1
|
Gupta P, Goswami SG, Kumari G, Saravanakumar V, Bhargava N, Rai AB, Singh P, Bhoyar RC, Arvinden VR, Gunda P, Jain S, Narayana VK, Deolankar SC, Prasad TSK, Natarajan VT, Scaria V, Singh S, Ramalingam S. Development of pathophysiologically relevant models of sickle cell disease and β-thalassemia for therapeutic studies. Nat Commun 2024; 15:1794. [PMID: 38413594 PMCID: PMC10899644 DOI: 10.1038/s41467-024-46036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Ex vivo cellular system that accurately replicates sickle cell disease and β-thalassemia characteristics is a highly sought-after goal in the field of erythroid biology. In this study, we present the generation of erythroid progenitor lines with sickle cell disease and β-thalassemia mutation using CRISPR/Cas9. The disease cellular models exhibit similar differentiation profiles, globin expression and proteome dynamics as patient-derived hematopoietic stem/progenitor cells. Additionally, these cellular models recapitulate pathological conditions associated with both the diseases. Hydroxyurea and pomalidomide treatment enhanced fetal hemoglobin levels. Notably, we introduce a therapeutic strategy for the above diseases by recapitulating the HPFH3 genotype, which reactivates fetal hemoglobin levels and rescues the disease phenotypes, thus making these lines a valuable platform for studying and developing new therapeutic strategies. Altogether, we demonstrate our disease cellular systems are physiologically relevant and could prove to be indispensable tools for disease modeling, drug screenings and cell and gene therapy-based applications.
Collapse
Affiliation(s)
- Pragya Gupta
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangam Giri Goswami
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Geeta Kumari
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vinodh Saravanakumar
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - Nupur Bhargava
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - Akhila Balakrishna Rai
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Praveen Singh
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul C Bhoyar
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - V R Arvinden
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Padma Gunda
- Thalassemia and Sickle Cell Society- Kamala Hospital and Research Centre, Shivarampally, Hyderabad, India
| | - Suman Jain
- Thalassemia and Sickle Cell Society- Kamala Hospital and Research Centre, Shivarampally, Hyderabad, India
| | - Vanya Kadla Narayana
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Sayali C Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Vivek T Natarajan
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Scaria
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shailja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Sivaprakash Ramalingam
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Daniels DE, Ferrer-Vicens I, Hawksworth J, Andrienko TN, Finnie EM, Bretherton NS, Ferguson DCJ, Oliveira ASF, Szeto JYA, Wilson MC, Brewin JN, Frayne J. Human cellular model systems of β-thalassemia enable in-depth analysis of disease phenotype. Nat Commun 2023; 14:6260. [PMID: 37803026 PMCID: PMC10558456 DOI: 10.1038/s41467-023-41961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
β-thalassemia is a prevalent genetic disorder causing severe anemia due to defective erythropoiesis, with few treatment options. Studying the underlying molecular defects is impeded by paucity of suitable patient material. In this study we create human disease cellular model systems for β-thalassemia by gene editing the erythroid line BEL-A, which accurately recapitulate the phenotype of patient erythroid cells. We also develop a high throughput compatible fluorometric-based assay for evaluating severity of disease phenotype and utilize the assay to demonstrate that the lines respond appropriately to verified reagents. We next use the lines to perform extensive analysis of the altered molecular mechanisms in β-thalassemia erythroid cells, revealing upregulation of a wide range of biological pathways and processes along with potential novel targets for therapeutic investigation. Overall, the lines provide a sustainable supply of disease cells as research tools for identifying therapeutic targets and as screening platforms for new drugs and reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jenn-Yeu A Szeto
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | - John N Brewin
- Haematology Department, King's college Hospital NHS Foundation, London, SE5 9RS, UK
- Red Cell Biology Group, Kings College London, London, SE5 9NU, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
3
|
Nguyen PHD, Jayasinghe MK, Le AH, Peng B, Le MTN. Advances in Drug Delivery Systems Based on Red Blood Cells and Their Membrane-Derived Nanoparticles. ACS NANO 2023; 17:5187-5210. [PMID: 36896898 DOI: 10.1021/acsnano.2c11965] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Red blood cells (RBCs) and RBC membrane-derived nanoparticles have been historically developed as bioinspired drug delivery systems to combat the issues of premature clearance, toxicity, and immunogenicity of synthetic nanocarriers. RBC-based delivery systems possess characteristics including biocompatibility, biodegradability, and long circulation time, which make them suited for systemic administration. Therefore, they have been employed in designing optimal drug formulations in various preclinical models and clinical trials to treat a wide range of diseases. In this review, we provide an overview of the biology, synthesis, and characterization of drug delivery systems based on RBCs and their membrane including whole RBCs, RBC membrane-camouflaged nanoparticles, RBC-derived extracellular vesicles, and RBC hitchhiking. We also highlight conventional and latest engineering strategies, along with various therapeutic modalities, for enhanced precision and effectiveness of drug delivery. Additionally, we focus on the current state of RBC-based therapeutic applications and their clinical translation as drug carriers, as well as discussing opportunities and challenges associated with these systems.
Collapse
Affiliation(s)
- Phuong Hoang Diem Nguyen
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Anh Hong Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Boya Peng
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Minh T N Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
4
|
Erythrocyte-Plasmodium interactions: genetic manipulation of the erythroid lineage. Curr Opin Microbiol 2022; 70:102221. [PMID: 36242898 DOI: 10.1016/j.mib.2022.102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/14/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023]
Abstract
Targeting critical host factors is an emerging concept in the treatment of infectious diseases. As obligate pathogens of erythrocytes, the Plasmodium spp. parasites that cause malaria must exploit erythroid host factors for their survival. However, our understanding of this important aspect of the malaria lifecycle is limited, in part because erythrocytes are enucleated cells that lack a nucleus and DNA, rendering them genetically intractable. Recent advances in genetic analysis of the erythroid lineage using small-hairpin RNAs and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) in red-blood cells derived from stem cells have generated new insights into the functions of several candidate host factors for Plasmodium parasites. Along with efforts in other hematopoietic cells, these advances have also laid a strong foundation for genetic screens to identify novel erythrocyte host factors for malaria.
