1
|
Hu YN, Wu M, Yu HP, Wu QY, Chen Y, Zhang JH, Ruan DD, Zhang YP, Zou J, Zhang L, Lin XF, Fang ZT, Liao LS, Lin F, Li H, Luo JW. Analysis of low-density lipoprotein receptor gene mutations in a family with familial hypercholesterolemia. PLoS One 2024; 19:e0310547. [PMID: 39392848 PMCID: PMC11469539 DOI: 10.1371/journal.pone.0310547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/03/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a common monogenic autosomal dominant disorder, primarily mainly caused by pathogenic mutations in the low-density lipoprotein receptor (LDLR) gene. Through phenotypic-genetic linkage analysis, two LDLR pathogenic mutations were identified in FH families: c.G1027A (p.Gly343Ser) and c.G1879A (p.Ala627Thr). MATERIALS AND METHODS Whole exome sequencing was conducted on the proband with familial hypercholesterolemia to identify the target gene and screen for potential pathogenic mutations. The suspicious responsible mutation sites in 14 family members were analyzed using Sanger sequencing to assess genotype-phenotype correlations. Mutant and wild type plasmids were constructed and transfected into HEK293T cells to evaluate LDLR mRNA and protein expression. In parallel, bioinformatics tools were employed to predict structural and functional changes in the mutant LDLR. RESULTS Immunofluorescence analysis revealed no significant difference in the intracellular localization of the p.Gly343Ser mutation, whereas protein expression of the p.Ala627Thr mutation was decreased and predominantly localized in the cytoplasm. Western blotting has showed that protein expression levels of the mutant variants were markedly declined in both cell lysates and supernatants. Enzyme linked immunosorbent assay has demonstrated that LDLR protein levels in the supernatant of cell culture medium was not significant different from those of the wild-type group. However, LDLR protein levels in the cell lysate of both the Gly343Ser and Ala627Thr variants groups were significantly lower than those in the wild-type group. Bioinformatic predictions further suggested that these mutations may affect post-translational modifications of the protein, providing additional insight into the mechanisms underlying the observed reduction in protein expression. CONCLUSIONS In this study, we identified two heterozygous pathogenic variants in the LDLR gene, c.G1027A (p.Gly343Ser) and c.G1879A (p.Ala627Thr), in a family with familial hypercholesterolemia. We also conducted preliminary investigations into the mechanisms by which these mutations contribute to disease pathology.
Collapse
Affiliation(s)
- Ya-nan Hu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Min Wu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Hong-ping Yu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Qiu-yan Wu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Ying Chen
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Jian-Hui Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Dan-dan Ruan
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Yan-ping Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Jing Zou
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Li Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Nephrology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xin-fu Lin
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Pediatrics department, Fujian Provincial Hospital, Fuzhou, China
| | - Zhu-ting Fang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Oncology and Vascular Intervention, Fujian Provincial Hospital, Fuzhou, China
| | - Li-Sheng Liao
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Fan Lin
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Hong Li
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Jie-Wei Luo
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
Gallo A, Le Goff W, Santos RD, Fichtner I, Carugo S, Corsini A, Sirtori C, Ruscica M. Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors. Eur J Clin Invest 2024:e14326. [PMID: 39370572 DOI: 10.1111/eci.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.
Collapse
Affiliation(s)
- Antonio Gallo
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpètriêre, Sorbonne Université, INSERM UMR1166, Paris, France
| | - Wilfried Le Goff
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpètriêre, Sorbonne Université, INSERM UMR1166, Paris, France
| | - Raul D Santos
- Academic Research Organization Hospital Israelita Albert Einstein and Lipid Clinic Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Cesare Sirtori
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Constantin AT, Delia C, Roșu LM, Roșca I, Streață I, Riza AL, Gherghina I. The Importance of Genetic Testing for Familial Hypercholesterolemia: A Pediatric Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1602. [PMID: 39459389 PMCID: PMC11509574 DOI: 10.3390/medicina60101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Familial hypercholesterolemia (FH) is a genetic disease that is massively underdiagnosed worldwide. Affected patients are at high risk of cardiovascular events at young ages. Early intervention in childhood could help prevent heart attacks and cerebral strokes in these patients. Materials and Methods: We conducted an interventional study including 10 patients that previously underwent genetic testing for familial hypercholesterolemia. These patients received lifestyle and diet recommendations that they followed for a year before being reevaluated. Results: Patients with negative genetic testing were able to achieve lower levels in their lipid panel values compared to the patients with positive genetic testing, with lifestyle changes alone. LDL-cholesterol levels decreased by 18.5% in patients without FH while patients genetically confirmed with FH failed to achieve lower LDL-cholesterol levels without medication. Conclusions: Genetic testing for FH is not always part of screening algorithms for FH. Some studies even advise against it. Our study proved the importance of genetic testing for FH when suspecting this disorder and choosing the treatment course for patients.
Collapse
Affiliation(s)
- Andreea Teodora Constantin
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (A.T.C.)
- Pediatrics Department, National Institute for Mother and Child Health “Alessandrescu-Rusescu”, 020395 Bucharest, Romania
| | - Corina Delia
- Pediatrics Department, National Institute for Mother and Child Health “Alessandrescu-Rusescu”, 020395 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| | - Lucia Maria Roșu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (A.T.C.)
