Academic Department of Diabetes and Endocrinology, Queen Alexandra Hospital, Portsmouth, UK
| |
Collapse
|
12
|
Bayer G, Ganobis CM, Allen-Vercoe E, Philpott DJ. Defined gut microbial communities: promising tools to understand and combat disease. Microbes Infect 2021; 23:104816. [PMID: 33785422 DOI: 10.1016/j.micinf.2021.104816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Defined gut microbial communities are emerging tools that allow detailed studies of microbial ecosystems and their interactions with the host. In this article, we review strategies underlying the design of defined consortia and summarize the efforts to introduce simplified communities into in vitro and in vivo models. We conclude by highlighting the potential of defined microbial ecosystems as effective modulation strategies for health benefits.
Collapse
Affiliation(s)
- Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Caroline M Ganobis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
13
|
Spalinger MR, Sayoc-Becerra A, Ordookhanian C, Canale V, Santos AN, King SJ, Krishnan M, Nair MG, Scharl M, McCole DF. The JAK Inhibitor Tofacitinib Rescues Intestinal Barrier Defects Caused by Disrupted Epithelial-macrophage Interactions. J Crohns Colitis 2021; 15:471-484. [PMID: 32909045 PMCID: PMC7944512 DOI: 10.1093/ecco-jcc/jjaa182] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Loss-of-function variants in protein tyrosine phosphatase non-receptor type-2 [PTPN2] promote susceptibility to inflammatory bowel diseases [IBD]. PTPN2 regulates Janus-kinase [JAK] and signal transducer and activator of transcription [STAT] signalling, while protecting the intestinal epithelium from inflammation-induced barrier disruption. The pan-JAK inhibitor tofacitinib is approved to treat ulcerative colitis, but its effects on intestinal epithelial cell-macrophage interactions and on barrier properties are unknown. We aimed to determine if tofacitinib can rescue disrupted epithelial-macrophage interaction and barrier function upon loss of PTPN2. METHODS Human Caco-2BBe intestinal epithelial cells [IECs] and THP-1 macrophages expressing control or PTPN2-specific shRNA were co-cultured with tofacitinib or vehicle. Transepithelial electrical resistance and 4 kDa fluorescein-dextran flux were measured to assess barrier function. Ptpn2fl/fl and Ptpn2-LysMCre mice, which lack Ptpn2 in myeloid cells, were treated orally with tofacitinib citrate twice daily to assess the in vivo effect on the intestinal epithelial barrier. Colitis was induced via administration of 1.5% dextran sulphate sodium [DSS] in drinking water. RESULTS Tofacitinib corrected compromised barrier function upon PTPN2 loss in macrophages and/or IECs via normalisation of: [i] tight junction protein expression; [ii] excessive STAT3 signalling; and [iii] IL-6 and IL-22 secretion. In Ptpn2-LysMCre mice, tofacitinib reduced colonic pro-inflammatory macrophages, corrected underlying permeability defects, and prevented the increased susceptibility to DSS colitis. CONCLUSIONS PTPN2 loss in IECs or macrophages compromises IEC-macrophage interactions and reduces epithelial barrier integrity. Both of these events were corrected by tofacitinib in vitro and in vivo. Tofacitinib may have greater therapeutic efficacy in IBD patients harbouring PTPN2 loss-of-function mutations.