Collapse
|
5
|
Bernecker C, Lima M, Kolesnik T, Lampl A, Ciubotaru C, Leita R, Kolb D, Fröhlich E, Schlenke P, Holzapfel GA, Dorn I, Cojoc D. Biomechanical properties of native and cultured red blood cells–Interplay of shape, structure and biomechanics. Front Physiol 2022; 13:979298. [PMID: 36051915 PMCID: PMC9424772 DOI: 10.3389/fphys.2022.979298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Modern medicine increases the demand for safe blood products. Ex vivo cultured red blood cells (cRBC) are eagerly awaited as a standardized, safe source of RBC. Established culture models still lack the terminal cytoskeletal remodeling from reticulocyte to erythrocyte with changes in the biomechanical properties and interacts with membrane stiffness, viscosity of the cytoplasm and the cytoskeletal network. Comprehensive data on the biomechanical properties of cRBC are needed to take the last step towards translation into clinical use in transfusion medicine. Aim of the study was the comparative analysis of topographical and biomechanical properties of cRBC, generated from human CD34+ adult hematopoietic stem/progenitor cells, with native reticulocytes (nRET) and erythrocytes (nRBC) using cell biological and biomechanical technologies. To gain the desired all-encompassing information, a single method was unsatisfactory and only the combination of different methods could lead to the goal. Topographical information was matched with biomechanical data from optical tweezers (OT), atomic force microscopy (AFM) and digital holographic microscopy (DHM). Underlying structures were investigated in detail. Imaging, deformability and recovery time showed a high similarity between cRBC and nRBC. Young’s modulus and plasticity index also confirmed this similarity. No significant differences in membrane and cytoskeletal proteins were found, while lipid deficiency resulted in spherical, vesiculated cells with impaired biomechanical functionality. The combination of techniques has proven successful and experiments underscore a close relationship between lipid content, shape and biomechanical functionality of RBC.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Maria Lima
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
- University of Trieste, Physics Department, Trieste, Italy
| | - Tatjana Kolesnik
- Core Facility Imaging, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Annika Lampl
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Catalin Ciubotaru
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
| | - Riccardo Leita
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Core Facility Imaging, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Peter Schlenke
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Isabel Dorn
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
- *Correspondence: Dan Cojoc, ; Isabel Dorn,
| | - Dan Cojoc
- CNR-IOM, National Research Council of Italy - Institute of Materials, Trieste, Italy
- *Correspondence: Dan Cojoc, ; Isabel Dorn,
| |
Collapse
|
6
|
Feldman TP, Egan ES. Uncovering a Cryptic Site of Malaria Pathogenesis: Models to Study Interactions Between Plasmodium and the Bone Marrow. Front Cell Infect Microbiol 2022; 12:917267. [PMID: 35719356 PMCID: PMC9201243 DOI: 10.3389/fcimb.2022.917267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
The bone marrow is a critical site of host-pathogen interactions in malaria infection. The discovery of Plasmodium asexual and transmission stages in the bone marrow has renewed interest in the tissue as a niche for cellular development of both host and parasite. Despite its importance, bone marrow in malaria infection remains largely unexplored due to the challenge of modeling the complex hematopoietic environment in vitro. Advancements in modeling human erythropoiesis ex-vivo from primary human hematopoietic stem and progenitor cells provide a foothold to study the host-parasite interactions occurring in this understudied site of malaria pathogenesis. This review focuses on current in vitro methods to recapitulate and assess bone marrow erythropoiesis and their potential applications in the malaria field. We summarize recent studies that leveraged ex-vivo erythropoiesis to shed light on gametocyte development in nucleated erythroid stem cells and begin to characterize host cell responses to Plasmodium infection in the hematopoietic niche. Such models hold potential to elucidate mechanisms of disordered erythropoiesis, an underlying contributor to malaria anemia, as well as understand the biological determinants of parasite sexual conversion. This review compares the advantages and limitations of the ex-vivo erythropoiesis approach with those of in vivo human and animal studies of the hematopoietic niche in malaria infection. We highlight the need for studies that apply single cell analyses to this complex system and incorporate physical and cellular components of the bone marrow that may influence erythropoiesis and parasite development.
Collapse
Affiliation(s)
- Tamar P. Feldman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Elizabeth S. Egan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Elizabeth S. Egan,
| |
Collapse
|
7
|
Javed R, Flores L, Bhave SJ, Jawed A, Mishra DK. The Future of Red Cell Transfusion Lies in Cultured Red Cells. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1740068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractBlood is a very important resource for healthcare-based services and there has been a consistently increasing demand for it in most parts of the world. Poor volunteer-based collection system, high-risk of transfusion-transmitted infections, and emergence of new pathogens as evident from the ongoing Coronavirus Disease 2019 (COVID-19) pandemic are potential challenges to the global healthcare systems. It is imperative to explore safe and reliable alternatives to red cell transfusions. Ex vivo culture of red cells (cRBCs) from different sources such as hematopoietic stem cells (HSCs), pluripotent stem cells, and immortalized progenitors (e.g., BELA-2 cells) could revolutionize transfusion medicine. cRBC could be of great diagnostic and therapeutic utility. It may provide a backup in times of acute shortages in patients with rare blood groups, and in cases with multiple antibodies or sickle cell anemia. The CRISP-Cas9 system has been used to develop personalized, multi-compatible RBCs for diagnostic reagents and patients with multiple allo-antibodies. cRBC could be practically feasible for pediatric patients, who require small quantities of red cell transfusions. cRBC produced under good manufacturing practice (GMP) conditions has been reported to survive in human blood circulation for more than 26 days. Recently, a phase I randomized controlled clinical trial called RESTORE was initiated to assess the survival and recovery of cRBCs. However, feasible technological advancement is required to produce enough cRBCs for clinical use. It is crucial to identify sustainable sources for large-scale production of clinically useful cRBCs. Although the potential cost of one unit of cRBC is extrapolated to be around US$ 8000, it is a life-saving product for patients having rare blood groups and is a “ready to use” source of phenotype-matched, homogenous young red cells in emergency situations.
Collapse
Affiliation(s)
- Rizwan Javed
- Department of Clinical Haematology and BMT, TATA Medical Center, Kolkata, West Bengal, India
| | - Lorraine Flores
- Department of Histocompatibility and Immunogenetics, NHS Blood and Transplant, Filton, Bristol, United Kingdom
| | - Saurabh Jayant Bhave
- Department of Clinical Haematology and BMT, TATA Medical Center, Kolkata, West Bengal, India
| | - Asheer Jawed
- Department of Respiratory Medicine at William Harvey Hospital, Ashford, United Kingdom
| | | |
Collapse
|
8
|
Pellegrin S, Severn CE, Toye AM. Towards manufactured red blood cells for the treatment of inherited anemia. Haematologica 2021; 106:2304-2311. [PMID: 34042406 PMCID: PMC8409035 DOI: 10.3324/haematol.2020.268847] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Patients with inherited anemia and hemoglobinopathies (such as sickle cell disease and β-thalassemia) are treated with red blood cell (RBC) transfusions to alleviate their symptoms. Some of these patients may have rare blood group types or go on to develop alloimmune reactions, which can make it difficult to source compatible blood in the donor population. Laboratory-grown RBC represent a particularly attractive alternative which could satisfy an unmet clinical need. The challenge, however, is to produce - from a limited number of stem cells - the 2x1012 RBC required for a standard adult therapeutic dose. Encouraging progress has been made in RBC production from adult stem cells under good manufacturing practice. In 2011, the Douay group conducted a successful proof-of-principle mini-transfusion of autologous manufactured RBC in a single volunteer. In the UK, a trial is planned to assess whether manufactured RBC are equivalent to RBC produced naturally in donors, by testing an allogeneic mini-dose of laboratory-grown manufactured RBC in multiple volunteers. This review discusses recent progress in the erythroid culture field as well as opportunities for further scaling up of manufactured RBC production for transfusion practice.
