1
|
Schuler C, Foti F, Perren L, Mamie C, Weder B, Stokmaier M, de Vallière C, Heuchel R, Ruiz PA, Rogler G, Hausmann M. Deletion of Smad7 Ameliorates Intestinal Inflammation and Contributes to Fibrosis. Inflamm Bowel Dis 2022; 29:647-660. [PMID: 36282601 DOI: 10.1093/ibd/izac221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Patients suffering from inflammatory bowel diseases (IBDs) express increased mucosal levels of transforming growth factor (TGF)-β compared with non-IBD controls. SMAD7 negatively regulates TGF-β signaling. An earlier study aiming to target Smad7 showed a lack of clinical benefit. It remains unknown whether inhibition of SMAD7 is beneficial in specific settings of IBD. We evaluated the effect of Smad7 deficiency on inflammation, fibrogenesis, and wound healing. METHODS For the initiation of fibrosis in Smad7-/- (Smad7Δex-I) CD-1 mice, the dextran sodium sulfate-induced chronic colitis model and the heterotopic transplantation model of fibrosis were used. Wound closure of fibroblasts from Smad7-/- mice was determined using culture inserts and electric cell-substrate impedance sensing in vitro. RESULTS In dextran sodium sulfate-induced chronic colitis, Smad7 deficiency was associated with ameliorated inflammation, as evidenced by decreased clinical score, histological score, and myeloperoxidase activity. Absence of SMAD7 decreased T-cell accumulation in colonic tissue and tumor necrosis factor (TNF) mRNA expression levels. Smad7-/- mice showed a significant increase in hydroxyproline and collagen content, as well as ColIVa1 mRNA expression. Wild type mice transplanted with terminal ileum from Smad7-/- mice in the heterotopic animal model for intestinal fibrosis showed a significant increase in collagen content and protein expression of α-smooth muscle actin. CONCLUSIONS Smad7 deficiency is associated with a decrease in intestinal inflammation and an increase in fibrosis. Targeting SMAD7 constitutes a potential new treatment option for IBD; progression of disease-associated fibrosis should be considered.
Collapse
Affiliation(s)
- Cordelia Schuler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Federica Foti
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Leonie Perren
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Michelle Stokmaier
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Weder B, Schefer F, van Haaften WT, Patsenker E, Stickel F, Mueller S, Hutter S, Schuler C, Baebler K, Wang Y, Mamie C, Dijkstra G, de Vallière C, Imenez Silva PH, Wagner CA, Frey-Wagner I, Ruiz PA, Seuwen K, Rogler G, Hausmann M. New Therapeutic Approach for Intestinal Fibrosis Through Inhibition of pH-Sensing Receptor GPR4. Inflamm Bowel Dis 2022; 28:109-125. [PMID: 34320209 DOI: 10.1093/ibd/izab140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients suffering from inflammatory bowel diseases (IBDs) express increased mucosal levels of pH-sensing receptors compared with non-IBD controls. Acidification leads to angiogenesis and extracellular matrix remodeling. We aimed to determine the expression of pH-sensing G protein-coupled receptor 4 (GPR4) in fibrotic lesions in Crohn's disease (CD) patients. We further evaluated the effect of deficiency in Gpr4 or its pharmacologic inhibition. METHODS Paired samples from fibrotic and nonfibrotic terminal ileum were obtained from CD patients undergoing ileocaecal resection. The effects of Gpr4 deficiency were assessed in the spontaneous Il-10-/- and the chronic dextran sodium sulfate (DSS) murine colitis model. The effects of Gpr4 deficiency and a GPR4 antagonist (39c) were assessed in the heterotopic intestinal transplantation model. RESULTS In human terminal ileum, increased expression of fibrosis markers was accompanied by an increase in GPR4 expression. A positive correlation between the expression of procollagens and GPR4 was observed. In murine disease models, Gpr4 deficiency was associated with a decrease in angiogenesis and fibrogenesis evidenced by decreased vessel length and expression of Edn, Vegfα, and procollagens. The heterotopic animal model for intestinal fibrosis, transplanted with terminal ileum from Gpr4-/- mice, revealed a decrease in mRNA expression of fibrosis markers and a decrease in collagen content and layer thickness compared with grafts from wild type mice. The GPR4 antagonist decreased collagen deposition. The GPR4 expression was also observed in human and murine intestinal fibroblasts. The GPR4 inhibition reduced markers of fibroblast activation stimulated by low pH, notably Acta2 and cTgf. CONCLUSIONS Expression of GPR4 positively correlates with the expression of profibrotic genes and collagen. Deficiency of Gpr4 is associated with a decrease in angiogenesis and fibrogenesis. The GPR4 antagonist decreases collagen deposition. Targeting GPR4 with specific inhibitors may constitute a new treatment option for IBD-associated fibrosis.