Collapse
Affiliation(s)
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Christ Ordookhanian
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Vinicius Canale
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Alina N Santos
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Stephanie J King
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Moorthy Krishnan
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Meera G Nair
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Michael Scharl
- Department for Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Declan F McCole
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
14
|
Camilleri M. Human Intestinal Barrier: Effects of Stressors, Diet, Prebiotics, and Probiotics. Clin Transl Gastroenterol 2021; 12:e00308. [PMID: 33492118 PMCID: PMC7838004 DOI: 10.14309/ctg.0000000000000308] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
The objectives of this article are to understand the effects of stressors (nonsteroidal antiinflammatory drug, exercise, and pregnancy) and components in the diet, specifically prebiotics and probiotics, on intestinal barrier function. Stressors generally reduce barrier function, and these effects can be reversed by supplements such as zinc or glutamine that are among the substances that enhance the barrier. Other dietary factors in the diet that improve the barrier are vitamins A and D, tryptophan, cysteine, and fiber; by contrast, ethanol, fructose, and dietary emulsifiers increase permeability. Effects of prebiotics on barrier function are modest; on the other hand, probiotics exert direct and indirect antagonism of pathogens, and there are documented effects of diverse probiotic species, especially combination agents, on barrier function in vitro, in vivo in animal studies, and in human randomized controlled trials conducted in response to stress or disease. Clinical observations of benefits with combination probiotics in inflammatory diseases have simultaneously not appraised effects on intestinal permeability. In summary, probiotics and synbiotics enhance intestinal barrier function in response to stressor or disease states. Future studies should address the changes in barrier function and microbiota concomitant with assessment of clinical outcomes.
Collapse
Affiliation(s)
- Michael Camilleri
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
Poletti M, Arnauts K, Ferrante M, Korcsmaros T. Organoid-based Models to Study the Role of Host-microbiota Interactions in IBD. J Crohns Colitis 2020; 15:1222-1235. [PMID: 33341879 PMCID: PMC8256633 DOI: 10.1093/ecco-jcc/jjaa257] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut microbiota appears to play a central role in health, and alterations in the gut microbiota are observed in both forms of inflammatory bowel disease [IBD], namely Crohn's disease and ulcerative colitis. Yet, the mechanisms behind host-microbiota interactions in IBD, especially at the intestinal epithelial cell level, are not yet fully understood. Dissecting the role of host-microbiota interactions in disease onset and progression is pivotal, and requires representative models mimicking the gastrointestinal ecosystem, including the intestinal epithelium, the gut microbiota, and immune cells. New advancements in organoid microfluidics technology are facilitating the study of IBD-related microbial-epithelial cross-talk, and the discovery of novel microbial therapies. Here, we review different organoid-based ex vivo models that are currently available, and benchmark their suitability and limitations for specific research questions. Organoid applications, such as patient-derived organoid biobanks for microbial screening and 'omics technologies, are discussed, highlighting their potential to gain better mechanistic insights into disease mechanisms and eventually allow personalised medicine.
Collapse
Affiliation(s)
- Martina Poletti
- Earlham Institute, Norwich Research Park, Norwich, UK,Quadram Institute, Norwich Research Park, Norwich, UK
| | - Kaline Arnauts
- Department of Chronic Diseases, Metabolism and Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium,Department of Development and Regeneration, Stem Cell Institute Leuven [SCIL], KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium,Corresponding author: Marc Ferrante, MD, PhD, Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. Tel.: +32 16 344225;
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK,Quadram Institute, Norwich Research Park, Norwich, UK
| |
Collapse
|
16
|
Khoshbin K, Camilleri M. Effects of dietary components on intestinal permeability in health and disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G589-G608. [PMID: 32902315 PMCID: PMC8087346 DOI: 10.1152/ajpgi.00245.2020] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Altered intestinal permeability plays a role in many pathological conditions. Intestinal permeability is a component of the intestinal barrier. This barrier is a dynamic interface between the body and the food and pathogens that enter the gastrointestinal tract. Therefore, dietary components can directly affect this interface, and many metabolites produced by the host enzymes or the gut microbiota can act as signaling molecules or exert direct effects on this barrier. Our aim was to examine the effects of diet components on the intestinal barrier in health and disease states. Herein, we conducted an in-depth PubMed search based on specific key words (diet, permeability, barrier, health, disease, and disorder), as well as cross references from those articles. The normal intestinal barrier consists of multiple components in the lumen, epithelial cell layer and the lamina propria. Diverse methods are available to measure intestinal permeability. We focus predominantly on human in vivo studies, and the literature is reviewed to identify dietary factors that decrease (e.g., emulsifiers, surfactants, and alcohol) or increase (e.g., fiber, short-chain fatty acids, glutamine, and vitamin D) barrier integrity. Effects of these dietary items in disease states, such as metabolic syndrome, liver disease, or colitis are documented as examples of barrier dysfunction in the multifactorial diseases. Effects of diet on intestinal barrier function are associated with precise mechanisms in some instances; further research of those mechanisms has potential to clarify the role of dietary interventions in treating diverse pathologic states.