Collapse
Affiliation(s)
- Stephanie Pellegrin
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol.
| | - Charlotte E Severn
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol.
| | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol; Bristol Institute of Transfusion Sciences, NHSBT Filton. Bristol.
| |
Collapse
|
9
|
Kronstein-Wiedemann R, Thiel J, Tonn T. Blood Pharming – eine realistische Option? TRANSFUSIONSMEDIZIN 2021. [DOI: 10.1055/a-1342-0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungDie Bluttransfusion ist ein wesentlicher und unersetzlicher Teil der modernen Medizin. Jedoch stellt vor allem bei Patienten mit sehr seltenen Blutgruppenkonstellationen der Mangel an Blutprodukten auch heute noch ein wichtiges Gesundheitsproblem weltweit dar. Um diesem Problem entgegenzutreten, versucht man seit einiger Zeit künstlich rote Blutzellen zu generieren. Diese haben potenzielle Vorteile gegenüber Spenderblut, wie z. B. ein verringertes Risiko für die Übertragung von Infektionskrankheiten. Diese Übersicht fasst die aktuellen Entwicklungen über den Prozess der Erythropoese, die Expansionsstrategien der erythrozytären Zellen, der verschiedenen Quellen für ex vivo expandierte Erythrozyten, die Hürden für die klinische Anwendung und die zukünftigen Möglichkeiten der Anwendung zusammen.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Jessica Thiel
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Torsten Tonn
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| |
Collapse
|
10
|
Generation of an immortalised erythroid cell line from haematopoietic stem cells of a haemoglobin E/β-thalassemia patient. Sci Rep 2020; 10:16798. [PMID: 33033327 PMCID: PMC7546635 DOI: 10.1038/s41598-020-73991-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 01/11/2023] Open
Abstract
The β-thalassemia syndromes are the most prevalent genetic disorder globally, characterised by reduced or absent β-globin chain synthesis. HbE/β-thalassemia is a subtype of β-thalassemia with extremely high frequency in Asia. Studying molecular defects behind β-thalassemia is severely impeded by paucity of material from patients and lack of suitable cell lines. Approaches to derive erythroid cells from induced pluripotent stem cells (iPSCs) created from patients are confounded by poor levels of erythroid cell expansion, aberrant or incomplete erythroid differentiation and foetal/embryonic rather than adult globin expression. In this study we generate an immortalised erythroid cell line from peripheral blood stem cells of a HbE/β-thalassemia patient. Morphological analysis shows the cells are proerythroblasts with some early basophilic erythroblasts, with no change in morphology over time in culture. The line differentiates along the erythroid pathway to orthochromatic erythroblasts and reticulocytes. Importantly, unlike iPSCs, the line maintains the haemoglobin profile of the patient's red blood cells. This is the first human cellular model for β-thalassemia providing a sustainable source of disease cells for studying underlying disease mechanisms and for use as drug screening platform, particularly for reagents designed to increase foetal haemoglobin expression as we have additionally demonstrated with hydroxyurea.
Collapse
|
11
|
Daniels DE, Downes DJ, Ferrer-Vicens I, Ferguson DCJ, Singleton BK, Wilson MC, Trakarnsanga K, Kurita R, Nakamura Y, Anstee DJ, Frayne J. Comparing the two leading erythroid lines BEL-A and HUDEP-2. Haematologica 2020; 105:e389-e394. [PMID: 31753923 PMCID: PMC7395286 DOI: 10.3324/haematol.2019.229211] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Deborah E Daniels
- School of Biochemistry, University of Bristol, Bristol, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Belinda K Singleton
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, UK
| | | | - Kongtana Trakarnsanga
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - David J Anstee
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Kindwall-Keller TL, Ballen KK. Umbilical cord blood: The promise and the uncertainty. Stem Cells Transl Med 2020; 9:1153-1162. [PMID: 32619330 PMCID: PMC7519764 DOI: 10.1002/sctm.19-0288] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022] Open
Abstract
Unfortunately, many patients referred for hematopoietic cell transplant will not have a fully matched related donor, and finding matched unrelated donors through the registry may be difficult, especially if the recipient is not of Northern European descent [N Engl J Med 2014;371:339‐348]. Umbilical cord blood (UCB) has been an available graft source for hematopoietic cell transplant for more than 30 years, since the first UCB transplant was performed in the late 1980s [N Engl J Med 1989;321:1174‐1178]. UCB is readily available, has low immunogenicity, and does not require as strict of human leukocyte antigen (HLA) matching compared to other graft sources [N Engl J Med 2004;351:2265‐2275]. According to data from the Center for International Blood and Marrow Transplant Research (CIBMTR), an estimated 500 patients in the US will have received a UCB transplant in 2018. Since 2014, haploidentical transplants have surpassed UCB transplants performed in the United States (CIBMTR Summary Slides, 2018, available at https://www.cibmtr.org). Increased use of haploidentical transplants has brought to light concerns about UCB transplants, including delayed engraftment and graft failure, increased nonrelapse mortality, increased infection risk, and UCB acquisition costs [Lancet Oncol 2010;11:653‐660; Biol Blood Marrow Transplant 2019;1456‐1464]. These concerns will need to be addressed for UCB to remain a viable option as a graft source for hematopoietic cell transplant. Other promising therapeutic benefits for UCB, in addition to hematopoietic cell transplant, is its use in regenerative medicine and immune modulation, which is currently being evaluated in ongoing clinical trials.
Collapse
Affiliation(s)
| | - Karen K Ballen
- Division of Hematology/Oncology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Meinders M, Shoemark D, Dobbe JGG, Streekstra GJ, Frayne J, Toye AM. Expression and Retention of Thymidine Phosphorylase in Cultured Reticulocytes as a Novel Treatment for MNGIE. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:822-830. [PMID: 32368563 PMCID: PMC7191122 DOI: 10.1016/j.omtm.2020.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 11/04/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal metabolic disorder caused by thymidine phosphorylase (TP) deficiency. Successful therapeutic interventions for this disease rely on a means for efficient and long-lasting circulation of the TP enzyme. In this study we exploit lentiviral transduction of hematopoietic stem cells and an erythroid cell line (BEL-A) to generate reticulocytes that contain active TP. Significant loss of overexpressed TP during erythroid differentiation can be reduced by addition of the ubiquitination inhibitor MG132. However, the ubiquitination sites are located in the substrate binding site in human TP, and their removal abolished enzyme activity. Examination of the TP structure and mechanism suggested that these sites are only exposed in the absence of substrate. We show that supplementation of culture media with thymidine during differentiation reduces enzyme degradation, doubling the amount of TP retained in reticulocytes. This study provides proof of principle that therapeutic reticulocytes expressing TP can be generated in vitro and that ubiquitin-mediated degradation can be subverted through masking ubiquitination sites to ensure retention of human TP in reticulocytes following erythroid differentiation.