- Pediatrics Department, National Institute for Mother and Child Health “Alessandrescu-Rusescu”, 020395 Bucharest, Romania
| | - Ioana Roșca
- Faculty of Midwifery and Nursery, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- Neonatology Department, Clinical Hospital of Obstetrics and Gynecology ”Prof. Dr. P. Sârbu”, 060251 Bucharest, Romania
| | - Ioana Streață
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Anca-Lelia Riza
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Ioan Gherghina
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (A.T.C.)
| |
Collapse
|
4
|
Nguyen KM, Hoang SV. Prevalence of genetically diagnosed familial hypercholesterolemia in Vietnamese patients with premature acute myocardial infarction. Medicine (Baltimore) 2024; 103:e39939. [PMID: 39331889 PMCID: PMC11441875 DOI: 10.1097/md.0000000000039939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder that results in elevated low-density lipoprotein cholesterol (LDL-C) levels, which manifest early in the first decades of life. It is a major cause of premature coronary artery disease worldwide, leading to significant public health challenges. The prevalence of genetically determined FH in patients with premature coronary artery disease remains underestimated, particularly in developing countries. This study aimed to assess the prevalence of genetically defined FH in Vietnamese patients with premature acute myocardial infarction (AMI) in the Vietnamese population. This cross-sectional study enrolled 218 consecutive patients diagnosed with premature AMI who underwent coronary angiography. The low-density lipoprotein receptor (LDLR), apolipoprotein B, and proprotein convertase subtilisin-kexin type 9 genes were analyzed by next-generation sequencing. FH was diagnosed according to Dutch Lipid Clinic Network criteria. Among the patients with premature AMI who underwent coronary angiography, the mean age was 46.9 ± 6.1 years, with a predominance of males (83.9%). The prevalence of potential FH diagnosed using Dutch Lipid Clinic Network criteria was 14.7% (definite FH, 6.0%; probable FH, 8.7%). Pathogenic or likely pathogenic variants in LDLR, apolipoprotein B, and proprotein convertase subtilisin-kexin type 9 were found in 9 of 218 patients (4.1%), all of which were causative mutations in LDLR. Patients with premature AMI and FH had significantly greater LDL-C levels (217.6 vs 125.7 mg/dL) and more severe coronary artery lesions, as assessed by the Gensini score (100.3 vs 60.5), than did those in the No FH group. The prevalence of genetically determined FH among Vietnamese patients with premature AMI is relatively high. Screening and diagnosis of hereditary conditions in patients with premature AMI are essential to improve early detection and management and reduce the burden of coronary artery disease in this population.
Collapse
Affiliation(s)
- Kha Minh Nguyen
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Cardiology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Sy Van Hoang
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Cardiology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Tarugi P, Bertolini S, Calandra S, Arca M, Angelico F, Casula M, Cefalù AB, D'Erasmo L, Fortunato G, Perrone-Filardi P, Rubba P, Suppressa P, Averna M, Catapano AL. Consensus document on diagnosis and management of familial hypercholesterolemia from the Italian Society for the Study of Atherosclerosis (SISA). Nutr Metab Cardiovasc Dis 2024; 34:1819-1836. [PMID: 38871496 DOI: 10.1016/j.numecd.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024]
Abstract
AIMS Familial Hypercholesterolemia (FH) is a genetic disorder of lipoprotein metabolism that causes an increased risk of premature atherosclerotic cardiovascular disease (ASCVD). Although early diagnosis and treatment of FH can significantly improve the cardiovascular prognosis, this disorder is underdiagnosed and undertreated. For these reasons the Italian Society for the Study of Atherosclerosis (SISA) assembled a Consensus Panel with the task to provide guidelines for FH diagnosis and treatment. DATA SYNTHESIS Our guidelines include: i) an overview of the genetic complexity of FH and the role of candidate genes involved in LDL metabolism; ii) the prevalence of FH in the population; iii) the clinical criteria adopted for the diagnosis of FH; iv) the screening for ASCVD and the role of cardiovascular imaging techniques; v) the role of molecular diagnosis in establishing the genetic bases of the disorder; vi) the current therapeutic options in both heterozygous and homozygous FH. Treatment strategies and targets are currently based on low-density lipoprotein cholesterol (LDL-C) levels, as the prognosis of FH largely depends on the magnitude of LDL-C reduction achieved by lipid-lowering therapies. Statins with or without ezetimibe are the mainstay of treatment. Addition of novel medications like PCSK9 inhibitors, ANGPTL3 inhibitors or lomitapide in homozygous FH results in a further reduction of LDL-C levels. LDL apheresis is indicated in FH patients with inadequate response to cholesterol-lowering therapies. CONCLUSION FH is a common, treatable genetic disorder and, although our understanding of this disease has improved, many challenges still remain with regard to its identification and management.
Collapse
Affiliation(s)
- Patrizia Tarugi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine (DTPM), Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | | | - Manuela Casula
- Department of Pharmacological and Biomolecular Sciences (DisFeB), Epidemiology and Preventive Pharmacology Service (SEFAP), University of Milan, Milan, Italy; IRCCS Multimedica, Sesto San Giovanni (Milan), Italy
| | - Angelo B Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine (DTPM), Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuliana Fortunato
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II and CEINGE Biotecnologie avanzate "Franco Salvatore", Naples, Italy
| | | | - Paolo Rubba
- Department of Internal Medicine and Surgery, Federico II University, Naples, Italy
| | - Patrizia Suppressa
- Department of Internal Medicine and Rare Diseases Centre "C. Frugoni", University of Bari A. Moro, Bari, Italy
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Biophysical Institute CNR, Palermo, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy; IRCCS Multimedica, Milano, Italy
| |
Collapse
|
6
|
Xian M, Wang Q, Xiao L, Zhong L, Xiong W, Ye L, Su P, Zhang C, Li Y, Orlowski RZ, Zhan F, Ganguly S, Zu Y, Qian J, Yi Q. Leukocyte immunoglobulin-like receptor B1 (LILRB1) protects human multiple myeloma cells from ferroptosis by maintaining cholesterol homeostasis. Nat Commun 2024; 15:5767. [PMID: 38982045 PMCID: PMC11233649 DOI: 10.1038/s41467-024-50073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by uncontrolled proliferation of plasma cells in the bone marrow. MM patients with aggressive progression have poor survival, emphasizing the urgent need for identifying new therapeutic targets. Here, we show that the leukocyte immunoglobulin-like receptor B1 (LILRB1), a transmembrane receptor conducting negative immune response, is a top-ranked gene associated with poor prognosis in MM patients. LILRB1 deficiency inhibits MM progression in vivo by enhancing the ferroptosis of MM cells. Mechanistic studies reveal that LILRB1 forms a complex with the low-density lipoprotein receptor (LDLR) and LDLR adapter protein 1 (LDLRAP1) to facilitate LDL/cholesterol uptake. Loss of LILRB1 impairs cholesterol uptake but activates the de novo cholesterol synthesis pathway to maintain cellular cholesterol homeostasis, leading to the decrease of anti-ferroptotic metabolite squalene. Our study uncovers the function of LILRB1 in regulating cholesterol metabolism and protecting MM cells from ferroptosis, implicating LILRB1 as a promising therapeutic target for MM patients.