Collapse
Affiliation(s)
- Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Fabian Schefer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Wouter Tobias van Haaften
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Eleonora Patsenker
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Mueller
- Department of Internal Medicine and Center for Alcohol Research, Salem Medical Center University Hospital Heidelberg, Heidelberg, Germany
| | - Senta Hutter
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Cordelia Schuler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Yu Wang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland and National Center of Competence in Research Kidney Control of Homeostasis, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland and National Center of Competence in Research Kidney Control of Homeostasis, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, Forum1 Novartis Campus, Basel, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Xie H, Jiao Y, Zhou X, Liao X, Chen J, Chen H, Chen L, Yu S, Deng Q, Sun L, Xu X, Wang J. Integrin αvβ6 contributes to the development of intestinal fibrosis via the FAK/AKT signaling pathway. Exp Cell Res 2021; 411:113003. [PMID: 34979108 DOI: 10.1016/j.yexcr.2021.113003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022]
Abstract
Intestinal fibrosis is one of the most severe complications of inflammatory bowel disease (IBD) and frequently requires surgery due to intestinal obstruction. Integrin αvβ6, which is mainly regulated by the integrin β6 subunit gene (ITGB6), is a special integrin subtype expressed only in epithelial cells. In our previous study, we found integrin αvβ6 can promote the development of IBD, but the role of integrin αvβ6 in intestinal fibrosis remains unclear. In this study, we observed a gradual increase of ITGB6 mRNA expression from normal region to stenotic region of IBD patients' intestinal specimens. Next, we established a dextran sulfate sodium (DSS)-induced intestinal fibrosis model and a heterotopic intestinal transplant model, and found intestinal fibrosis was decreased in ITGB6-deficient mice compared to wild-type (WT) mice. Furthermore, we performed RNA-sequencing and KEGG pathway analysis on intestinal tissues from ITGB6-overexpressing transgenic mice and WT mice, and found multiple pathways containing ITGB6, are related to the activation of focal adhesion kinase (FAK); finding was confirmed by Western blot. At last, we generated a heterotopic intestinal transplant model found the FAK/AKT pathway was inhibited in ITGB6-deficient mice. In conclusion, our data demonstrate that integrin αvβ6 promotes the pathogenesis of intestinal fibrosis by FAK/AKT pathway, making integrin αvβ6 a potential therapeutic target to prevent this condition.
Collapse
Affiliation(s)
- Haiting Xie
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Inflammatory Bowel Disease, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yurong Jiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Inflammatory Bowel Disease, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinbin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiujun Liao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Inflammatory Bowel Disease, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiyan Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liubo Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shaoju Yu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Inflammatory Bowel Disease, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qun Deng
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Inflammatory Bowel Disease, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lifeng Sun
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoming Xu
- Center for Inflammatory Bowel Disease, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jian Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Inflammatory Bowel Disease, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Vieujean S, Hu S, Bequet E, Salee C, Massot C, Bletard N, Pierre N, Quesada Calvo F, Baiwir D, Mazzucchelli G, De Pauw E, Coimbra Marques C, Delvenne P, Rieder F, Louis E, Meuwis MA. Potential Role of Epithelial Endoplasmic Reticulum Stress and Anterior Gradient Protein 2 Homologue in Crohn's Disease Fibrosis. J Crohns Colitis 2021; 15:1737-1750. [PMID: 33822017 PMCID: PMC8861373 DOI: 10.1093/ecco-jcc/jjab061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Intestinal fibrosis is a common complication of Crohn's disease [CD]. It is characterised by an accumulation of fibroblasts differentiating into myofibroblasts secreting excessive extracellular matrix. The potential role of the intestinal epithelium in this fibrotic process remains poorly defined. METHODS We performed a pilot proteomic study comparing the proteome of surface epithelium, isolated by laser-capture microdissection, in normal and fibrotic zones of resected ileal CD strictures [13 zones collected in five patients]. Proteins of interests were validated by immunohistochemistry [IHC] in ileal and colonic samples of stricturing CD [n = 44], pure inflammatory CD [n = 29], and control [n = 40] subjects. The pro-fibrotic role of one selected epithelial protein was investigated through in-vitro experiments using HT-29 epithelial cells and a CCD-18Co fibroblast to myofibroblast differentiation model. RESULTS Proteomic study revealed an endoplasmic reticulum [ER] stress proteins increase in the epithelium of CD ileal fibrotic strictures, including anterior gradient protein 2 homologue [AGR2] and binding-immunoglobulin protein [BiP]. This was confirmed by IHC. In HT-29 cells, tunicamycin-induced ER stress triggered AGR2 intracellular expression and its secretion. Supernatant of these HT-29 cells, pre-conditioned by tunicamycin, led to a myofibroblastic differentiation when applied on CCD-18Co fibroblasts. By using recombinant protein and blocking agent for AGR2, we demonstrated that the secretion of this protein by epithelial cells can play a role in the myofibroblastic differentiation. CONCLUSIONS The development of CD fibrotic strictures could involve epithelial ER stress and particularly the secretion of AGR2.