Collapse
Affiliation(s)
- Marjolein Meinders
- Bristol Synthetic Biology Centre (BrisSynBio), University of Bristol, Bristol BS8 1TD, UK.,School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol BS8 1TD, UK
| | - Debbie Shoemark
- Bristol Synthetic Biology Centre (BrisSynBio), University of Bristol, Bristol BS8 1TD, UK.,School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Johannes G G Dobbe
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Geert J Streekstra
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Filton, Bristol BS34 7QH, UK
| | - Ashley M Toye
- Bristol Synthetic Biology Centre (BrisSynBio), University of Bristol, Bristol BS8 1TD, UK.,School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Filton, Bristol BS34 7QH, UK
| |
Collapse
|
14
|
Minetti G, Bernecker C, Dorn I, Achilli C, Bernuzzi S, Perotti C, Ciana A. Membrane Rearrangements in the Maturation of Circulating Human Reticulocytes. Front Physiol 2020; 11:215. [PMID: 32256383 PMCID: PMC7092714 DOI: 10.3389/fphys.2020.00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Red blood cells (RBCs) begin their circulatory life as reticulocytes (Retics) after their egress from the bone marrow where, as R1 Retics, they undergo significant rearrangements in their membrane and intracellular components, via autophagic, proteolytic, and vesicle-based mechanisms. Circulating, R2 Retics must complete this maturational process, which involves additional loss of significant amounts of membrane and selected membrane proteins. Little is known about the mechanism(s) at the basis of this terminal differentiation in the circulation, which culminates with the production of a stable biconcave discocyte. The membrane of R1 Retics undergoes a selective remodeling through the release of exosomes that are enriched in transferrin receptor and membrane raft proteins and lipids, but are devoid of Band 3, glycophorin A, and membrane skeletal proteins. We wondered whether a similar selective remodeling occurred also in the maturation of R2 Retics. Peripheral blood R2 Retics, isolated by an immunomagnetic method, were compared with mature circulating RBCs from the same donor and their membrane protein and lipid content was analyzed. Results show that both Band 3 and spectrin decrease from R2 Retics to RBCs on a "per cell" basis. Looking at membrane proteins that are considered as markers of membrane rafts, flotillin-2 appears to decrease in a disproportionate manner with respect to Band 3. Stomatin also decreases but in a more proportionate manner with respect to Band 3, hinting at a heterogeneous nature of membrane rafts. High resolution lipidomics analysis, on the contrary, revealed that those lipids that are typically representative of the membrane raft phase, sphingomyelin and cholesterol, are enriched in mature RBCs with respct to Retics, relative to total cell lipids, strongly arguing in favor of the selective retention of at least certain subclasses of membrane rafts in RBCs as they mature from Retics. Our hypothesis that rafts serve as additional anchoring sites for the lipid bilayer to the underlying membrane-skeleton is corroborated by the present results. It is becoming ever more clear that a proper lipid composition of the reticulocyte is necessary for the production of a normal mature RBC.
Collapse
Affiliation(s)
- Giampaolo Minetti
- Laboratories of Biochemistry, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Claudia Bernecker
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Isabel Dorn
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Cesare Achilli
- Laboratories of Biochemistry, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Stefano Bernuzzi
- Servizio Immunoematologia e Medicina Trasfusionale, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Cesare Perotti
- Servizio Immunoematologia e Medicina Trasfusionale, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Annarita Ciana
- Laboratories of Biochemistry, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
Narla A, Mohandas N. Staying hydrated is important also for erythroblasts. Haematologica 2020; 105:528-529. [PMID: 32115411 DOI: 10.3324/haematol.2019.233999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Anupama Narla
- Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, New York, NY, USA
| |
Collapse
|
16
|
Severn CE, Eissa AM, Langford CR, Parker A, Walker M, Dobbe JGG, Streekstra GJ, Cameron NR, Toye AM. Ex vivo culture of adult CD34 + stem cells using functional highly porous polymer scaffolds to establish biomimicry of the bone marrow niche. Biomaterials 2019; 225:119533. [PMID: 31610389 DOI: 10.1016/j.biomaterials.2019.119533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Haematopoiesis, the process of blood production, occurs from a tiny contingent of haematopoietic stem cells (HSC) in highly specialised three-dimensional niches located within the bone marrow. When haematopoiesis is replicated using in vitro two-dimensional culture, HSCs rapidly differentiate, limiting self-renewal. Emulsion-templated highly porous polyHIPE foam scaffolds were chosen to mimic the honeycomb architecture of human bone. The unmodified polyHIPE material supports haematopoietic stem and progenitor cell (HSPC) culture, with successful culture of erythroid progenitors and neutrophils within the scaffolds. Using erythroid culture methodology, the CD34+ population was maintained for 28 days with continual release of erythroid progenitors. These cells are shown to spontaneously repopulate the scaffolds, and the accumulated egress can be expanded and grown at large scale to reticulocytes. We next show that the polyHIPE scaffolds can be successfully functionalised using activated BM(PEG)2 (1,8-bismaleimido-diethyleneglycol) and then a Jagged-1 peptide attached in an attempt to facilitate notch signalling. Although Jagged-1 peptide had no detectable effect, the BM(PEG)2 alone significantly increased cell egress when compared to controls, without depleting the scaffold population. This work highlights polyHIPE as a novel functionalisable material for mimicking the bone marrow, and also that PEG can influence HSPC behaviour within scaffolds.
Collapse
Affiliation(s)
- C E Severn
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK; National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | - A M Eissa
- Department of Polymers, Chemical Industries Research Division, National Research Centre, El Bohouth St. 33, Dokki, Giza, 12622, Cairo, Egypt; School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - C R Langford
- Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - A Parker
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - M Walker
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - J G G Dobbe
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - G J Streekstra
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - N R Cameron
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - A M Toye
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK; National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK.