Collapse
Affiliation(s)
- Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ling Zhong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Chuanchao Zhang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yabo Li
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Siddhartha Ganguly
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
D'Erasmo L, Bini S, Casula M, Gazzotti M, Bertolini S, Calandra S, Tarugi P, Averna M, Iannuzzo G, Fortunato G, Catapano AL, Arca M. Contemporary lipid-lowering management and risk of cardiovascular events in homozygous familial hypercholesterolaemia: insights from the Italian LIPIGEN Registry. Eur J Prev Cardiol 2024; 31:1038-1047. [PMID: 38374534 DOI: 10.1093/eurjpc/zwae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
AIMS The availability of novel lipid-lowering therapies (LLTs) has remarkably changed the clinical management of homozygous familial hypercholesterolaemia (HoFH). The impact of these advances was evaluated in a cohort of 139 HoFH patients followed in a real-world clinical setting. METHODS AND RESULTS The clinical characteristics of 139 HoFH patients, along with information about LLTs and low-density lipoprotein cholesterol (LDL-C) levels at baseline and after a median follow-up of 5 years, were retrospectively retrieved from the records of patients enrolled in the LIPid transport disorders Italian GEnetic Network-Familial Hypercholesterolaemia (LIPIGEN-FH) Registry. The annual rates of major atherosclerotic cardiovascular events (MACE-plus) during follow-up were compared before and after baseline. Additionally, the lifelong survival free from MACE-plus was compared with that of the historical LIPIGEN HoFH cohort. At baseline, LDL-C level was 332 ± 138 mg/dL. During follow-up, the potency of LLTs was enhanced and, at the last visit, 15.8% of patients were taking quadruple therapy. Consistently, LDL-C decreased to an average value of 124 mg/dL corresponding to a 58.3% reduction (Pt < 0.001), with the lowest value (∼90 mg/dL) reached in patients receiving proprotein convertase subtilisin/kexin type 9 inhibitors and lomitapide and/or evinacumab as add-on therapies. The average annual MACE-plus rate in the 5-year follow-up was significantly lower than that observed during the 5 years before baseline visit (21.7 vs. 56.5 per 1000 patients/year; P = 0.0016). CONCLUSION Our findings indicate that the combination of novel and conventional LLTs significantly improved LDL-C control with a signal of better cardiovascular prognosis in HoFH patients. Overall, these results advocate the use of intensive, multidrug LLTs to effectively manage HoFH.
Collapse
Affiliation(s)
- Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell'Università 37, Rome 00185, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell'Università 37, Rome 00185, Italy
| | - Manuela Casula
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Stefano Bertolini
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Tarugi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine, University of Palermo, Palermo, Italy
- Medical Specialties 'G. D'Alessandro' (PROMISE), University of Palermo, Palermo, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Giuliana Fortunato
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
- CEINGE S.C.a r.l. Advanced Biotechnology, Naples, Italy
| | - Alberico L Catapano
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell'Università 37, Rome 00185, Italy
- Internal medicine and metabolic diseases Unit, Azienda Ospedaliero Universitaria Policlinico Umberto I, Rome, Italy
| |
Collapse
|
8
|
Tada H, Kawashiri MA, Nohara A, Sekiya T, Watanabe A, Takamura M. Genetic Counseling and Genetic Testing for Familial Hypercholesterolemia. Genes (Basel) 2024; 15:297. [PMID: 38540356 PMCID: PMC10970256 DOI: 10.3390/genes15030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 06/14/2024] Open
Abstract
Familial hypercholesterolemia (FH) is one of the most common autosomal codominant Mendelian diseases. The major complications of FH include tendon and cutaneous xanthomas and coronary artery disease (CAD) associated with a substantial elevation of serum low-density lipoprotein levels (LDL). Genetic counseling and genetic testing for FH is useful for its diagnosis, risk stratification, and motivation for further LDL-lowering treatments. In this study, we summarize the epidemiology of FH based on numerous genetic studies, including its pathogenic variants, genotype-phenotype correlation, prognostic factors, screening, and usefulness of genetic counseling and genetic testing. Due to the variety of treatments available for this common Mendelian disease, genetic counseling and genetic testing for FH should be implemented in daily clinical practice.
Collapse
Affiliation(s)
- Hayato Tada
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan;
| | - Masa-aki Kawashiri
- Department of Internal Medicine, Kaga Medical Center, Kaga 922-8522, Japan;
| | - Atsushi Nohara
- Department of Clinical Genetics, Ishikawa Prefectural Central Hospital, Kanazawa 920-8530, Japan;
| | - Tomoko Sekiya
- Division of Clinical Genetics, Kanazawa University Hospital, Kanazawa 920-8641, Japan; (T.S.); (A.W.)
| | - Atsushi Watanabe
- Division of Clinical Genetics, Kanazawa University Hospital, Kanazawa 920-8641, Japan; (T.S.); (A.W.)