Collapse
Affiliation(s)
- Sophie Vieujean
- Corresponding author: Sophie Vieujean, MD, Laboratory of Translational Gastroenterology, University of Liège, GIGA-Research, +2, B34, Avenue de l’hôpital 1, 4000 Liège, Belgium. Tel.: +32-4-3667256; fax: +32-4-3667889; mail:
| | | | - Emeline Bequet
- Laboratory of Translational Gastroenterology, University of Liège, Liège, Belgium,Division of Hepato-Gastroenterology, Department of Paediatrics, University Hospital of Liège, Liège, Belgium
| | - Catherine Salee
- Laboratory of Translational Gastroenterology, University of Liège, Liège, Belgium
| | - Charlotte Massot
- Laboratory of Translational Gastroenterology, University of Liège, Liège, Belgium
| | - Noëlla Bletard
- Pathological Anatomy and Cytology, University Hospital CHU of Liège, Liège, Belgium
| | - Nicolas Pierre
- Laboratory of Translational Gastroenterology, University of Liège, Liège, Belgium
| | | | | | - Gabriel Mazzucchelli
- MolSys Research Unit, Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- MolSys Research Unit, Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium
| | | | - Philippe Delvenne
- Pathological Anatomy and Cytology, University Hospital CHU of Liège, Liège, Belgium
| | - Florian Rieder
- Gastroenterology, Hepatology & Nutrition, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
5
|
Shawki A, Ramirez R, Spalinger MR, Ruegger PM, Sayoc-Becerra A, Santos AN, Chatterjee P, Canale V, Mitchell JD, Macbeth JC, Gries CM, Tremblay ML, Hsiao A, Borneman J, McCole DF. The autoimmune susceptibility gene, PTPN2, restricts expansion of a novel mouse adherent-invasive E. coli. Gut Microbes 2020; 11:1547-1566. [PMID: 32586195 PMCID: PMC7524159 DOI: 10.1080/19490976.2020.1775538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis involves significant contributions from genetic and environmental factors. Loss-of-function single-nucleotide polymorphisms (SNPs) in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene increase IBD risk and are associated with altered microbiome population dynamics in IBD. Expansion of intestinal pathobionts, such as adherent-invasive E. coli (AIEC), is strongly implicated in IBD pathogenesis as AIEC increases pro-inflammatory cytokine production and alters tight junction protein regulation - suggesting a potential mechanism of pathogen-induced barrier dysfunction and inflammation. We aimed to determine if PTPN2 deficiency alters intestinal microbiome composition to promote expansion of specific bacteria with pathogenic properties. In mice constitutively lacking Ptpn2, we identified increased abundance of a novel mouse AIEC (mAIEC) that showed similar adherence and invasion of intestinal epithelial cells, but greater survival in macrophages, to the IBD-associated AIEC, LF82. Furthermore, mAIEC caused disease when administered to mice lacking segmented-filamentous bacteria (SFB), and in germ-free mice but only when reconstituted with a microbiome, thus supporting its classification as a pathobiont, not a pathogen. Moreover, mAIEC infection increased the severity of, and prevented recovery from, induced colitis. Although mAIEC genome sequence analysis showed >90% similarity to LF82, mAIEC contained putative virulence genes with >50% difference in gene/protein identities from LF82 indicating potentially distinct genetic features of mAIEC. We show for the first time that an IBD susceptibility gene, PTPN2, modulates the gut microbiome to protect against a novel pathobiont. This study generates new insights into gene-environment-microbiome interactions in IBD and identifies a new model to study AIEC-host interactions.
Collapse
Affiliation(s)
- Ali Shawki
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Rocio Ramirez
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Marianne R. Spalinger
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Paul M. Ruegger
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Alina N. Santos
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Pritha Chatterjee
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Vinicius Canale
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Jonathan D. Mitchell
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - John C. Macbeth
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Casey M. Gries
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | | | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Declan F. McCole
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA
| |
Collapse
|
6
|
van Haaften WT, Blokzijl T, Hofker HS, Olinga P, Dijkstra G, Bank RA, Boersema M. Intestinal stenosis in Crohn's disease shows a generalized upregulation of genes involved in collagen metabolism and recognition that could serve as novel anti-fibrotic drug targets. Therap Adv Gastroenterol 2020; 13:1756284820952578. [PMID: 32922514 PMCID: PMC7457685 DOI: 10.1177/1756284820952578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/31/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) can be complicated by intestinal fibrosis. Pharmacological therapies against intestinal fibrosis are not available. The aim of this study was to determine whether pathways involved in collagen metabolism are upregulated in intestinal fibrosis, and to discuss which drugs might be suitable to inhibit excessive extracellular matrix formation targeting these pathways. METHODS Human fibrotic and non-fibrotic terminal ileum was obtained from patients with CD undergoing ileocecal resection due to stenosis. Genes involved in collagen metabolism were analyzed using a microfluidic low-density TaqMan array. A literature search was performed to find potential anti-fibrotic drugs that target proteins/enzymes involved in collagen synthesis, its degradation and its recognition. RESULTS mRNA expression of collagen type I (COL1A1, 0.76 ± 0.28 versus 37.82 ± 49.85, p = 0.02) and III (COL3A1, 2.01 ± 2.61 versus 68.65 ± 84.07, p = 0.02) was increased in fibrotic CD compared with non-fibrotic CD. mRNA expression of proteins involved in both intra- and extracellular post-translational modification of collagens (prolyl- and lysyl hydroxylases, lysyl oxidases, chaperones), collagen-degrading enzymes (MMPs and cathepsin-K), and collagen receptors were upregulated in the fibrosis-affected part. A literature search on the upregulated genes revealed several potential anti-fibrotic drugs. CONCLUSION Expression of genes involved in collagen metabolism in intestinal fibrosis affected terminal ileum of patients with CD reveals a plethora of drug targets. Inhibition of post-translational modification and altering collagen metabolism might attenuate fibrosis formation in the intestine in CD. Which compound has the highest potential depends on a combination anti-fibrotic efficacy and safety, especially since some of the enzymes play key roles in the physiology of collagen.