Collapse
Affiliation(s)
- Katayoun Khoshbin
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Cheng FS, Pan D, Chang B, Jiang M, Sang LX. Probiotic mixture VSL#3: An overview of basic and clinical studies in chronic diseases. World J Clin Cases 2020; 8:1361-1384. [PMID: 32368530 PMCID: PMC7190945 DOI: 10.12998/wjcc.v8.i8.1361] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023] Open
Abstract
Probiotics are known as “live microorganisms” and have been proven to have a health effect on hosts at the proper dose. Recently, a kind of probiotic mixture including eight live bacterial strains, VSL#3, has attracted considerable attention for its combined effect. VSL#3 is the only probiotic considered as a kind of medical food; it mainly participates in the regulation of the intestinal barrier function, including improving tight junction protein function, balancing intestinal microbial composition, regulating immune-related cytokine expression and so on. The objective of this review is to discuss the treatment action and mechanism for the administration of VSL#3 in chronic diseases of animals and humans (including children). We found that VSL#3 has a therapeutic or preventive effect in various systemic diseases per a large number of studies, including digestive systemic diseases (gastrointestinal diseases and hepatic diseases), obesity and diabetes, allergic diseases, nervous systemic diseases, atherosclerosis, bone diseases, and female reproductive systemic diseases.
Collapse
Affiliation(s)
- Fang-Shu Cheng
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Class 85 of 101k, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, the First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Min Jiang
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, the First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
18
|
Plasma claudin-3 is associated with tumor necrosis factor-alpha-induced intestinal endotoxemia in liver disease. Clin Res Hepatol Gastroenterol 2019; 43:410-416. [PMID: 31053499 DOI: 10.1016/j.clinre.2018.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate intestinal endotoxemia (IETM), intestinal permeability (IP) and cytokine activity in patients with liver cirrhosis (LC). MATERIALS AND METHODS Twenty-nine patients with chronic hepatitis B (CHB), 28 with compensated LC, 33 with decompensated LC, 24 with spontaneous bacterial peritonitis (SBP), 26 with acute-on-chronic liver failure (ACLF), and 24 with decompensated LC complicated by hepatocellular carcinoma (HCC) were recruited. Thirty-one healthy people were included as a control group. Plasma tumor necrosis factor (TNF)-α, interferon (IFN)-γ, D-lactate, endotoxin, and claudin-3 levels were assayed. Data were compared using Pearson correlation testing and analysis of variance, with P < 0.05 considered significant. RESULTS TNF-α, claudin-3, and endotoxin levels were significantly increased (P < 0.05) in the plasma of all patients with liver disease compared with that of controls, particularly in patients with decompensated LC, SBP, ACLF, or HCC (P < 0.01). IFN-γ was significantly higher in HCC than in other liver diseases (P < 0.01). Plasma D-lactate was significantly decreased in all liver diseases, except SBP (P < 0.01). TNF-α, endotoxin, and claudin-3 levels were positively correlated (P < 0.01), but correlations of IFN-γ with endotoxin or claudin-3 were not significant. The plasma D-lactate level did not significantly correlate with either TNF-α, endotoxin, or claudin-3 levels. CONCLUSION Plasma claudin-3, but not D-lactate, was found to be a marker of IP in patients with liver diseases. Elevated plasma TNF-α in such patients was likely to have injured the intestinal barrier, leading to IETM, especially in end-stage LC.
