1
|
Zhou Y, Zhang H, Yan H, Huang C, Liu Y. Mendelian randomization based on immune cells in diabetic nephropathy. Front Endocrinol (Lausanne) 2024; 15:1460652. [PMID: 39165512 PMCID: PMC11333325 DOI: 10.3389/fendo.2024.1460652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background DKD, a leading cause of chronic kidney and end-stage renal disease, lacks robust immunological research. Recent GWAS utilizing SNPs and CNVs has shed light on immune mechanisms of kidney diseases. However, DKD's immunological basis remains elusive. Our goal is to unravel cause-effect relationships between immune cells and DKD using Mendelian randomization. Methodology We analyzed FinnGen data (1032 DKD cases, 451,248 controls) with 731 immunocyte GWAS summaries (MP=32, MFI=389, AC=118, RC=192). We employed forward and reverse Mendelian randomization to explore causal links between immune cell traits and DKD. Sensitivity analysis ensured robustness, heterogeneity checks, and FDR correction minimized false positives. Results Our study explored the causal link between diabetic nephropathy (DKD) and immunophenotypes using two-sample Mendelian Randomization (MR) with IVW. Nine immunophenotypes were significantly associated with DKD at p<0.05 after FDR correction. Elevated CD24, CD3 in Treg subsets, CD39+ CD4+, and CD33- HLA DR- AC correlated positively with DKD risk, while CD27 in B cells and SSC-A in CD4+ inversely correlated. Notably, while none showed significant protection, further research on immune cells' role in DKD may provide valuable insights. Conclusion The results of this study show that the immune cells are closely related to DKD, which may be helpful in the future clinical study.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong, Yunnan, China
| | - Hengyan Zhang
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong, Yunnan, China
| | - Heguo Yan
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong, Yunnan, China
- Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Changxing Huang
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong, Yunnan, China
| | - Yangwen Liu
- Department of Endocrinology, Zhaotong Hospital of Traditional Chinese Medicine, Zhaotong, Yunnan, China
| |
Collapse
|
2
|
Lau J, Rousseau J, Kwon D, Bénard F, Lin KS. A Systematic Review of Molecular Imaging Agents Targeting Bradykinin B1 and B2 Receptors. Pharmaceuticals (Basel) 2020; 13:ph13080199. [PMID: 32824565 PMCID: PMC7464927 DOI: 10.3390/ph13080199] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
Kinins, bradykinin and kallidin are vasoactive peptides that signal through the bradykinin B1 and B2 receptors (B1R and B2R). B2R is constitutively expressed in healthy tissues and mediates responses such as vasodilation, fluid balance and retention, smooth muscle contraction, and algesia, while B1R is absent in normal tissues and is induced by tissue trauma or inflammation. B2R is activated by kinins, while B1R is activated by kinins that lack the C-terminal arginine residue. Perturbations of the kinin system have been implicated in inflammation, chronic pain, vasculopathy, neuropathy, obesity, diabetes, and cancer. In general, excess activation and signaling of the kinin system lead to a pro-inflammatory state. Depending on the disease context, agonism or antagonism of the bradykinin receptors have been considered as therapeutic options. In this review, we summarize molecular imaging agents targeting these G protein-coupled receptors, including optical and radioactive probes that have been used to interrogate B1R/B2R expression at the cellular and anatomical levels, respectively. Several of these preclinical agents, described herein, have the potential to guide therapeutic interventions for these receptors.
Collapse
Affiliation(s)
- Joseph Lau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
| | - Julie Rousseau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
| | - Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Polidoro RB, Hagan RS, de Santis Santiago R, Schmidt NW. Overview: Systemic Inflammatory Response Derived From Lung Injury Caused by SARS-CoV-2 Infection Explains Severe Outcomes in COVID-19. Front Immunol 2020; 11:1626. [PMID: 32714336 PMCID: PMC7344249 DOI: 10.3389/fimmu.2020.01626] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 01/12/2023] Open
Abstract
Most SARS-CoV2 infections will not develop into severe COVID-19. However, in some patients, lung infection leads to the activation of alveolar macrophages and lung epithelial cells that will release proinflammatory cytokines. IL-6, TNF, and IL-1β increase expression of cell adhesion molecules (CAMs) and VEGF, thereby increasing permeability of the lung endothelium and reducing barrier protection, allowing viral dissemination and infiltration of neutrophils and inflammatory monocytes. In the blood, these cytokines will stimulate the bone marrow to produce and release immature granulocytes, that return to the lung and further increase inflammation, leading to acute respiratory distress syndrome (ARDS). This lung-systemic loop leads to cytokine storm syndrome (CSS). Concurrently, the acute phase response increases the production of platelets, fibrinogen and other pro-thrombotic factors. Systemic decrease in ACE2 function impacts the Renin-Angiotensin-Kallikrein-Kinin systems (RAS-KKS) increasing clotting. The combination of acute lung injury with RAS-KKS unbalance is herein called COVID-19 Associated Lung Injury (CALI). This conservative two-hit model of systemic inflammation due to the lung injury allows new intervention windows and is more consistent with the current knowledge.