| |
Collapse
|
17
|
Trakarnsanga K, Ferguson D, Daniels DE, Griffiths RE, Wilson MC, Mordue KE, Gartner A, Andrienko TN, Calvert A, Condie A, McCahill A, Mountford JC, Toye AM, Anstee DJ, Frayne J. Vimentin expression is retained in erythroid cells differentiated from human iPSC and ESC and indicates dysregulation in these cells early in differentiation. Stem Cell Res Ther 2019; 10:130. [PMID: 31036072 PMCID: PMC6489253 DOI: 10.1186/s13287-019-1231-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 05/16/2023] Open
Abstract
Background Pluripotent stem cells are attractive progenitor cells for the generation of erythroid cells in vitro as have expansive proliferative potential. However, although embryonic (ESC) and induced pluripotent (iPSC) stem cells can be induced to undergo erythroid differentiation, the majority of cells fail to enucleate and the molecular basis of this defect is unknown. One protein that has been associated with the initial phase of erythroid cell enucleation is the intermediate filament vimentin, with loss of vimentin potentially required for the process to proceed. Methods In this study, we used our established erythroid culture system along with western blot, PCR and interegation of comparative proteomic data sets to analyse the temporal expression profile of vimentin in erythroid cells differentiated from adult peripheral blood stem cells, iPSC and ESC throughout erythropoiesis. Confocal microscopy was also used to examine the intracellular localisation of vimentin. Results We show that expression of vimentin is turned off early during normal adult erythroid cell differentiation, with vimentin protein lost by the polychromatic erythroblast stage, just prior to enucleation. In contrast, in erythroid cells differentiated from iPSC and ESC, expression of vimentin persists, with high levels of both mRNA and protein even in orthochromatic erythroblasts. In the vimentin-positive iPSC orthochromatic erythroblasts, F-actin was localized around the cell periphery; however, in those rare cells captured undergoing enucleation, vimentin was absent and F-actin was re-localized to the enucleosome as found in normal adult orthrochromatic erythroblasts. Conclusion As both embryonic and adult erythroid cells loose vimentin and enucleate, retention of vimentin by iPSC and ESC erythroid cells indicates an intrinsic defect. By analogy with avian erythrocytes which naturally retain vimentin and remain nucleated, retention in iPSC- and ESC-derived erythroid cells may impede enucleation. Our data also provide the first evidence that dysregulation of processes in these cells occurs from the early stages of differentiation, facilitating targeting of future studies. Electronic supplementary material The online version of this article (10.1186/s13287-019-1231-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kongtana Trakarnsanga
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Daniel Ferguson
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Deborah E Daniels
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - Rebecca E Griffiths
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, BS34 7QH, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Kathryn E Mordue
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Abi Gartner
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Tatyana N Andrienko
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - Annabel Calvert
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Alison Condie
- Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, EH14 4AP, UK
| | - Angela McCahill
- Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, EH14 4AP, UK
| | - Joanne C Mountford
- Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, EH14 4AP, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, BS34 7QH, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Anstee
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, BS34 7QH, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK. .,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
18
|
Zingariello M, Bardelli C, Sancillo L, Ciaffoni F, Genova ML, Girelli G, Migliaccio AR. Dexamethasone Predisposes Human Erythroblasts Toward Impaired Lipid Metabolism and Renders Their ex vivo Expansion Highly Dependent on Plasma Lipoproteins. Front Physiol 2019; 10:281. [PMID: 31019464 PMCID: PMC6458278 DOI: 10.3389/fphys.2019.00281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 02/04/2023] Open
Abstract
Cultures of stem cells from discarded sources supplemented with dexamethasone, a synthetic glucocorticoid receptor agonist, generate cultured red blood cells (cRBCs) in numbers sufficient for transfusion. According to the literature, however, erythroblasts generated with dexamethasone exhibit low enucleation rates giving rise to cRBCs that survive poorly in vivo. The knowledge that the glucocorticoid receptor regulates lipid metabolism and that lipid composition dictates the fragility of the plasma membrane suggests that insufficient lipid bioavailability restrains generation of cRBCs. To test this hypothesis, we first compared the expression profiling of erythroblasts generated with or without dexamethasone. This analysis revealed differences in expression of 55 genes, 6 of which encoding proteins involved in lipid metabolism. These were represented by genes encoding the mitochondrial proteins 3-Hydroxymethyl-3-Methylglutaryl-CoA lyase, upregulated, and 3-Oxoacid CoA-Transferase1 and glycerol-3-phosphate acyltransferase1, both downregulated, and the proteins ATP-binding cassette transporter1 and Hydroxysteroid-17-Beta-Dehydrogenase7, upregulated, and cAMP-dependent protein kinase catalytic subunit beta, downregulated. This profiling predicts that dexamethasone, possibly by interfering with mitochondrial functions, impairs the intrinsic lipid metabolism making the synthesis of the plasma membrane of erythroid cells depend on lipid-uptake from external sources. Optical and electron microscopy analyses confirmed that the mitochondria of erythroblasts generated with dexamethasone are abnormal and that their plasma membranes present pebbles associated with membrane ruptures releasing exosomes and micro-vesicles. These results indicate that the lipid supplements of media currently available are not adequate for cRBCs. To identify better lipid supplements, we determined the number of erythroblasts generated in synthetic media supplemented with either currently used liposomes or with lipoproteins purified from human plasma [the total lipoprotein fraction (TL) or its high (HDL), low (LDL) and very low (VLDL) density lipoprotein components]. Both LDL and VLDL generated numbers of erythroid cells 3-2-fold greater than that observed in controls. These greater numbers were associated with 2-3-fold greater amplification of erythroid cells due both to increased proliferation and to resistance to stress-induced death. In conclusion, dexamethasone impairs lipid metabolism making ex vivo expansion of erythroid cells highly dependent on lipid absorbed from external sources and the use of LDL and VLDL as lipid supplements improves the generation of cRBCs.
Collapse
Affiliation(s)
- Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Claudio Bardelli
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| | - Laura Sancillo
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | | | - Maria Luisa Genova
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| | | | - Anna Rita Migliaccio
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| |
Collapse
|
19
|
Establishment and characterization of immortalized erythroid progenitor cell lines derived from a common cell source. Exp Hematol 2018; 69:11-16. [PMID: 30326248 DOI: 10.1016/j.exphem.2018.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
Immortalized erythroid progenitor cell lines, which exhibit potential for enucleated red blood cell (RBC) production, are expected to serve as an in vitro source of RBCs. These erythroid progenitor cell lines have previously been established from a variety of sources; however, large numbers of cell lines have not been established, characterized, and compared from a common cell source. In the present study, 37 cell lines were established from human bone marrow cells from a single donor. The time required for the establishment of each cell line varied greatly from 46 to 246 days. Of these lines, five were selected and their characteristics were analyzed. The cell lines established at the earliest time point showed better results in terms of both karyotype and differentiation potential than those established the latest. Moreover, obvious differences were noted even when cell lines were established at the earliest time point from the same source. These results suggest that it is important to select the best cell lines from ones established at the earliest time point for generating cell lines with low genomic abnormality and high differentiation ability. We have successfully generated an adult type of cell line with 50% cells carrying a normal karyotype and with 25% enucleation efficiency. These findings could be valuable in the development of an optimal method for establishing cell lines.
Collapse
|
20
|
Minetti G, Achilli C, Perotti C, Ciana A. Continuous Change in Membrane and Membrane-Skeleton Organization During Development From Proerythroblast to Senescent Red Blood Cell. Front Physiol 2018; 9:286. [PMID: 29632498 PMCID: PMC5879444 DOI: 10.3389/fphys.2018.00286] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Within the context of erythropoiesis and the possibility of producing artificial red blood cells (RBCs) in vitro, a most critical step is the final differentiation of enucleated erythroblasts, or reticulocytes, to a fully mature biconcave discocyte, the RBC. Reviewed here is the current knowledge about this fundamental maturational process. By combining literature data with our own experimental evidence we propose that the early phase in the maturation of reticulocytes to RBCs is driven by a membrane raft-based mechanism for the sorting of disposable membrane proteins, mostly the no longer needed transferrin receptor (TfR), to the multivesicular endosome (MVE) as cargo of intraluminal vesicles that are subsequently exocytosed as exosomes, consistently with the seminal and original observation of Johnstone and collaborators of more than 30 years ago (Pan BT, Johnstone RM. Cell. 1983;33:967-978). According to a strikingly selective sorting process, the TfR becomes cargo destined to exocytosis while other molecules, including the most abundant RBC transmembrane protein, band 3, are completely retained in the cell membrane. It is also proposed that while this process could be operating in the early maturational steps in the bone marrow, additional mechanism(s) must be at play for the final removal of the excess reticulocyte membrane that is observed to occur in the circulation. This processing will most likely require the intervention of the spleen, whose function is also necessary for the continuous remodeling of the RBC membrane all along this cell's circulatory life.