Collapse
|
19
|
Palumbo P, Lombardi F, Cifone MG, Cinque B. The Epithelial Barrier Model Shows That the Properties of VSL#3 Depend from Where it is Manufactured. Endocr Metab Immune Disord Drug Targets 2019; 19:199-206. [PMID: 30360752 PMCID: PMC6425067 DOI: 10.2174/1871530318666181022164505] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Background: VSL#3 has been extensively investigated and is currently recommended for the prevention and treatment of chronic pouchitis and ulcerative colitis. Nonetheless, in vitro and in vivo stud-ies have recently shown variability in the VSL#3 efficacy often attributed to the manufacturing process. Objective: The aim was to comparatively study the in vitro effects of two VSL#3 preparations produced in different sites (named US- and Italy-made VSL#3) on CaCo-2 epithelial barrier model in terms of trans-epithelial electrical resistance (TEER), dextran flux and expression of Tight Junctions (TJ) proteins i.e. zonulin-1 (ZO-1) and occludin, in the absence or presence of a heat stress-related damage of mono-layer. Methods: TEER was evaluated on CaCo-2 differentiated monolayers. Epithelial permeability of polarized monolayers was assessed by measuring the FITC-labeled dextran flux from the apical to basolateral chambers. ZO-1/occludin levels were analyzed by western blot analysis. A set of experiments was per-formed to compare the effects of both VSL#3 on TEER values, dextran flux and ZO-1/occludin expres-sion in CaCo-2 monolayers after heat stress exposure. Results: US- and Italy-made VSL#3 have opposing effects on TEER values, dextran flux, and ZO-1/occludin expression, being all these parameters negatively influenced just by Italy-made product. US-made probiotic did not affect baseline TEER, dextran flux and ZO-1 expression and strongly increased occludin levels. Of note, pre-treatment of monolayer with US-made VSL#3, but not Italy-made product, totally prevented the heat-induced epithelial barrier integrity loss. Conclusion: Our data trigger the need for reassessing efficacy or safety of the Italy-made VSL#3 con-sidering intestinal epithelial barrier plays an important role in maintaining host health.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila - Building Delta 6, Coppito, L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila - Building Delta 6, Coppito, L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila - Building Delta 6, Coppito, L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila - Building Delta 6, Coppito, L'Aquila, Italy
| |
Collapse
|
20
|
Leech B, Schloss J, Steel A. Treatment Interventions for the Management of Intestinal Permeability: A Cross-Sectional Survey of Complementary and Integrative Medicine Practitioners. J Altern Complement Med 2019; 25:623-636. [PMID: 31038350 DOI: 10.1089/acm.2018.0374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives: This study aims to explore the treatment interventions complementary and integrative medicine (CIM) practitioners use in the management of an emerging health condition, increased intestinal permeability (IP), and the association these methods have on the observed time to resolve this condition. Design and setting: A cross-sectional survey of Australian naturopaths, nutritionists, and Western herbal medicine practitioners was undertaken (n = 227) through the Practitioner Research and Collaboration Initiative (PRACI) network. Outcome measures: Frequencies and percentages of the treatment methods, including chi-square analysis to examine the associations between treatment methods and observed time to resolve IP. Results: Thirty-six CIM practitioners responded to the survey (response rate 15.9%). CIM practitioners were found to use a multimodal approach in the management of IP with 92.6% of respondents using three or more categories of treatment interventions (nutritional, herbal, dietary, and lifestyle) with a mean total of 43.0 ± 24.89 single treatment interventions frequently prescribed. The main treatments prescribed in the management of IP were zinc (85.2%), probiotics: multistrain (77.8%), vitamin D (75.0%), glutamine (73.1%), Curcuma longa (73.1%), and Saccharomyces boulardii (70.4%). CIM practitioners also advocate patients with IP to reduce alcohol (96.3%), gluten (85.2%), and dairy (75.0%) consumption. Evaluation of antibiotics (75.0%) and nonsteroidal anti-inflammatory drugs (73.1%) prescriptions were frequently advised by CIM practitioners. A longer observed time to resolve IP was seen in CIM practitioners who did not reduce intense exercise in the management of IP (p = 0.02). Conclusions: This study represents the first survey of the treatments prescribed by CIM practitioners for IP and suggests that CIM practitioners use numerous integrative treatment methods for the management of IP. The treatment interventions frequently prescribed by CIM practitioners align with preclinical research, suggesting that CIM practitioners prescribe in accordance with the published literature. The findings of this study contribute to the implementation of clinical research in the management of IP, which considers multiple concurrent treatments.