| | - Masayuki Takamura
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan;
| |
Collapse
|
9
|
Klose G, Gouni-Berthold I, März W. [Primary disorders of lipid metabolism: their place in current dyslipidemia guidelines and treatment innovations]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023; 64:895-906. [PMID: 37280381 DOI: 10.1007/s00108-023-01524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/08/2023]
Abstract
According to current guidelines, the selection and intensity of lipid-effective therapies are based on the risk to be treated. The sole clinical categories of primary and secondary prevention of cardiovascular diseases result in over- and under-treatment, which may be a contributory cause of incomplete implementation of current guidelines in everyday practice. For the extent of benefit in cardiovascular outcome studies with lipid-lowering drugs, the importance of dyslipdemia for the pathogenesis of atherosclerosis-related diseases is crucial. Primary lipid metabolism disorders are characterized by life-long increased exposure to atherogenic lipoproteins. This article describes the relevance of new data for low density lipoprotein-effective therapy: inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), adenosine triphosphate (ATP) citrate lyase with bempedoic acid, and ANGPTL3 with special consideration of primary lipid metabolism disorders, which are insufficiently taken into account, or not taken into account at all, in current guidelines. This is due to their apparently low prevalence rate and thus the lack of large outcome studies. The authors also discuss the consequences of increased lipoprotein (a), which cannot be sufficiently reduced until the ongoing intervention studies examining antisense oligonucleotides and small interfering RNA (siRNA) against apolipoprotein (a) are completed. Another challenge in practice is the treatment of rare, massive hypertriglyceridemia, especially with the aim of preventing pancreatitis. For this purpose, the apolipoprotein C3 (ApoC3) antisense oligonucleotide volenasorsen is available, which binds to the mRNA for ApoC3 and lowers triglycerides by around three quarters.
Collapse
Affiliation(s)
- G Klose
- Praxis für Endokrinologie Dres. I. Van de Loo & K. Spieker, Gerold-Janssen-Str. 2A, 28359, Bremen, Deutschland.
| | - I Gouni-Berthold
- Poliklinik für Endokrinologie, Diabetes und Präventivmedizin, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln, Deutschland
| | - W März
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetologie), Medizinische Fakultät Mannheim, Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland
- Klinisches Institut für medizinische und chemische Labordiagnostik, Medizinische Universität Graz, Auenbruggerplatz 15, 8036, Graz, Österreich
- SYNLAB Akademie, SYNLAB Holding Deutschland GmbH, P5, 7, 68161, Mannheim, Deutschland
- SYNLAB Akademie, SYNLAB Holding Deutschland GmbH, Augsburg, Deutschland
| |
Collapse
|
10
|
Cuchel M, Raal FJ, Hegele RA, Al-Rasadi K, Arca M, Averna M, Bruckert E, Freiberger T, Gaudet D, Harada-Shiba M, Hudgins LC, Kayikcioglu M, Masana L, Parhofer KG, Roeters van Lennep JE, Santos RD, Stroes ESG, Watts GF, Wiegman A, Stock JK, Tokgözoğlu LS, Catapano AL, Ray KK. 2023 Update on European Atherosclerosis Society Consensus Statement on Homozygous Familial Hypercholesterolaemia: new treatments and clinical guidance. Eur Heart J 2023:7148157. [PMID: 37130090 DOI: 10.1093/eurheartj/ehad197] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023] Open
Abstract
This 2023 statement updates clinical guidance for homozygous familial hypercholesterolaemia (HoFH), explains the genetic complexity, and provides pragmatic recommendations to address inequities in HoFH care worldwide. Key strengths include updated criteria for the clinical diagnosis of HoFH and the recommendation to prioritize phenotypic features over genotype. Thus, a low-density lipoprotein cholesterol (LDL-C) >10 mmol/L (>400 mg/dL) is suggestive of HoFH and warrants further evaluation. The statement also provides state-of-the art discussion and guidance to clinicians for interpreting the results of genetic testing and for family planning and pregnancy. Therapeutic decisions are based on the LDL-C level. Combination LDL-C-lowering therapy-both pharmacologic intervention and lipoprotein apheresis (LA)-is foundational. Addition of novel, efficacious therapies (i.e. inhibitors of proprotein convertase subtilisin/kexin type 9, followed by evinacumab and/or lomitapide) offers potential to attain LDL-C goal or reduce the need for LA. To improve HoFH care around the world, the statement recommends the creation of national screening programmes, education to improve awareness, and management guidelines that account for the local realities of care, including access to specialist centres, treatments, and cost. This updated statement provides guidance that is crucial to early diagnosis, better care, and improved cardiovascular health for patients with HoFH worldwide.
Collapse
Affiliation(s)
- Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 9017 Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand Parktown, Johannesburg, South Africa
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Khalid Al-Rasadi
- Department of Biochemistry, College of Medicine & Health Sciences, Medical Research Center, Sultan Qaboos University, Muscat, Oman
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Eric Bruckert
- Pitié-Salpêtrière Hospital and Sorbonne University, Cardio metabolic Institute, Paris, France
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE, Clinical and Translational Research Center, and Lipid Clinic, Chicoutimi Hospital, Chicoutimi, Québec, Canada
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Lisa C Hudgins
- Rogosin Institute, Weill Cornell Medical College, New York, NY, USA
| | - Meral Kayikcioglu
- Department of Cardiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Luis Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV CIBERDEM, Reus, Spain
| | - Klaus G Parhofer
- Medizinische Klinik und Poliklinik IV, Ludwigs-Maximilians University Klinikum, Munich, Germany
| | | | - Raul D Santos
- Lipid Clinic, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
- Academic Research Organization Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerald F Watts
- Medical School, University of Western Australia, and Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Albert Wiegman
- Department of Pediatrics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jane K Stock
- European Atherosclerosis Society, Gothenburg, Sweden
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- IRCCS MultiMedica, and Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
11
|
Wang ZP, Wu YJ, Gao Y, Qian J, Liu LT, Guo YL, Li JJ, Chen KJ. Different clinical phenotypes of a pair of siblings with familial hypercholesterolemia: a case report and literature review. BMC Cardiovasc Disord 2023; 23:227. [PMID: 37127585 PMCID: PMC10150518 DOI: 10.1186/s12872-023-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) leads to high plasma low-density lipoprotein cholesterol (LDL-C) levels and early cardiovascular morbidity and mortality. We treated a pair of siblings with FH. The cardiovascular manifestations in the proband were more severe than those in his elder sister, although they had almost similar LDL-C levels, ages, and lifestyles. Herein, we report the cases of this family to explore the possible causes of clinical phenotypic differences within the same genetic background. CASE PRESENTATION We treated a 27-year-old male patient and his 30-year-old sister, both with FH. The coronary angiogram in the male patient revealed 80, 70, and 100% stenosis of the initial, distal right coronary artery branch, and left anterior descending branch, respectively, whereas his sister had almost no coronary stenosis. We treated them accordingly and performed family screening. We found that the LDL-C/particle discordance of the proband is much greater than that of his elder sister. In addition, the average size of LDL-C particle in the proband was smaller than that in his sister. CONCLUSIONS Patients with FH have a much higher risk of premature atherosclerotic cardiovascular disease, but the clinical manifestations are heterogeneous. The smaller LDL particle size may be the underlying cause for different clinical outcomes in this pair of FH cases and be a potential novel indicator for predicting the prognosis of FH.