Collapse
Affiliation(s)
- Rafael B. Polidoro
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert S. Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | | | - Nathan W. Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Yang Y, He X, Cheng R, Chen Q, Shan C, Chen L, Ma JX. Diabetes-induced upregulation of kallistatin levels exacerbates diabetic nephropathy via RAS activation. FASEB J 2020; 34:8428-8441. [PMID: 32352602 PMCID: PMC7302980 DOI: 10.1096/fj.201903149r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Kallistatin is an inhibitor of tissue kallikrein and also inhibits the Wnt pathway. Its role in diabetic nephropathy (DN) is uncertain. Here we reported that serum kallistatin levels were significantly increased in diabetic patients with DN compared to those in diabetic patients without DN and healthy controls, and positively correlated with urinary albumin excretion. In addition, renal kallistatin levels were significantly upregulated in mouse models of type 1 (Akita, OVE26) and type 2 diabetes (db/db). To unveil the effects of kallistatin on DN and its underlying mechanism, we crossed transgenic mice overexpressing kallistatin with OVE26 mice (KS‐tg/OVE). Kallistatin overexpression exacerbated albuminuria, renal fibrosis, inflammation, and oxidative stress in diabetes. Kallikrein activity was inhibited while the renin‐angiotensin system (RAS) upregulated in the kidney of KS‐tg/OVE mice compared to WT/OVE mice, suggesting a disturbed balance between the RAS and kallikrein‐kinin systems. As shown by immunostaining of endothelial makers, renal vascular densities were decreased accompanied by increased HIF‐1α and erythropoietin levels in the kidneys of KS‐tg/OVE mice. Taken together, high levels of kallistatin exacerbate DN at least partly by inducing RAS overactivation and hypoxia. The present study demonstrated a positive correlation between kallistatin levels and DN, suggesting a potential biomarker for prognosis of DN.
Collapse
Affiliation(s)
- Yanhui Yang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xuemin He
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Endocrinology and Metabolism Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chunyan Shan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
5
|
Maria AG, Dillemburg-Pilla P, Durand MDT, Floriano EM, Manfiolli AO, Ramos SG, Pesquero JB, Nahmias C, Costa-Neto CM. Activation of the Kinin B1 Receptor by Its Agonist Reduces Melanoma Metastasis by Playing a Dual Effect on Tumor Cells and Host Immune Response. Front Pharmacol 2019; 10:1106. [PMID: 31607931 PMCID: PMC6774293 DOI: 10.3389/fphar.2019.01106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Metastatic melanoma is an aggressive type of skin cancer leading half of the patients to death within 8–10 months after diagnosis. Kinins are peptides that interact with B1 and B2 receptors playing diverse biological roles. We investigated whether treatment with B1 receptor agonist, des-Arg9-bradykinin (DABK), has effects in lung metastasis establishment after melanoma induction in mice. We found a lower number of metastatic colonies in lungs of DABK-treated mice, reduced expression of vascular cell adhesion molecule 1 (VCAM-1), and increased CD8+T-cell recruitment to the metastatic area compared to animals that did not receive treatment. To understand whether the effects of DABK observed were due to the activation of the B1 receptor in the tumor cells or in the host, we treated wild-type (WT) and kinin B1 receptor knockout (B1−/−) mice with DABK. No significant differences in the number of melanoma colonies established in lungs were seen between WT and B1−/−mice; however, B1−/−mice presented higher VCAM-1 expression and lower CD8+T-cell infiltration. In conclusion, we believe that activation of kinin B1 receptor by its agonist in the host stimulates the immune response more efficiently, promoting CD8+T-cell recruitment to the metastatic lungs and interfering in VCAM-1 expression. Moreover, treatment with DABK reduced establishment of metastatic colonies by mainly acting on tumor cells; hence, this study brings insights to explore novel approaches to treat metastatic melanoma targeting the B1 receptor.
Collapse
Affiliation(s)
- Andrea Gutierrez Maria
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Dillemburg-Pilla
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Elaine Medeiros Floriano
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriana Oliveira Manfiolli
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Simone Gusmão Ramos
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Clara Nahmias
- INSERM U981, Department of Molecular Medicine, Gustave Roussy Cancer Center, Villejuif, France
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|