Collapse
Affiliation(s)
- Bradley Leech
- 1 Office of Research, Endeavour College of Natural Health, Fortitude Valley, QLD, Australia.,2 Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Janet Schloss
- 1 Office of Research, Endeavour College of Natural Health, Fortitude Valley, QLD, Australia
| | - Amie Steel
- 1 Office of Research, Endeavour College of Natural Health, Fortitude Valley, QLD, Australia.,2 Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
21
|
The Use of Defined Microbial Communities To Model Host-Microbe Interactions in the Human Gut. Microbiol Mol Biol Rev 2019; 83:83/2/e00054-18. [PMID: 30867232 DOI: 10.1128/mmbr.00054-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human intestinal ecosystem is characterized by a complex interplay between different microorganisms and the host. The high variation within the human population further complicates the quest toward an adequate understanding of this complex system that is so relevant to human health and well-being. To study host-microbe interactions, defined synthetic bacterial communities have been introduced in gnotobiotic animals or in sophisticated in vitro cell models. This review reinforces that our limited understanding has often hampered the appropriate design of defined communities that represent the human gut microbiota. On top of this, some communities have been applied to in vivo models that differ appreciably from the human host. In this review, the advantages and disadvantages of using defined microbial communities are outlined, and suggestions for future improvement of host-microbe interaction models are provided. With respect to the host, technological advances, such as the development of a gut-on-a-chip system and intestinal organoids, may contribute to more-accurate in vitro models of the human host. With respect to the microbiota, due to the increasing availability of representative cultured isolates and their genomic sequences, our understanding and controllability of the human gut "core microbiota" are likely to increase. Taken together, these advancements could further unravel the molecular mechanisms underlying the human gut microbiota superorganism. Such a gain of insight would provide a solid basis for the improvement of pre-, pro-, and synbiotics as well as the development of new therapeutic microbes.
Collapse
|
22
|
Makielski K, Cullen J, O'Connor A, Jergens AE. Narrative review of therapies for chronic enteropathies in dogs and cats. J Vet Intern Med 2019; 33:11-22. [PMID: 30523666 PMCID: PMC6335544 DOI: 10.1111/jvim.15345] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 10/05/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The optimal medical treatment for chronic enteropathy (CE) in dogs and cats is controversial. Sequential treatment using diet, antimicrobials, and immunosuppressive drugs is the most common strategy used by clinicians. OBJECTIVES To review the evidence for the effectiveness of dietary, drug, and alternative health interventions for inducing clinical remission in dogs and cats with CE. ANIMALS Retrospective study of dogs and cats with a diagnosis of chronic enteropathy. METHODS MEDLINE and Centre for Agriculture and Bioscience International (CABI) databases (1950 to March 2017) were searched for randomized controlled trials (RCTs), observational studies, and case series. The primary outcome was induction of clinical remission. All studies were evaluated using the quality of evidence grading guidelines (I-IV), which assign a score defining the strength and quality of the evidence. RESULTS Twenty-two studies (11 RCTs in dogs and 2 in cats and 9 cohort studies or case series) met the inclusion criteria for inducing remission of gastrointestinal (GI) signs. Of the 13 RCTs achieving grade I scores, 10 studies (totaling 218 dogs and 65 cats) compared single treatment: diet (n = 3), immunosuppressives (n = 3), antimicrobials (n = 2), anti-inflammatory drugs (n = 1), and probiotics (n = 1). Three case series (grade III) reported clinical remission using an elimination diet fed to 55 cats and use of enrofloxacin to induce remission in dogs with granulomatous colitis (2 studies totaling 16 dogs). CONCLUSIONS AND CLINICAL IMPORTANCE The current evidence for treatment of CE is much greater in dogs than in cats. There is sufficient strong evidence to recommend the use of therapeutic GI diets, glucocorticoids, enrofloxacin, or some combination of these in dogs with CE. Therapeutic GI diets and glucocorticoids are most useful in cats with CE.