Collapse
Affiliation(s)
- Ze-Ping Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ya-Jie Wu
- Cardiometabolic Medicine Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Ying Gao
- Cardiometabolic Medicine Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jie Qian
- Cardiometabolic Medicine Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Long-Tao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yuan-Lin Guo
- Cardiometabolic Medicine Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Jian-Jun Li
- Cardiometabolic Medicine Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Ke-Ji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
12
|
Genetic Heterogeneity of Familial Hypercholesterolemia: Repercussions for Molecular Diagnosis. Int J Mol Sci 2023; 24:ijms24043224. [PMID: 36834635 PMCID: PMC9961636 DOI: 10.3390/ijms24043224] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Genetics of Familial Hypercholesterolemia (FH) is ascribable to pathogenic variants in genes encoding proteins leading to an impaired LDL uptake by the LDL receptor (LDLR). Two forms of the disease are possible, heterozygous (HeFH) and homozygous (HoFH), caused by one or two pathogenic variants, respectively, in the three main genes that are responsible for the autosomal dominant disease: LDLR, APOB and PCSK9 genes. The HeFH is the most common genetic disease in humans, being the prevalence about 1:300. Variants in the LDLRAP1 gene causes FH with a recessive inheritance and a specific APOE variant was described as causative of FH, contributing to increase FH genetic heterogeneity. In addition, variants in genes causing other dyslipidemias showing phenotypes overlapping with FH may mimic FH in patients without causative variants (FH-phenocopies; ABCG5, ABCG8, CYP27A1 and LIPA genes) or act as phenotype modifiers in patients with a pathogenic variant in a causative gene. The presence of several common variants was also considered a genetic basis of FH and several polygenic risk scores (PRS) have been described. The presence of a variant in modifier genes or high PRS in HeFH further exacerbates the phenotype, partially justifying its variability among patients. This review aims to report the updates on the genetic and molecular bases of FH with their implication for molecular diagnosis.
Collapse
|
13
|
Stellenwert primärer Fettstoffwechselstörungen im Kontext aktueller Dyslipidämie-Leitlinien und aktueller Innovationen in der Lipidtherapie. JOURNAL FÜR KLINISCHE ENDOKRINOLOGIE UND STOFFWECHSEL 2022. [DOI: 10.1007/s41969-022-00178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Gandhi GD, Aamer W, Krishnamoorthy N, Syed N, Aliyev E, Al-Maraghi A, Kohailan M, Alenbawi J, Elanbari M, Mifsud B, Mokrab Y, Khalil CA, Fakhro KA. Assessing the genetic burden of familial hypercholesterolemia in a large middle eastern biobank. J Transl Med 2022; 20:502. [PMID: 36329474 PMCID: PMC9635206 DOI: 10.1186/s12967-022-03697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The genetic architecture underlying Familial Hypercholesterolemia (FH) in Middle Eastern Arabs is yet to be fully described, and approaches to assess this from population-wide biobanks are important for public health planning and personalized medicine. METHODS We evaluate the pilot phase cohort (n = 6,140 adults) of the Qatar Biobank (QBB) for FH using the Dutch Lipid Clinic Network (DLCN) criteria, followed by an in-depth characterization of all genetic alleles in known dominant (LDLR, APOB, and PCSK9) and recessive (LDLRAP1, ABCG5, ABCG8, and LIPA) FH-causing genes derived from whole-genome sequencing (WGS). We also investigate the utility of a globally established 12-SNP polygenic risk score to predict FH individuals in this cohort with Arab ancestry. RESULTS Using DLCN criteria, we identify eight (0.1%) 'definite', 41 (0.7%) 'probable' and 334 (5.4%) 'possible' FH individuals, estimating a prevalence of 'definite or probable' FH in the Qatari cohort of ~ 1:125. We identify ten previously known pathogenic single-nucleotide variants (SNVs) and 14 putatively novel SNVs, as well as one novel copy number variant in PCSK9. Further, despite the modest sample size, we identify one homozygote for a known pathogenic variant (ABCG8, p. Gly574Arg, global MAF = 4.49E-05) associated with Sitosterolemia 2. Finally, calculation of polygenic risk scores found that individuals with 'definite or probable' FH have a significantly higher LDL-C SNP score than 'unlikely' individuals (p = 0.0003), demonstrating its utility in Arab populations. CONCLUSION We design and implement a standardized approach to phenotyping a population biobank for FH risk followed by systematically identifying known variants and assessing putative novel variants contributing to FH burden in Qatar. Our results motivate similar studies in population-level biobanks - especially those with globally under-represented ancestries - and highlight the importance of genetic screening programs for early detection and management of individuals with high FH risk in health systems.