Collapse
Affiliation(s)
- Giampaolo Minetti
- Laboratori di Biochimica, Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Cesare Achilli
- Laboratori di Biochimica, Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Cesare Perotti
- Servizio Immunoematologia e Medicina Trasfusionale, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Annarita Ciana
- Laboratori di Biochimica, Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
21
|
Secretory factors from OP9 stromal cells delay differentiation and increase the expansion potential of adult erythroid cells in vitro. Sci Rep 2018; 8:1983. [PMID: 29386568 PMCID: PMC5792592 DOI: 10.1038/s41598-018-20491-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Development of in vitro culture systems for the generation of red blood cells is a goal of scientists globally with the aim of producing clinical grade products for transfusion. Although mature reticulocytes can be efficiently generated by such systems, the numbers produced fall short of that required for therapeutics, due to limited proliferative capacity of the erythroblasts. To overcome this hurdle, approaches are required to increase the expansion potential of such culture systems. The OP9 mouse stromal cell line is known to promote haematopoietic differentiation of pluripotent stem cells, however an effect of OP9 cells on erythropoiesis has not been explored. In this study, we show not only OP9 co-culture, but factors secreted by OP9 cells in isolation increase the proliferative potential of adult erythroid cells by delaying differentiation and hence maintaining self-renewing cells for an extended duration. The number of reticulocytes obtained was increased by approximately 3.5-fold, bringing it closer to that required for a therapeutic product. To identify the factors responsible, we analysed the OP9 cell secretome using comparative proteomics, identifying 18 candidate proteins. These data reveal the potential to increase erythroid cell numbers from in vitro culture systems without the need for genetic manipulation or co-culture.
Collapse
|
22
|
Lau SX, Leong YY, Ng WH, Ng AWP, Ismail IS, Yusoff NM, Ramasamy R, Tan JJ. Human mesenchymal stem cells promote CD34 + hematopoietic stem cell proliferation with preserved red blood cell differentiation capacity. Cell Biol Int 2017; 41:697-704. [PMID: 28403524 DOI: 10.1002/cbin.10774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/08/2017] [Indexed: 11/11/2022]
Abstract
Studies showed that co-transplantation of mesenchymal stem cells (MSCs) and cord blood-derived CD34+ hematopoietic stem cells (HSCs) offered greater therapeutic effects but little is known regarding the effects of human Wharton's jelly derived MSCs on HSC expansion and red blood cell (RBC) generation in vitro. This study aimed to investigate the effects of MSCs on HSC expansion and differentiation. HSCs were co-cultured with MSCs or with 10% MSCs-derived conditioned medium, with HSCs cultured under standard medium served as a control. Cell expansion rates, number of mononuclear cell post-expansion and number of enucleated cells post-differentiation were evaluated. HSCs showed superior proliferation in the presence of MSC with mean expansion rate of 3.5 × 108 ± 1.8 × 107 after day 7 compared to the conditioned medium and the control group (8.9 × 107 ± 1.1 × 108 and 7.0 × 107 ± 3.3 × 106 respectively, P < 0.001). Although no significant differences in RBC differentiation were observed between groups at passage IV, the number of enucleated cell was greater compared to earlier passages, indicating successful RBC differentiation. Cord blood-derived CD34+ HSCs can be greatly expanded by co-culturing with MSCs without affecting the RBC differentiation capability, suggesting the importance of direct MSC-HSCs contact in HSC expansion and RBC differentiation.
Collapse
Affiliation(s)
- Show Xuan Lau
- Advanced Medical and Dental Institute, UniversitiSains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Yin Yee Leong
- Advanced Medical and Dental Institute, UniversitiSains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Wai Hoe Ng
- Advanced Medical and Dental Institute, UniversitiSains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Albert Wee Po Ng
- Advanced Medical and Dental Institute, UniversitiSains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Ida Shazrina Ismail
- Advanced Medical and Dental Institute, UniversitiSains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, UniversitiSains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Rajesh Ramasamy
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor Darul Ehsan, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, UniversitiSains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| |
Collapse
|
23
|
An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun 2017; 8:14750. [PMID: 28290447 PMCID: PMC5355882 DOI: 10.1038/ncomms14750] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
With increasing worldwide demand for safe blood, there is much interest in generating red blood cells in vitro as an alternative clinical product. However, available methods for in vitro generation of red cells from adult and cord blood progenitors do not yet provide a sustainable supply, and current systems using pluripotent stem cells as progenitors do not generate viable red cells. We have taken an alternative approach, immortalizing early adult erythroblasts generating a stable line, which provides a continuous supply of red cells. The immortalized cells differentiate efficiently into mature, functional reticulocytes that can be isolated by filtration. Extensive characterization has not revealed any differences between these reticulocytes and in vitro-cultured adult reticulocytes functionally or at the molecular level, and importantly no aberrant protein expression. We demonstrate a feasible approach to the manufacture of red cells for clinical use from in vitro culture. The generation of a sustainable supply of erythroid progenitors is essential for the reliable production of an in vitro derived red blood cell clinical product. Here the authors immortalize early human erythroblasts to generate the first cell line capable of differentiation into functional adult reticulocytes.
Collapse
|
24
|
Srivastava A, Evans KJ, Sexton AE, Schofield L, Creek DJ. Metabolomics-Based Elucidation of Active Metabolic Pathways in Erythrocytes and HSC-Derived Reticulocytes. J Proteome Res 2017; 16:1492-1505. [PMID: 28166632 DOI: 10.1021/acs.jproteome.6b00902] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A detailed analysis of the metabolic state of human-stem-cell-derived erythrocytes allowed us to characterize the existence of active metabolic pathways in younger reticulocytes and compare them to mature erythrocytes. Using high-resolution LC-MS-based untargeted metabolomics, we found that reticulocytes had a comparatively much richer repertoire of metabolites, which spanned a range of metabolite classes. An untargeted metabolomics analysis using stable-isotope-labeled glucose showed that only glycolysis and the pentose phosphate pathway actively contributed to the biosynthesis of metabolites in erythrocytes, and these pathways were upregulated in reticulocytes. Most metabolite species found to be enriched in reticulocytes were residual pools of metabolites produced by earlier erythropoietic processes, and their systematic depletion in mature erythrocytes aligns with the simplification process, which is also seen at the cellular and the structural level. Our work shows that high-resolution LC-MS-based untargeted metabolomics provides a global coverage of the biochemical species that are present in erythrocytes. However, the incorporation of stable isotope labeling provides a more accurate description of the active metabolic processes that occur in each developmental stage. To our knowledge, this is the first detailed characterization of the active metabolic pathways of the erythroid lineage, and it provides a rich database for understanding the physiology of the maturation of reticulocytes into mature erythrocytes.