Collapse
Affiliation(s)
- Kelly Makielski
- Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowa
| | - Jonah Cullen
- Department of Veterinary Diagnostic and Production Animal MedicineCollege of Veterinary Medicine, Iowa State UniversityAmesIowa
| | - Annette O'Connor
- Department of Veterinary Diagnostic and Production Animal MedicineCollege of Veterinary Medicine, Iowa State UniversityAmesIowa
| | - Albert E. Jergens
- Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowa
| |
Collapse
|
23
|
Abstract
The human gut microbiome performs prodigious physiological functions such as production of microbial metabolites, modulation of nutrient digestion and drug metabolism, control of immune system, and prevention of infection. Paradoxically, gut microbiome can also negatively orchestrate the host responses in diseases or chronic disorders, suggesting that the regulated and balanced host-gut microbiome crosstalk is a salient prerequisite in gastrointestinal physiology. To understand the pathophysiological role of host-microbiome crosstalk, it is critical to recreate in vivo relevant models of the host-gut microbiome ecosystem in human. However, controlling the multi-species microbial communities and their uncontrolled growth has remained a notable technical challenge. Furthermore, conventional two-dimensional (2D) or 3D culture systems do not recapitulate multicellular microarchitectures, mechanical dynamics, and tissue-specific functions. Here, we review recent advances and current pitfalls of in vitro and ex vivo models that display human GI functions. We also discuss how the disruptive technologies such as 3D organoids or a human organ-on-a-chip microphysiological system can contribute to better emulate host-gut microbiome crosstalks in health and disease. Finally, the medical and pharmaceutical significance of the gut microbiome-based personalized interventions is underlined as a future perspective.
Collapse
|
24
|
Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, Garcia F, Olivares M, Rodríguez-Cabezas ME, Gálvez J. Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition. Mol Nutr Food Res 2017; 61. [PMID: 28752563 DOI: 10.1002/mnfr.201700144] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
SCOPE To compare the intestinal anti-inflammatory effects of two probiotics Lactobacillus fermentum and Lactobacillus salivarius in mouse colitis, focusing on their impact on selected miRNAs and microbiota composition. METHODS AND RESULTS Male C57BL/6J mice were randomly assigned to four groups (n = 10): non-colitic, DSS colitic and two colitic groups treated with probiotics (5 × 108 CFU/mouse/day). Both probiotics ameliorated macroscopic colonic damage. They improved the colonic expression of markers involved in the immune response, and the expression of miR-155 and miR-223. L. fermentum also restored miR-150 and miR-143 expression, also linked to the preservation of the intestinal barrier function. Besides, these beneficial effects were associated with the amelioration of the microbiota dysbiosis and a recovery of the SCFAs- and lactic acid-producing bacterial populations, although only L. fermentum improved Chao richness, Pielou evenness and Shannon diversity. Moreover, L. fermentum also restored the Treg cell population in MLNs and the Th1/Th2 cytokine balance. CONCLUSION Both probiotics exerted intestinal anti-inflammatory effects in DSS-mouse colitis, maybe due to their ability to restore the intestinal microbiota homeostasis and modulate the immune response. L. fermentum showed a greater beneficial effect compared to L. salivarius, which makes it more interesting for future studies.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Jose Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - M Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Natalia Chueca
- Department of Microbiology, ibs.GRANADA, Complejo Hospitalario Universitario de Granada, ibs.GRANADA, Granada, Spain
| | - Federico Garcia
- Department of Microbiology, ibs.GRANADA, Complejo Hospitalario Universitario de Granada, ibs.GRANADA, Granada, Spain
| | | | - M Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
25
|
Krishnan M, McCole DF. T cell protein tyrosine phosphatase prevents STAT1 induction of claudin-2 expression in intestinal epithelial cells. Ann N Y Acad Sci 2017; 1405:116-130. [PMID: 28804910 DOI: 10.1111/nyas.13439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