Collapse
Affiliation(s)
- Geethanjali Devadoss Gandhi
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar ,grid.467063.00000 0004 0397 4222Human Genetics Department, Sidra Medicine, Doha, Qatar
| | - Waleed Aamer
- grid.467063.00000 0004 0397 4222Human Genetics Department, Sidra Medicine, Doha, Qatar
| | | | - Najeeb Syed
- grid.467063.00000 0004 0397 4222Bioinformatics, Genomic Data Science Core, Sidra Medicine, Doha, Qatar
| | - Elbay Aliyev
- grid.467063.00000 0004 0397 4222Human Genetics Department, Sidra Medicine, Doha, Qatar
| | - Aljazi Al-Maraghi
- grid.467063.00000 0004 0397 4222Human Genetics Department, Sidra Medicine, Doha, Qatar
| | - Muhammad Kohailan
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar ,grid.467063.00000 0004 0397 4222Human Genetics Department, Sidra Medicine, Doha, Qatar
| | - Jamil Alenbawi
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mohammed Elanbari
- grid.467063.00000 0004 0397 4222Clinical Research Centre, Sidra Medicine, Doha, Qatar
| | | | - Borbala Mifsud
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Younes Mokrab
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar ,grid.467063.00000 0004 0397 4222Laboratory of Medical and Population Genomics, Sidra Medicine, Doha, Qatar ,grid.416973.e0000 0004 0582 4340Department of Genetic Medicine, Weill Cornell Medicine, Education City, Qatar
| | - Charbel Abi Khalil
- grid.416973.e0000 0004 0582 4340Department of Genetic Medicine, Weill Cornell Medicine, Education City, Qatar ,grid.5386.8000000041936877XJoan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, US
| | - Khalid A. Fakhro
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar ,grid.467063.00000 0004 0397 4222Human Genetics Department, Sidra Medicine, Doha, Qatar ,grid.416973.e0000 0004 0582 4340Department of Genetic Medicine, Weill Cornell Medicine, Education City, Qatar
| |
Collapse
|
15
|
Civeira F, Arca M, Cenarro A, Hegele RA. A mechanism-based operational definition and classification of hypercholesterolemia. J Clin Lipidol 2022; 16:813-821. [DOI: 10.1016/j.jacl.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
|
16
|
D’Erasmo L, Giammanco A, Suppressa P, Pavanello C, Iannuzzo G, Di Costanzo A, Tramontano D, Minicocci I, Bini S, Vogt A, Stewards K, Roeters Van Lennep J, Bertolini S, Arca M. Efficacy of Long-Term Treatment of Autosomal Recessive Hypercholesterolemia With Lomitapide: A Subanalysis of the Pan-European Lomitapide Study. Front Genet 2022; 13:937750. [PMID: 36072671 PMCID: PMC9442671 DOI: 10.3389/fgene.2022.937750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Backgroundand aim: Autosomal recessive hypercholesterolemia (ARH) is a rare autosomal recessive disorder of low-density lipoprotein (LDL) metabolism caused by pathogenic variants in the LDLRAP1 gene. Like homozygous familial hypercholesterolemia, ARH is resistant to conventional LDL-lowering medications and causes a high risk of atherosclerotic cardiovascular diseases (ASCVDs) and aortic valve stenosis. Lomitapide is emerging as an efficacious therapy in classical HoFH, but few data are available for ARH. Results: This is a subanalysis carried out on nine ARH patients included in the Pan-European Lomitapide Study. The age at starting lomitapide was 46 (interquartile range (IQR), 39.0–65.5) years, with a median treatment duration of 31.0 (IQR 14.0–40.5) months. At baseline, four (44.4%) patients had hypertension, one (11.1%) had diabetes mellitus, two (22.2%) were active smokers, and five (55.5%) reported ASCVD. The baseline LDL-C was 257.0 (IQR, 165.3–309.2) mg/dL. All patients were on statins plus ezetimibe, three were receiving Lipoprotein apheresis (LA), and one was also receiving proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i). The addition of lomitapide (mean dose, 10 mg) resulted in the achievement of a median on-treatment LDL-C of 101.7 mg/dL (IQR, 71.3–138.3; 60.4% reduction from baseline), with a best LDL-C value of 68.0 mg/dL (IQR, 43.7–86.7; 73.5% reduction from baseline). During follow-up, one patient stopped both PCSK9i and LA. Recurrence of ASCVD events was reported in one patient. The median on-treatment aspartate transaminase and alanine transaminase values were 31.1 (IQR, 22.6–48.3) U/L and 31.1 (IQR, 27.2–53.8) U/L, respectively. Among six ARH patients with available fibroscan examination, liver stiffness values recorded at the last visit were within the normal range (median, 4.7 KPa; IQR, 3.6–5.3 KPa). Conclusion: Lomitapide is effective and safe in ARH therapy as well as in classical HoFH.