Collapse
Affiliation(s)
- Wouter Tobias van Haaften
- Department of Gastroenterology and Hepatology,
University Medical Center Groningen, University of Groningen, Groningen, the
Netherlands
- Department of Pharmaceutical Technology and
Biopharmacy, University of Groningen, Groningen, the Netherlands
| | - Tjasso Blokzijl
- Department of Laboratory Medicine, University of
Groningen, University Medical Center Groningen, Groningen, The
Netherlands
| | - Hendrik Sijbrand Hofker
- Department of Surgery, University Medical Center
Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and
Biopharmacy, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713
AV, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology,
University Medical Center Groningen, University of Groningen, Groningen, the
Netherlands
| | - Ruud A. Bank
- Department of Pathology and Medical Biology,
University Medical Center Groningen, University of Groningen, Groningen, the
Netherlands
| | - Miriam Boersema
- Department of Pharmaceutical Technology and
Biopharmacy, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Jing H, Wang S, Wang Y, Shen N, Gao XJ. Environmental contaminant ammonia triggers epithelial-to-mesenchymal transition-mediated jejunal fibrosis with the disassembly of epithelial cell-cell contacts in chicken. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138686. [PMID: 32302811 DOI: 10.1016/j.scitotenv.2020.138686] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (NH3) is an environmental contaminant that is causing increasing problems with human and animal health due to the development of poultry industry. There are limited studies on the effect of NH3 inhalation toxicity on the intestinal tract of animals, and underlying molecular mechanisms remain unclear. In the present study, we established a chicken model of NH3 aspiration-induced injury for 42 days and observed histopathological changes of the jejunum. Tandem mass tag-based quantitative proteomic analysis was applied to investigate changes in the protein profile in the jejunum tissue of chickens that were exposed to NH3. Overall, 48 significantly differentially expressed proteins (DEPs) were identified. GO and KEGG analyses revealed that most DEPs were closely related to epithelial-to-mesenchymal transition (EMT), cell-cell junctions, and fibrosis-related factors. Regarding fibrosis, type I collagen and fibronectin were significantly increased. With respect to EMT, epithelial marker proteins (such as E-cadherin and keratin) were repressed, while mesenchymal marker proteins (such as vimentin) were activated. Loss of epithelial cell-cell junctions (such as tight junctions, adherens junctions and desmosomes) were observed. Additionally, overexpression of transforming growth factor-beta (TGF-β) may play a key role in the EMT process and fibrosis. Taken together, these findings suggested that NH3 triggered the EMT and disassembly of epithelial cell-cell contacts, resulting in jejunal fibrosis that was mediated by TGF-β in chickens. The results of our study will contribute to provide a technical reference regarding the research methods of intestinal toxicity of NH3 and have largely regulatory implications for ecological risk assessment of human health.
Collapse
Affiliation(s)
- Hongyuan Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Naiwen Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Raselli T, Wyss A, Gonzalez Alvarado MN, Weder B, Mamie C, Spalinger MR, Van Haaften WT, Dijkstra G, Sailer AW, Imenez Silva PH, Wagner CA, Tosevski V, Leibl S, Scharl M, Rogler G, Hausmann M, Misselwitz B. The Oxysterol Synthesising Enzyme CH25H Contributes to the Development of Intestinal Fibrosis. J Crohns Colitis 2019; 13:1186-1200. [PMID: 31220227 PMCID: PMC6751338 DOI: 10.1093/ecco-jcc/jjz039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis and stenosis are common complications of Crohn's disease [CD], frequently requiring surgery. Anti-inflammatory strategies can only partially prevent fibrosis; hence, anti-fibrotic therapies remain an unmet clinical need. Oxysterols are oxidised cholesterol derivatives with important roles in various biological processes. The enzyme cholesterol 25-hydroxylase [CH25H] converts cholesterol to 25-hydroxycholesterol [25-HC], which modulates immune responses and oxidative stress. In human intestinal samples from CD patients, we found a strong correlation of CH25H mRNA expression with the expression of fibrosis markers. We demonstrate reduced intestinal fibrosis in mice deficient for the CH25H enzyme, using the sodium dextran sulphate [DSS]-induced chronic colitis model. Additionally, using a heterotopic transplantation model of intestinal fibrosis, we demonstrate reduced collagen deposition and lower concentrations of hydroxyproline in CH25H knockouts. In the heterotopic transplant model, CH25H was expressed in fibroblasts. Taken together, our findings indicate an involvement of oxysterol synthesis in the pathogenesis of intestinal fibrosis.