T cell protein tyrosine phosphatase (TCPTP) dephosphorylates a number of substrates, including JAK-STAT (signal transducer and activator of transcription) signaling proteins, which are activated by interferon (IFN)-γ, a major proinflammatory cytokine involved in conditions such as inflammatory bowel disease. A critical function of the intestinal epithelium is formation of a selective barrier to luminal contents. The structural units of the epithelium that regulate barrier function are the tight junctions (TJs), and the protein composition of the TJ determines the tightness of the barrier. Claudin-2 is a TJ protein that increases permeability to cations and reduces transepithelial electrical resistance (TER). We previously showed that transient knockdown (KD) of TCPTP permits increased expression of claudin-2 by IFN-γ. Here, we demonstrate that the decreased TER in TCPTP-deficient epithelial cells is alleviated by STAT1 KD. Moreover, increased claudin-2 in TCPTP-deficient cells requires enhanced STAT1 activation and STAT1 binding to the CLDN2 promoter. We also show that mutation of this STAT-binding site prevents elevated CLDN2 promoter activity in TCPTP-deficient epithelial cells. In summary, we demonstrate that TCPTP protects the intestinal epithelial barrier by restricting STAT-induced claudin-2 expression. This is a potential mechanism by which loss-of-function mutations in the gene encoding TCPTP may contribute to barrier defects in chronic intestinal inflammatory disease.
Collapse
Affiliation(s)
- Moorthy Krishnan
- Division of Biomedical Sciences, University of California, Riverside, California
| | - Declan F McCole
- Division of Biomedical Sciences, University of California, Riverside, California
| |
Collapse
|
26
|
do Carmo FLR, Rabah H, Huang S, Gaucher F, Deplanche M, Dutertre S, Jardin J, Le Loir Y, Azevedo V, Jan G. Propionibacterium freudenreichii Surface Protein SlpB Is Involved in Adhesion to Intestinal HT-29 Cells. Front Microbiol 2017; 8:1033. [PMID: 28642747 PMCID: PMC5462946 DOI: 10.3389/fmicb.2017.01033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/23/2017] [Indexed: 12/16/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium traditionally used as a cheese ripening starter and more recently for its probiotic abilities based on the release of beneficial metabolites. In addition to these metabolites (short-chain fatty acids, vitamins, and bifidogenic factor), P. freudenreichii revealed an immunomodulatory effect confirmed in vivo by the ability to protect mice from induced acute colitis. This effect is, however, highly strain-dependent. Local action of metabolites and of immunomodulatory molecules is favored by the ability of probiotics to adhere to the host cells. This property depends on key surface compounds, still poorly characterized in propionibacteria. In the present study, we showed different adhesion rates to cultured human intestinal cells, among strains of P. freudenreichii. The most adhesive one was P. freudenreichii CIRM-BIA 129, which is known to expose surface-layer proteins. We evidenced here the involvement of these proteins in adhesion to cultured human colon cells. We then aimed at deciphering the mechanisms involved in adhesion. Adhesion was inhibited by antibodies raised against SlpB, one of the surface-layer proteins in P. freudenreichii CIRM-BIA 129. Inactivation of the corresponding gene suppressed adhesion, further evidencing the key role of slpB product in cell adhesion. This work confirms the various functions fulfilled by surface-layer proteins, including probiotic/host interactions. It opens new perspectives for the understanding of probiotic determinants in propionibacteria, and for the selection of the most efficient strains within the P. freudenreichii species.
Collapse
Affiliation(s)
- Fillipe L R do Carmo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Houem Rabah
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
- Pôle Agronomique OuestRennes, France
| | - Song Huang
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow UniversitySuzhou, China
| | - Floriane Gaucher
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Martine Deplanche
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Stéphanie Dutertre
- Microscopy Rennes Imaging Center, Biosit - UMS CNRS 3480/US, INSERM 018, University of Rennes 1Rennes, France
| | - Julien Jardin
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Yves Le Loir
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Vasco Azevedo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| | - Gwénaël Jan
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| |
Collapse
|