Collapse
Affiliation(s)
- Laura D’Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Laura D’Erasmo,
| | - Antonina Giammanco
- Dipartimento di Promozione Della Salute Materno Infantile, Medicina Interna e Specialistica Di Eccellenza “G. D’Alessandro” (PROMISE), Università Degli Studidi Palermo, Palermo, Italy
| | - Patrizia Suppressa
- Department of Internal Medicine and Rare Diseases Centre “C. Frugoni”, University Hospital of Bari, Bari, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milan, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Tramontano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Anja Vogt
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Kim Stewards
- Department of Internal Medicine, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | | | - Stefano Bertolini
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
17
|
Butnariu LI, Florea L, Badescu MC, Țarcă E, Costache II, Gorduza EV. Etiologic Puzzle of Coronary Artery Disease: How Important Is Genetic Component? LIFE (BASEL, SWITZERLAND) 2022; 12:life12060865. [PMID: 35743896 PMCID: PMC9225091 DOI: 10.3390/life12060865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
In the modern era, coronary artery disease (CAD) has become the most common form of heart disease and, due to the severity of its clinical manifestations and its acute complications, is a major cause of morbidity and mortality worldwide. The phenotypic variability of CAD is correlated with the complex etiology, multifactorial (caused by the interaction of genetic and environmental factors) but also monogenic. The purpose of this review is to present the genetic factors involved in the etiology of CAD and their relationship to the pathogenic mechanisms of the disease. Method: we analyzed data from the literature, starting with candidate gene-based association studies, then continuing with extensive association studies such as Genome-Wide Association Studies (GWAS) and Whole Exome Sequencing (WES). The results of these studies revealed that the number of genetic factors involved in CAD etiology is impressive. The identification of new genetic factors through GWASs offers new perspectives on understanding the complex pathophysiological mechanisms that determine CAD. In conclusion, deciphering the genetic architecture of CAD by extended genomic analysis (GWAS/WES) will establish new therapeutic targets and lead to the development of new treatments. The identification of individuals at high risk for CAD using polygenic risk scores (PRS) will allow early prophylactic measures and personalized therapy to improve their prognosis.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.I.B.); (E.V.G.)
| | - Laura Florea
- Department of Nefrology—Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iași, Romania
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iași, Romania
- Correspondence: (M.C.B.); (E.Ț.)
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (M.C.B.); (E.Ț.)
| | - Irina-Iuliana Costache
- Department of Internal Medicine (Cardiology), “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iași, Romania;
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.I.B.); (E.V.G.)
| |
Collapse
|
18
|
Pinzon Grimaldos A, Bini S, Pacella I, Rossi A, Di Costanzo A, Minicocci I, D’Erasmo L, Arca M, Piconese S. The role of lipid metabolism in shaping the expansion and the function of regulatory T cells. Clin Exp Immunol 2021; 208:181-192. [PMID: 35020862 PMCID: PMC9188345 DOI: 10.1093/cei/uxab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic inflammation, defined as a chronic low-grade inflammation, is implicated in numerous metabolic diseases. In recent years, the role of regulatory T cells (Tregs) as key controllers of metabolic inflammation has emerged, but our comprehension on how different metabolic pathways influence Treg functions needs a deeper understanding. Here we focus on how circulating and intracellular lipid metabolism, in particular cholesterol metabolism, regulates Treg homeostasis, expansion, and functions. Cholesterol is carried through the bloodstream by circulating lipoproteins (chylomicrons, very low-density lipoproteins, low-density lipoproteins). Tregs are equipped with a wide array of metabolic sensors able to perceive and respond to changes in the lipid environment through the activation of different intracellular pathways thus conferring to these cells a crucial metabolic and functional plasticity. Nevertheless, altered cholesterol transport, as observed in genetic dyslipidemias and atherosclerosis, impairs Treg proliferation and function through defective cellular metabolism. The intracellular pathway devoted to the cholesterol synthesis is the mevalonate pathway and several studies have shown that this pathway is essential for Treg stability and suppressive activity. High cholesterol concentrations in the extracellular environment may induce massive accumulation of cholesterol inside the cell thus impairing nutrients sensors and inhibiting the mevalonate pathway. This review summarizes the current knowledge regarding the role of circulating and cellular cholesterol metabolism in the regulation of Treg metabolism and functions. In particular, we will discuss how different pathological conditions affecting cholesterol transport may affect cellular metabolism in Tregs.
Collapse
Affiliation(s)
| | | | - Ilenia Pacella
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandra Rossi
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Laura D’Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Silvia Piconese
- Correspondence: Silvia Piconese, Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
19
|
Di Costanzo A, Minicocci I, D'Erasmo L, Commodari D, Covino S, Bini S, Ghadiri A, Ceci F, Maranghi M, Catapano AL, Gazzotti M, Casula M, Montali A, Arca M. Refinement of pathogenicity classification of variants associated with familial hypercholesterolemia: Implications for clinical diagnosis. J Clin Lipidol 2021; 15:822-831. [PMID: 34756585 DOI: 10.1016/j.jacl.2021.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND The lack of functional evidence for most variants detected during the molecular screening of patients with clinical familial hypercholesterolemia (FH) makes the definitive diagnosis difficult. METHODS A total of 552 variants in LDLR, APOB, PCSK9 and LDLRAP1 genes found in 449 mutation-positive FH (FH/M+) patients were considered. Pathogenicity update was performed following the American College of Medical Genetics and Genomics (ACMG) guidelines with additional specifications on copy number variants, functional studies, in silico prediction and co-segregation criteria for LDLR, APOB and PCSK9 genes. Pathogenicity of LDLRAP1 variants was updated by using ACMG criteria with no change to original scoring. RESULTS After reclassification, the proportion of FH/M+ carriers of pathogenic (P) or likely pathogenic (LP) variants, and FH/M+ carriers of likely benign (LB) or benign (B) variants, was higher than that defined by standard criteria (81.5% vs. 79.7% and 7.1% vs. 2.7%). The refinement of pathogenicity classification also reduced the percentage of FH with variants of uncertain significance (VUS) (17.7% vs. 11.4%). After adjustment, the FH diagnosis by refined criteria best predicted LDL-C levels (Padj <0.001). Notably, FH with VUS variants had higher LDL-C than those with LB (all Padj ≤ 0.033), but similar to those with LP variants. CONCLUSION Accurate variant interpretation best predicts the increase of LDL-C levels and shows its clinical utility in the molecular diagnosis of FH.