Collapse
Affiliation(s)
- T Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - A Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M N Gonzalez Alvarado
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - B Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - C Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - W T Van Haaften
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A W Sailer
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - C A Wagner
- Institute of Physiology, Zurich University, Zurich, Switzerland
| | - V Tosevski
- Mass Cytometry Facility, Zurich University, Zurich, Switzerland
| | - Sebastian Leibl
- Institute of Pathology and Molecular Pathology, University Hospital Zurich and Zurich University, Zurich, Switzerland
| | - M Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - G Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - B Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
- Corresponding author: Dr. Benjamin Misselwitz, Dept. of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Freiburgstr 18, 3010 Bern, Switzerland.
| |
Collapse
|
9
|
Lovisa S, Genovese G, Danese S. Role of Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. J Crohns Colitis 2019; 13:659-668. [PMID: 30520951 DOI: 10.1093/ecco-jcc/jjy201] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal fibrosis is an inevitable complication in patients with inflammatory bowel disease [IBD], occurring in its two major clinical manifestations: ulcerative colitis and Crohn's disease. Fibrosis represents the final outcome of the host reaction to persistent inflammation, which triggers a prolonged wound healing response resulting in the excessive deposition of extracellular matrix, eventually leading to intestinal dysfunction. The process of epithelial-to-mesenchymal transition [EMT] represents an embryonic program relaunched during wound healing, fibrosis and cancer. Here we discuss the initial observations and the most recent findings highlighting the role of EMT in IBD-associated intestinal fibrosis and fistulae formation. In addition, we briefly review knowledge on the cognate process of endothelial-to-mesenchymal transition [EndMT]. Understanding EMT functionality and the molecular mechanisms underlying the activation of this mesenchymal programme will permit designing new therapeutic strategies to halt the fibrogenic response in the intestine.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Cancer Biology, Metastasis Research Center, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Giannicola Genovese
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Silvio Danese
- IBD Center, Department of Gastroenterology, Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
10
|
Hutter S, van Haaften WT, Hünerwadel A, Baebler K, Herfarth N, Raselli T, Mamie C, Misselwitz B, Rogler G, Weder B, Dijkstra G, Meier CF, de Vallière C, Weber A, Imenez Silva PH, Wagner CA, Frey-Wagner I, Ruiz PA, Hausmann M. Intestinal Activation of pH-Sensing Receptor OGR1 [GPR68] Contributes to Fibrogenesis. J Crohns Colitis 2018; 12:1348-1358. [PMID: 30165600 DOI: 10.1093/ecco-jcc/jjy118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS pH-sensing ovarian cancer G-protein coupled receptor-1 [OGR1/GPR68] is regulated by key inflammatory cytokines. Patients suffering from inflammatory bowel diseases [IBDs] express increased mucosal levels of OGR1 compared with non-IBD controls. pH-sensing may be relevant for progression of fibrosis, as extracellular acidification leads to fibroblast activation and extracellular matrix remodelling. We aimed to determine OGR1 expression in fibrotic lesions in the intestine of Crohn's disease [CD] patients, and the effect of Ogr1 deficiency in fibrogenesis. METHODS Human fibrotic and non-fibrotic terminal ileum was obtained from CD patients undergoing ileocaecal resection due to stenosis. Gene expression of fibrosis markers and pH-sensing receptors was analysed. For the initiation of fibrosis in vivo, spontaneous colitis by Il10-/-, dextran sodium sulfate [DSS]-induced chronic colitis and the heterotopic intestinal transplantation model were used. RESULTS Increased expression of fibrosis markers was accompanied by an increase in OGR1 [2.71 ± 0.69 vs 1.18 ± 0.03, p = 0.016] in fibrosis-affected human terminal ileum, compared with the non-fibrotic resection margin. Positive correlation between OGR1 expression and pro-fibrotic cytokines [TGFB1 and CTGF] and pro-collagens was observed. The heterotopic animal model for intestinal fibrosis transplanted with terminal ileum from Ogr1-/- mice showed a decrease in mRNA expression of fibrosis markers as well as a decrease in collagen layer thickness and hydroxyproline compared with grafts from wild-type mice. CONCLUSIONS OGR1 expression was correlated with increased expression levels of pro-fibrotic genes and collagen deposition. Ogr1 deficiency was associated with a decrease in fibrosis formation. Targeting OGR1 may be a potential new treatment option for IBD-associated fibrosis.
Collapse
Affiliation(s)
- Senta Hutter
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Wouter T van Haaften
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anouk Hünerwadel
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Neel Herfarth
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Benjamin Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland.,Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Chantal Florence Meier
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Pedro H Imenez Silva
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zürich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Hünerwadel A, Fagagnini S, Rogler G, Lutz C, Jaeger SU, Mamie C, Weder B, Ruiz PA, Hausmann M. Severity of local inflammation does not impact development of fibrosis in mouse models of intestinal fibrosis. Sci Rep 2018; 8:15182. [PMID: 30315190 PMCID: PMC6185984 DOI: 10.1038/s41598-018-33452-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Intestinal fibrosis is thought to be a consequence of excessive tissue repair, and constitutes a common problem in patients with Crohn’s disease (CD). While fibrosis seems to require inflammation as a prerequisite it is unclear whether the severity or persistence of inflammation influences the degree of fibrosis. Our aim was to investigate the role of sustained inflammation in fibrogenesis. For the initiation of fibrosis in vivo the models of Il10−/− spontaneous colitis, dextran sodium sulfate (DSS)-induced chronic colitis and heterotopic transplantation were used. In Il10−/− mice, we determined a positive correlation between expression of pro-inflammatory factors (Il1β, Tnf, Ifnγ, Mcp1 and Il6). We also found a positive correlation between the expression of pro-fibrotic factors (Col3a1 Col1a1, Tgfβ and αSma). In contrast, no significant correlation was determined between the expression of pro-inflammatory Tnf and pro-fibrotic αSma, Col1a1, Col3a1, collagen layer thickness and the hydroxyproline (HYP) content. Results from the DSS-induced chronic colitis model confirmed this finding. In the transplantation model for intestinal fibrosis a pronounced increase in Mcp1, inos and Il6 in Il10−/− as compared to WT grafts was observed, indicating more severe inflammation in Il10−/− grafts. However, the increase of collagen over time was virtually identical in both Il10−/− and WT grafts. Severity of inflammation during onset of fibrogenesis did not correlate with collagen deposition. Although inflammation might be a pre-requisite for the initiation of fibrosis our data suggest that it has a minor impact on the progression of fibrosis. Our results suggest that development of fibrosis and inflammation may be disconnected. This may be important for explaining the inefficacy of anti-inflammatory treatments agents in most cases of fibrotic inflammatory bowel diseases (IBD).