Collapse
Affiliation(s)
- Anubhav Srivastava
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Krystal J Evans
- Walter and Eliza Hall Institute of Medical Research , Division of Infection and Immunity, Parkville, Victoria 3052, Australia
| | - Anna E Sexton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Louis Schofield
- Walter and Eliza Hall Institute of Medical Research , Division of Infection and Immunity, Parkville, Victoria 3052, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University , Douglas, Queensland 4814, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| |
Collapse
|
25
|
Shah SN, Gelderman MP, Lewis EMA, Farrel J, Wood F, Strader MB, Alayash AI, Vostal JG. Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model. PLoS One 2016; 11:e0166657. [PMID: 27959920 PMCID: PMC5154495 DOI: 10.1371/journal.pone.0166657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022] Open
Abstract
Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as ‘the storage lesion’. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.
Collapse
Affiliation(s)
- Sandeep N. Shah
- Laboratory of Cellular Hematology, Division of Hematology Research and Review, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Monique P. Gelderman
- Laboratory of Cellular Hematology, Division of Hematology Research and Review, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Emily M. A. Lewis
- Laboratory of Cellular Hematology, Division of Hematology Research and Review, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - John Farrel
- Laboratory of Cellular Hematology, Division of Hematology Research and Review, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Francine Wood
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Michael Brad Strader
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Abdu I. Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jaroslav G. Vostal
- Laboratory of Cellular Hematology, Division of Hematology Research and Review, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kupzig S, Parsons SF, Curnow E, Anstee DJ, Blair A. Superior survival of ex vivo cultured human reticulocytes following transfusion into mice. Haematologica 2016; 102:476-483. [PMID: 27909219 PMCID: PMC5394952 DOI: 10.3324/haematol.2016.154443] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
The generation of cultured red blood cells from stem cell sources may fill an unmet clinical need for transfusion-dependent patients, particularly in countries that lack a sufficient and safe blood supply. Cultured red blood cells were generated from human CD34+ cells from adult peripheral blood or cord blood by ex vivo expansion, and a comprehensive in vivo survival comparison with standard red cell concentrates was undertaken. Significant amplification (>105-fold) was achieved using CD34+ cells from both cord blood and peripheral blood, generating high yields of enucleated cultured red blood cells. Following transfusion, higher levels of cultured red cells could be detected in the murine circulation compared to standard adult red cells. The proportions of cultured blood cells from cord or peripheral blood sources remained high 24 hours post-transfusion (82±5% and 78±9%, respectively), while standard adult blood cells declined rapidly to only 49±9% by this time. In addition, the survival time of cultured blood cells in mice was longer than that of standard adult red cells. A paired comparison of cultured blood cells and standard adult red blood cells from the same donor confirmed the enhanced in vivo survival capacity of the cultured cells. The study herein represents the first demonstration that ex vivo generated cultured red blood cells survive longer than donor red cells using an in vivo model that more closely mimics clinical transfusion. Cultured red blood cells may offer advantages for transfusion-dependent patients by reducing the number of transfusions required.
Collapse
Affiliation(s)
- Sabine Kupzig
- NIHR Blood and Transplant Research Unit, Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, UK
| | - Stephen F Parsons
- NIHR Blood and Transplant Research Unit, Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, UK
| | - Elinor Curnow
- Statistics and Clinical Studies, National Health Service Blood and Transplant, Bristol, UK
| | - David J Anstee
- NIHR Blood and Transplant Research Unit, Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, UK
| | - Allison Blair
- NIHR Blood and Transplant Research Unit, Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, UK .,School of Cellular and Molecular Medicine, University of Bristol, UK
| |
Collapse
|
27
|
Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev 2016; 106:88-103. [PMID: 26941164 DOI: 10.1016/j.addr.2016.02.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Red blood cells (RBCs) constitute a unique drug delivery system as a biologic or hybrid carrier capable of greatly enhancing pharmacokinetics, altering pharmacodynamics (for example, by changing margination within the intravascular space), and modulating immune responses to appended cargoes. Strategies for RBC drug delivery systems include internal and surface loading, and the latter can be performed both ex vivo and in vivo. A relatively new avenue for RBC drug delivery is their application as a carrier for nanoparticles. Efforts are also being made to incorporate features of RBCs in nanocarriers to mimic their most useful aspects, such as long circulation and stealth features. RBCs have also recently been explored as carriers for the delivery of antigens for modulation of immune response. Therefore, RBC-based drug delivery systems represent supercarriers for a diverse array of biomedical interventions, and this is reflected by several industrial and academic efforts that are poised to enter the clinical realm.
Collapse
|
28
|
Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion. Cell Rep 2016; 15:2550-62. [PMID: 27264182 PMCID: PMC4914771 DOI: 10.1016/j.celrep.2016.05.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 04/05/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022] Open
Abstract
Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC) development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs). We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM) can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development. Gata1, Tal1, Lmo2, and c-Myc reprogram fibroblasts to erythroid progenitors (iEPs) iEP gene expression is more similar to that of primitive than definitive erythroblasts Klf1 or Myb overexpression induces adult hemoglobin expression in iEPs
Collapse
|
29
|
Engert A, Balduini C, Brand A, Coiffier B, Cordonnier C, Döhner H, de Wit TD, Eichinger S, Fibbe W, Green T, de Haas F, Iolascon A, Jaffredo T, Rodeghiero F, Salles G, Schuringa JJ. The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica 2016; 101:115-208. [PMID: 26819058 PMCID: PMC4938336 DOI: 10.3324/haematol.2015.136739] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/27/2016] [Indexed: 01/28/2023] Open
Abstract
The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
Collapse
Affiliation(s)
| | | | - Anneke Brand
- Leids Universitair Medisch Centrum, Leiden, the Netherlands
| | | | | | | | | | | | - Willem Fibbe
- Leids Universitair Medisch Centrum, Leiden, the Netherlands
| | - Tony Green
- Cambridge Institute for Medical Research, United Kingdom
| | - Fleur de Haas
- European Hematology Association, The Hague, the Netherlands
| | | | | | | | - Gilles Salles
- Hospices Civils de Lyon/Université de Lyon, Pierre-Bénite, France
| | | |
Collapse
|
30
|
Doulatov S, Vo LT, Chou SS, Kim PG, Arora N, Li H, Hadland BK, Bernstein ID, Collins JJ, Zon LI, Daley GQ. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell 2014; 13:459-70. [PMID: 24094326 DOI: 10.1016/j.stem.2013.09.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/20/2013] [Accepted: 09/06/2013] [Indexed: 01/19/2023]
Abstract
Human pluripotent stem cells (hPSCs) represent a promising source of patient-specific cells for disease modeling, drug screens, and cellular therapies. However, the inability to derive engraftable human hematopoietic stem and progenitor cells (HSPCs) has limited their characterization to in vitro assays. We report a strategy to respecify lineage-restricted CD34(+)CD45(+) myeloid precursors derived from hPSCs into multilineage progenitors that can be expanded in vitro and engrafted in vivo. HOXA9, ERG, and RORA conferred self-renewal and multilineage potential in vitro and maintained primitive CD34(+)CD38(-) cells. Screening cells via transplantation revealed that two additional factors, SOX4 and MYB, conferred engraftment. Progenitors specified with all five factors gave rise to reproducible short-term engraftment with myeloid and erythroid lineages. Erythroid precursors underwent hemoglobin switching in vivo, silencing embryonic and activating adult globin expression. Our combinatorial screening approach establishes a strategy for obtaining transcription-factor-mediated engraftment of blood progenitors from human pluripotent cells.