Collapse
Affiliation(s)
- Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Commodari
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Stella Covino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ameneh Ghadiri
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Ceci
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marianna Maranghi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; I.R.C.C.S. Multimedica, Sesto S. Giovanni, Milan, Italy
| | - Marta Gazzotti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Manuela Casula
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; I.R.C.C.S. Multimedica, Sesto S. Giovanni, Milan, Italy
| | - Anna Montali
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Nikasa P, Rabbani B, Hejazi MS, Firouzi A, Baharvand H, Totonchi M, Mahdieh N. A case of autosomal recessive hypercholesterolemia with a novel mutation in the LDLRAP1 gene. Clin Pediatr Endocrinol 2021; 30:201-204. [PMID: 34629743 PMCID: PMC8481080 DOI: 10.1297/cpe.30.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/18/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Parisa Nikasa
- Department of Molecular Medicine, Faculty of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeid Hejazi
- Department of Molecular Medicine, Faculty of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Firouzi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Thadchanamoorthy V, Dayasiri K, Majitha SI, Hooper AJ, Burnett JR. Homozygous autosomal recessive hypercholesterolaemia in a South Asian child presenting with multiple cutaneous xanthomata. Ann Clin Biochem 2021; 58:153-156. [PMID: 32936664 DOI: 10.1177/0004563220961755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autosomal recessive hypercholesterolemia (ARH; OMIM #603813) is an extremely rare disorder of lipid metabolism caused by loss-of-function variants in the LDL receptor adapter protein 1 (LDLRAP1) gene, which is characterized by severe hypercholesterolaemia and an increased risk of premature atherosclerotic cardiovascular disease. We report the case of an 11-year-old girl who presented with multiple painless yellowish papules around her elbows and knees of two-year duration. She had been reviewed by several general practitioners, with some of the papules having been excised, but without a specific diagnosis being made. The child was referred to a paediatric service for further evaluation and treatment of the cutaneous lesions, which appeared xanthomatous in nature. A lipid profile showed severe hypercholesterolaemia. Next generation sequencing analysis of a monogenic hypercholesterolaemia gene panel revealed homozygosity for a pathogenic frameshift mutation, c.71dupG, p.Gly25Argfs*9 in LDLRAP1. Her parents and brother, who were asymptomatic, were screened and found to be heterozygous carriers of the LDLRAP1 variant. There was no known consanguinity in the family. She was commenced on the HMG-CoA reductase inhibitor, atorvastatin, to good effect, with a ∼76% reduction in LDL-cholesterol at a dose of 50 mg per day. At six-month follow-up, there had been no obvious regression of the xanthomata, but importantly, no enlargement of, or the development of new papular lesions, have occurred. In summary, we report a child who presented with multiple cutaneous xanthomata and was confirmed to have ARH by the presence of a homozygous novel pathogenic frameshift variant in LDLRAP1.
Collapse
Affiliation(s)
- V Thadchanamoorthy
- Department of Paediatrics, Faculty of Health Care Science, Eastern University, Chenkalady, Sri Lanka
| | | | - S I Majitha
- Department of Chemical Pathology, Batticaloa Teaching Hospital, Batticaloa, Sri Lanka
| | - Amanda J Hooper
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Australia
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Australia
| | - John R Burnett
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Australia
- School of Medicine, University of Western Australia, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
22
|
Bertolini S, Calandra S, Arca M, Averna M, Catapano AL, Tarugi P, Bartuli A, Bucci M, Buonuomo PS, Calabrò P, Casula M, Cefalù AB, Cicero A, D'Addato S, D'Erasmo L, Fasano T, Iannuzzo G, Ibba A, Negri EA, Pasta A, Pavanello C, Pisciotta L, Rabacchi C, Ripoli C, Sampietro T, Sbrana F, Sileo F, Suppressa P, Trenti C, Zenti MG. Homozygous familial hypercholesterolemia in Italy: Clinical and molecular features. Atherosclerosis 2020; 312:72-78. [DOI: 10.1016/j.atherosclerosis.2020.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
|
23
|
Martinsen MH, Klausen IC, Tybjaerg-Hansen A, Hedegaard BS. Autosomal recessive hypercholesterolemia in a kindred of Syrian ancestry. J Clin Lipidol 2020; 14:419-424. [PMID: 32636080 DOI: 10.1016/j.jacl.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
Autosomal recessive hypercholesterolemia is a rare genetic disorder due to homozygosity or compound heterozygosity for mutations in the low-density lipoprotein receptor adapter protein 1 gene (LDLRAP1), resulting in elevated low-density lipoprotein cholesterol (LDL-C) levels, large xanthomas, and increased cardiovascular risk. Here, we describe a Danish family of Syrian ancestry carrying a frameshift mutation in LDLRAP1, previously only described in Sardinia and Sicily in Italy and in Spain. In 2 children homozygous for this mutation, we evaluate the effect of long-term lipid-lowering treatment with atorvastatin as monotherapy or in combination with ezetimibe. At referral to the lipid clinic at Viborg Regional Hospital, 3 of 4 children had LDL-C levels of 468, 538, and 371 mg/dL, respectively, with 1 child already showing cutaneous xanthomas at 10 years of age. For comparison, the fourth child and the parents had LDL-C levels of 85, 116, and 124 mg/dL. Genetic testing revealed that all 3 children with severely elevated LDL-C were homozygous for a rare frameshift mutation in LDLRAP1, p.His144GlnfsTer27 (c.431dupA), whereas the fourth child and both parents were heterozygous for this mutation. Lipid-lowering treatment was started in the 2 oldest children (at 10 and 7 years of age). Atorvastatin (40 mg/d) combined with ezetimibe (10 mg/d) reduced LDL-C by 75% in the first child and resulted in near-complete regression of xanthomas. In the second child, atorvastatin (40 mg/d) as monotherapy reduced LDL-C by 61%. Both regimens were superior to treatment with pravastatin as monotherapy (20 mg/d) and to pravastatin in combination with cholestyramine (2 g twice daily). High-intensity statin therapy alone or in combination with ezetimibe resulted in marked reductions in LDL-C in 2 children homozygous for a rare frameshift mutation in LDLRAP1 and lead to regression of large xanthomas.
Collapse
Affiliation(s)
| | | | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | |
Collapse
|