Collapse
Affiliation(s)
- A Hünerwadel
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - S Fagagnini
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - G Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - C Lutz
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - S U Jaeger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - C Mamie
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - B Weder
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - P A Ruiz
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - M Hausmann
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Weder B, Mamie C, Rogler G, Clarke S, McRae B, Ruiz PA, Hausmann M. BCL2 Regulates Differentiation of Intestinal Fibroblasts. Inflamm Bowel Dis 2018; 24:1953-1966. [PMID: 29796658 DOI: 10.1093/ibd/izy147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibrosis in patients with Crohn's disease (CD) results from an imbalance toward excessive fibrous tissue formation driven by fibroblasts. Activation of fibroblasts is linked to the B-cell lymphoma 2 (BCL2) family, which is involved in the induction of apoptosis. We investigated the impact of BCL2 repression on fibrogenesis. METHODS The model of dextran sodium sulfate (DSS)-induced chronic colitis and the heterotopic transplantation model of fibrosis were used. Following the administration of the BCL2 antagonist (ABT-737, 50 mg/kg/d), collagen layer thickness and hydroxyproline (HYP) content were determined. Fibroblasts were stimulated with the BCL2 antagonist (0.01-100 µM). BCL2, alpha smooth muscle actin (αSMA), and collagen I (COL1A1) were determined by quantitative polymerase chain reaction (qPCR), immunofluorescence microscopy (IF), and western blot (WB). mRNA expression pattern was determined by next-generation sequencing (NGS). RESULTS Collagen layer thickness was significantly decreased in both DSS-induced chronic colitis and the transplantation model of fibrosis upon BCL2 antagonist administration compared with vehicle. Decreased HYP content confirmed the preventive effects of the BCL2 antagonist on fibrosis. In vitro, a significant increase in PI+/annexin V+ human colonic fibroblasts was determined by fluorescence-activated cell sorting upon treatment with high-dose BCL2 antagonist; at a lower dose, αSMA, COL1A1, and TGF were decreased. NGS, IF, and qPCR revealed decreased expression and nuclear translocation of GATA6 and SOX9, known for reprogramming fibroblasts. CONCLUSION BCL2 antagonist administration partially prevented fibrogenesis in both fibrosis models. The BCL2 antagonist reduced the expression of TGFβ-induced factors involved in differentiation of myofibroblasts, and therefore might represent a potential treatment option against CD-associated fibrosis.
Collapse
Affiliation(s)
- Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Stephen Clarke
- AbbVie Bioresearch Center, AbbVie, Worcester, Massachusetts
| | - Bradford McRae
- AbbVie Bioresearch Center, AbbVie, Worcester, Massachusetts
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Rogler G. Challenges of Translation of Anti-Fibrotic Therapies into Clinical Practice in IBD. FIBROSTENOTIC INFLAMMATORY BOWEL DISEASE 2018:295-305. [DOI: 10.1007/978-3-319-90578-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Lutz C, Weder B, Hünerwadel A, Fagagnini S, Lang B, Beerenwinkel N, Rossel JB, Rogler G, Misselwitz B, Hausmann M. Myeloid differentiation primary response gene (MyD) 88 signalling is not essential for intestinal fibrosis development. Sci Rep 2017; 7:17678. [PMID: 29247242 PMCID: PMC5732165 DOI: 10.1038/s41598-017-17755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/29/2017] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of the immune response to microbiota is associated with inflammatory bowel disease (IBD), which can trigger intestinal fibrosis. MyD88 is a key component of microbiota signalling but its influence on intestinal fibrosis has not been clarified. Small bowel resections from donor-mice were transplanted subcutaneously into the neck of recipients C57BL/6 B6-MyD88tm1 Aki (MyD88-/-) and C57BL/6-Tg(UBC-green fluorescence protein (GFP))30Scha/J (GFP-Tg). Grafts were explanted up to 21 days after transplantation. Collagen layer thickness was determined using Sirius Red stained slides. In the mouse model of fibrosis collagen deposition and transforming growth factor-beta 1 (TGF-β1) expression was equal in MyD88+/+ and MyD88-/-, indicating that MyD88 was not essential for fibrogenesis. Matrix metalloproteinase (Mmp)9 expression was significantly decreased in grafts transplanted into MyD88-/- recipients compared to MyD88+/+ recipients (0.2 ± 0.1 vs. 153.0 ± 23.1, respectively, p < 0.05), similarly recruitment of neutrophils was significantly reduced (16.3 ± 4.5 vs. 25.4 ± 3.1, respectively, p < 0.05). Development of intestinal fibrosis appears to be independent of MyD88 signalling indicating a minor role of bacterial wall compounds in the process which is in contrast to published concepts and theories. Development of fibrosis appears to be uncoupled from acute inflammation.