Collapse
Affiliation(s)
- Sergei Doulatov
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Trakarnsanga K, Wilson MC, Lau W, Singleton BK, Parsons SF, Sakuntanaga P, Kurita R, Nakamura Y, Anstee DJ, Frayne J. Induction of adult levels of β-globin in human erythroid cells that intrinsically express embryonic or fetal globin by transduction with KLF1 and BCL11A-XL. Haematologica 2014; 99:1677-85. [PMID: 25107887 DOI: 10.3324/haematol.2014.110155] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A major barrier to the clinical use of erythrocytes generated in vitro from pluripotent stem cells or cord blood progenitors is failure of these erythrocytes to express adult hemoglobin. The key regulators of globin switching KLF1 and BCL11A are absent or at a lower level than in adult cells in K562 and erythroid cells differentiated in vitro from induced pluripotent stem cells and cord blood progenitors. Transfection or transduction of K562 and cord blood erythroid cells with either KLF1 or BCL11A-XL had little effect on β-globin expression. In contrast, transduction with both transcription factors stimulated β-globin expression. Similarly, increasing the level of BCL11A-XL in the induced pluripotent stem cell-derived erythroid cell line HiDEP-1, which has levels of endogenous KLF1 similar to adult cells but lacks BCL11A, resulted in levels of β-globin equivalent to that of adult erythroid cells. Interestingly, this increase in β-globin was coincident with a decrease in ε- and ζ-, but not γ-globin, implicating BCL11A in repression of embryonic globin expression. The data show that KLF1 and BCL11A-XL together are required, but sufficient to induce adult levels of β-globin in induced pluripotent stem cell and cord blood-derived erythroid cells that intrinsically express embryonic or fetal globin.
Collapse
Affiliation(s)
- Kongtana Trakarnsanga
- School of Biochemistry, University of Bristol, Bristol, United Kingdom Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Winnie Lau
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Belinda K Singleton
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Filton, Bristol, UK
| | - Steve F Parsons
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Filton, Bristol, UK
| | | | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - David J Anstee
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Filton, Bristol, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
32
|
van Veen T, Hunt JA. Tissue engineering red blood cells: a therapeutic. J Tissue Eng Regen Med 2014; 9:760-70. [DOI: 10.1002/term.1885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Theun van Veen
- Clinical Engineering, Institute of Ageing and Chronic Disease; University of Liverpool; UK
| | - John A. Hunt
- Clinical Engineering, Institute of Ageing and Chronic Disease; University of Liverpool; UK
| |
Collapse
|
33
|
Shah S, Huang X, Cheng L. Concise review: stem cell-based approaches to red blood cell production for transfusion. Stem Cells Transl Med 2013; 3:346-55. [PMID: 24361925 DOI: 10.5966/sctm.2013-0054] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Blood transfusion is a common procedure in modern medicine, and it is practiced throughout the world; however, many countries report a less than sufficient blood supply. Even in developed countries where the supply is currently adequate, projected demographics predict an insufficient supply as early as 2050. The blood supply is also strained during occasional widespread disasters and crises. Transfusion of blood components such as red blood cells (RBCs), platelets, or neutrophils is increasingly used from the same blood unit for multiple purposes and to reduce alloimmune responses. Even for RBCs and platelets lacking nuclei and many antigenic cell-surface molecules, alloimmunity could occur, especially in patients with chronic transfusion requirements. Once alloimmunization occurs, such patients require RBCs from donors with a different blood group antigen combination, making it a challenge to find donors after every successive episode of alloimmunization. Alternative blood substitutes such as synthetic oxygen carriers have so far proven unsuccessful. In this review, we focus on current research and technologies that permit RBC production ex vivo from hematopoietic stem cells, pluripotent stem cells, and immortalized erythroid precursors.
Collapse
Affiliation(s)
- Siddharth Shah
- Division of Hematology, Department of Medicine, and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
34
|
Rousseau GF, Giarratana MC, Douay L. Large-scale production of red blood cells from stem cells: what are the technical challenges ahead? Biotechnol J 2013; 9:28-38. [PMID: 24408610 DOI: 10.1002/biot.201200368] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/05/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022]
Abstract
Blood-transfusion centers regularly face the challenge of donor blood shortages, especially for rare blood groups. The possibility of producing universal red blood cells from stem cells industrially has become a possible alternative since the successful injection of blood generated in vitro into a human being in 2011. Although there remains many biological and regulatory issues concerning the efficacy and safety of this new product, the major challenge today for future clinical applications is switching from the current limited 2-dimensional production techniques to large-scale 3-dimensional bioreactors. In addition to requiring technological breakthroughs, the whole process also has to become at least five-fold more cost-efficient to match the current prices of high-quality blood products. The current review sums up the main biological advances of the past decade, outlines the key biotechnological challenges for the large-scale cost-effective production of red blood cells, proposes solutions based on strategies used in the bioindustry and presents the state-of-the-art of large-scale blood production.
Collapse
Affiliation(s)
- Guillaume F Rousseau
- UPMC University Paris 6, UMR_S938, Proliferation and Differentiation of Stem Cells, Paris, France; INSERM, UMR_S938, Proliferation and Differentiation of Stem Cells, Paris, France; Université Paris Diderot, Paris, France
| | | | | |
Collapse
|
35
|
Li X, Wu Z, Fu X, Han W. How Far Are Stem-Cell-Derived Erythrocytes from the Clinical Arena? Bioscience 2013. [DOI: 10.1525/bio.2013.63.8.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
36
|
Byrnes C, Lee YT, Meier ER, Rabel A, Sacks DB, Miller JL. Iron dose-dependent differentiation and enucleation of human erythroblasts in serum-free medium. J Tissue Eng Regen Med 2013; 10:E84-9. [PMID: 23606586 DOI: 10.1002/term.1743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/11/2013] [Accepted: 02/05/2013] [Indexed: 11/07/2022]
Abstract
Improvements in ex vivo generation of enucleated red blood cells are being sought for erythroid biology research, toward the ultimate goal of erythrocyte engineering for clinical use. Based upon the high levels of iron-saturated transferrin in plasma serum, it was hypothesized that terminal differentiation in serum-free media may be highly dependent on the concentration of iron. Here adult human CD34(+) cells were cultured in a serum-free medium containing dosed levels of iron-saturated transferrin (holo-Tf, 0.1-1.0 mg/ml). Iron in the culture medium was reduced, but not depleted, with erythroblast differentiation into haemoglobinized cells. At the lowest holo-Tf dose (0.1 mg/ml), terminal differentiation was significantly reduced and the majority of the cells underwent apoptotic death. Cell survival, differentiation and enucleation were enhanced as the holo-Tf dose increased. These data suggest that adequate holo-Tf dosing is critical for terminal differentiation and enucleation of human erythroblasts generated ex vivo in serum-free culture conditions. Published 2013. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Colleen Byrnes
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Y Terry Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily R Meier
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC, USA
| | - Antoinette Rabel
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Clinical Chemistry Service, Department of Laboratory Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery L Miller
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|