Collapse
Affiliation(s)
- C Lutz
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - B Weder
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - A Hünerwadel
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - S Fagagnini
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - B Lang
- Department of Biosystems Sciences and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - N Beerenwinkel
- Department of Biosystems Sciences and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - J B Rossel
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - G Rogler
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - B Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
| | - M Hausmann
- Department of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland.
| |
Collapse
|
15
|
Rogler G, Hausmann M. Factors Promoting Development of Fibrosis in Crohn's Disease. Front Med (Lausanne) 2017; 4:96. [PMID: 28736729 PMCID: PMC5500633 DOI: 10.3389/fmed.2017.00096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
The concepts on the pathophysiology of intestinal fibrosis in Crohn’s disease (CD) have changed in recent years. Some years ago fibrosis was regarded to be a consequence of long-standing inflammation with subsequent destruction of the gut wall matrix followed by scar formation and collagen deposition. Fibrosis in CD patients appeared to be an irreversible process that could hardly be influenced. Therefore, the main target in CD therapy was to control inflammation to avoid fibrosis development. Many of these assumptions seem to be only partially true. Inflammation may be a necessary prerequisite for the initiation of fibrosis. However, when the pathophysiologic processes that lead to fibrosis in CD patients have been initiated fibrosis development may be independent of inflammation and may continue even when inflammation is under good medical control. Fibrosis in CD also may be reversible. After strictureplasty local collagen deposits decrease or even disappear. With new animal models for intestinal fibrosis on the horizon, we need to spend more efforts on understanding the factors influencing fibrosis in CD patients to finally find specific therapies. In this context, it will be as important to find markers and quantitative imaging tools to have reliable endpoints for clinical trials in fibrosing CD.
Collapse
Affiliation(s)
- Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Rieder F, Fiocchi C, Rogler G. Mechanisms, Management, and Treatment of Fibrosis in Patients With Inflammatory Bowel Diseases. Gastroenterology 2017; 152:340-350.e6. [PMID: 27720839 PMCID: PMC5209279 DOI: 10.1053/j.gastro.2016.09.047] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 02/08/2023]
Abstract
In the last 10 years, we have learned much about the pathogenesis, diagnosis, and management of intestinal fibrosis in patients with inflammatory bowel diseases. Just a decade ago, intestinal strictures were considered to be an inevitable consequence of long-term inflammation in patients who did not respond to anti-inflammatory therapies. Inflammatory bowel diseases-associated fibrosis was seen as an irreversible process that frequently led to intestinal obstructions requiring surgical intervention. This paradigm has changed rapidly, due to the antifibrotic approaches that may become available. We review the mechanisms and diagnosis of this serious complication of inflammatory bowel diseases, as well as factors that predict its progression and management strategies.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute; Cleveland Clinic, Cleveland, Ohio; Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Claudio Fiocchi
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute; Cleveland Clinic, Cleveland, Ohio; Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital, University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Decreased Fibrogenesis After Treatment with Pirfenidone in a Newly Developed Mouse Model of Intestinal Fibrosis. Inflamm Bowel Dis 2016; 22:569-82. [PMID: 26848518 DOI: 10.1097/mib.0000000000000716] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibrosis as a common problem in patients with Crohn's disease is a result of an imbalance toward excessive tissue repair. At present, there is no specific treatment option. Pirfenidone is approved for the treatment of idiopathic pulmonary fibrosis with both antifibrotic and anti-inflammatory effects. We subsequently investigated the impact of pirfenidone treatment on development of fibrosis in a new mouse model of intestinal fibrosis. METHODS Small bowel resections from donor mice were transplanted subcutaneously into the neck of recipients. Animals received either pirfenidone (100 mg/kg, three times daily, orally) or vehicle. RESULTS After administration of pirfenidone, a significantly decreased collagen layer thickness was revealed as compared to vehicle (9.7 ± 1.0 versus 13.5 ± 1.5 µm, respectively, **P < 0.001). Transforming growth factor-β and matrix metalloproteinase-9 were significantly decreased after treatment with pirfenidone as confirmed by real-time PCR (0.42 ± 0.13 versus 1.00 ± 0.21 and 0.46 ± 0.24 versus 1.00 ± 0.62 mRNA expression level relative to GAPDH, respectively, *P < 0.05). Significantly decreased transforming growth factor-β after administration of pirfenidone was confirmed by Western blotting. CONCLUSION In our mouse model, intestinal fibrosis can be reliably induced and is developed within 7 days. Pirfenidone partially prevented the development of fibrosis, making it a potential treatment option against Crohn's disease-associated fibrosis.
Collapse
|
18
|
Scharl M, Huber N, Lang S, Fürst A, Jehle E, Rogler G. Hallmarks of epithelial to mesenchymal transition are detectable in Crohn's disease associated intestinal fibrosis. Clin Transl Med 2015; 4:1. [PMID: 25852817 PMCID: PMC4384762 DOI: 10.1186/s40169-015-0046-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intestinal fibrosis and subsequent stricture formation represent frequent complications of Crohn's disease (CD). In many organs, fibrosis develops as a result of epithelial to mesenchymal transition (EMT). Recent studies suggested that EMT could be involved in intestinal fibrosis as a result of chronic inflammation. Here, we investigated whether EMT might be involved in stricture formation in CD patients. METHODS Human colonic tissue specimens from fibrotic areas of 18 CD and 10 non-IBD control patients were studied. Immunohistochemical staining of CD68 (marker for monocytes/macrophages), transforming growth factor-β1 (TGFβ1), β-catenin, SLUG, E-.cadherin, α-smooth muscle actin and fibroblast activation protein (FAP) were performed using standard techniques. RESULTS In fibrotic areas in the intestine of CD patients, a large number of CD68-positive mononuclear cells was detectable suggesting an inflammatory character of the fibrosis. We found stronger expression of TGFβ1, the most powerful driving force for EMT, in and around the fibrotic lesions of CD patients than in non-IBD control patients. In CD patients membrane staining of β-catenin was generally weaker than in control patients and more cells featured nuclear staining indicating transcriptionally active β-catenin, in fibrotic areas. In these regions we also detected nuclear localisation of the transcription factor, SLUG, which has also been implicated in EMT pathogenesis. Adjacent to the fibrotic tissue regions, we observed high levels of FAP, a marker of reactive fibroblasts. CONCLUSIONS We demonstrate the presence of EMT-associated molecules in fibrotic lesions of CD patients. These findings support the hypothesis that EMT might play a role for the development of CD-associated intestinal fibrosis.
Collapse
Affiliation(s)
- Michael Scharl
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Rämistrasse 100, 8091 Zurich, Switzerland ,Zurich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Nicole Huber
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Silvia Lang
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Alois Fürst
- Department of Surgery, Caritas-Hospital St. Josef, Regensburg, Germany
| | - Ekkehard Jehle
- Department of Surgery, Oberschwaben-Klinik, Ravensburg, Germany
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Rämistrasse 100, 8091 Zurich, Switzerland ,Zurich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Rogler G. New therapeutic avenues for treatment of fibrosis: can we learn from other diseases? Dig Dis 2014; 32 Suppl 1:39-49. [PMID: 25531352 DOI: 10.1159/000367825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Crohn's disease (CD) is characterized by the frequent occurrence of complications, such as fibrotic strictures and subsequently the need for CD-related surgery. Chronic or recurrent inflammation is generally regarded to be a necessary precondition for the initiation of intestinal fibrosis. In this view, fibrosis is a pathologically augmented healing response to inflammation-induced mucosal tissue destruction and injury. At present, there are no approved or effective medical therapies aimed specifically at fibrosis or stricture in IBD. Indirect benefits may occur from anti-inflammatory therapies, although there is no consensus on this. Therapy for fibrosis is complicated by the fact that a wound-healing response is essential in CD and ulcerative colitis. Several pharmaceutical companies are now working on the therapy of fibrosis in other diseases. Strategies interfering with TGF-β expression and activation are promising. Pirfenidone has been studied in several clinical trials. Further therapeutic options are second-generation and wide-spectrum tyrosine kinase inhibitors. These inhibit growth factor receptor signaling, thus reducing fibrosis in animal models and some patients with tumor-associated fibrosis. At present, the development of antifibrotic therapies takes place in other diseases such as lung and liver fibrosis. This is partially due to a lack of experimental models for gut fibrosis and the fact that reliable readouts (MRI, serum markers) in patients are lacking. It will be important to test the above-mentioned newly available treatment strategies in IBD to profit from progress in other fibrotic diseases.
Collapse
Affiliation(s)
- Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Latella G, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Lawrance IC. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis 2014; 8:1147-65. [PMID: 24731838 DOI: 10.1016/j.crohns.2014.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 02/08/2023]
Abstract
The fourth scientific workshop of the European Crohn's and Colitis Organization (ECCO) focused on the relevance of intestinal fibrosis in the disease course of inflammatory bowel disease (IBD). The objective was to better understand the pathophysiological mechanisms of intestinal fibrosis, to identify useful markers and imaging modalities of fibrosis in order to assess its presence and progression, and, finally, to point out possible approaches for the prevention and the treatment of fibrosis. The results of this workshop are presented in three separate manuscripts. This first section describes the most important mechanisms that contribute to the initiation and progression of intestinal fibrosis in IBD including the cellular and molecular mediators, the extracellular matrix molecules and matrix metalloproteinases/tissue inhibitors of metalloproteinases-system, the microbiota products, the role of fat, genetic and epigenetic factors, as well as the currently available experimental models. Furthermore, it identifies unanswered questions in the field of intestinal fibrosis and provides a framework for future research.
Collapse
Affiliation(s)
- Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy.
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hopsital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium; Department of Clinical and Experimental Medicine, Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, WA, Australia; University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, WA, Australia
| |
Collapse
|