1
|
Aburahma K, de Manna ND, Kuehn C, Salman J, Greer M, Ius F. Pushing the Survival Bar Higher: Two Decades of Innovation in Lung Transplantation. J Clin Med 2024; 13:5516. [PMID: 39337005 PMCID: PMC11432129 DOI: 10.3390/jcm13185516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Survival after lung transplantation has significantly improved during the last two decades. The refinement of the already existing extracorporeal life support (ECLS) systems, such as extracorporeal membrane oxygenation (ECMO), and the introduction of new techniques for donor lung optimization, such as ex vivo lung perfusion (EVLP), have allowed the extension of transplant indication to patients with end-stage lung failure after acute respiratory distress syndrome (ARDS) and the expansion of the donor organ pool, due to the better evaluation and optimization of extended-criteria donor (ECD) lungs and of donors after circulatory death (DCD). The close monitoring of anti-HLA donor-specific antibodies (DSAs) has allowed the early recognition of pulmonary antibody-mediated rejection (AMR), which requires a completely different treatment and has a worse prognosis than acute cellular rejection (ACR). As such, the standardization of patient selection and post-transplant management has significantly contributed to this positive trend, especially at high-volume centers. This review focuses on lung transplantation after ARDS, on the role of EVLP in lung donor expansion, on ECMO as a principal cardiopulmonary support system in lung transplantation, and on the diagnosis and therapy of pulmonary AMR.
Collapse
Affiliation(s)
- Khalil Aburahma
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Nunzio Davide de Manna
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Kuehn
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| | - Jawad Salman
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| | - Mark Greer
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, 30625 Hannover, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| |
Collapse
|
2
|
Mucha J, Cho A, Weijler AM, Muckenhuber M, Hofmann AG, Wahrmann M, Heinzel A, Linhart B, Gattinger P, Valenta R, Berlakovich G, Zuckermann A, Jaksch P, Oberbauer R, Wekerle T. Prospective assessment of pre-existing and de novo anti-HLA IgE in kidney, liver, lung and heart transplantation. Front Immunol 2023; 14:1179036. [PMID: 37731514 PMCID: PMC10507692 DOI: 10.3389/fimmu.2023.1179036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Antibody mediated rejection (ABMR) is a major factor limiting outcome after organ transplantation. Anti-HLA donor-specific antibodies (DSA) of the IgG isotype are mainly responsible for ABMR. Recently DSA of the IgE isotype were demonstrated in murine models as well as in a small cohort of sensitized transplant recipients. In the present study, we aimed to determine the frequency of pre-existing and de novo anti-HLA IgE antibodies in a cohort of 105 solid organ transplant recipients. Methods We prospectively measured anti-HLA IgE antibodies in a cohort of kidney (n=60), liver, heart and lung (n=15 each) transplant recipients before and within one-year after transplantation, employing a single-antigen bead assay for HLA class I and class II antigens. Functional activity of anti-HLA IgE antibodies was assessed by an in vitro mediator release assay. Antibodies of the IgG1-4 subclasses and Th1 and Th2 cytokines were measured in anti-HLA IgE positive patients. Results Pre-existing anti-HLA IgE antibodies were detected in 10% of renal recipients (including 3.3% IgE-DSA) and in 4.4% of non-renal solid organ transplant recipients (heart, liver and lung cohort). Anti-HLA IgE occurred only in patients that were positive for anti-HLA IgG, and most IgE positive patients had had a previous transplant. Only a small fraction of patients developed de novo anti-HLA IgE antibodies (1.7% of kidney recipients and 4.4% of non-renal recipients), whereas no de novo IgE-DSA was detected. IgG subclass antibodies showed a distinct pattern in patients who were positive for anti-HLA IgE. Moreover, patients with anti-HLA IgE showed elevated Th2 and also Th1 cytokine levels. Serum from IgE positive recipients led to degranulation of basophils in vitro, demonstrating functionality of anti-HLA IgE. Discussion These data demonstrate that anti-HLA IgE antibodies occur at low frequency in kidney, liver, heart and lung transplant recipients. Anti-HLA IgE development is associated with sensitization at the IgG level, in particular through previous transplants and distinct IgG subclasses. Taken together, HLA specific IgE sensitization is a new phenomenon in solid organ transplant recipients whose potential relevance for allograft injury requires further investigation.
Collapse
Affiliation(s)
- Jasmin Mucha
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Ara Cho
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Amun Georg Hofmann
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Markus Wahrmann
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Gabriela Berlakovich
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
van den Broek DAJ, Meziyerh S, Budde K, Lefaucheur C, Cozzi E, Bertrand D, López del Moral C, Dorling A, Emonds MP, Naesens M, de Vries APJ. The Clinical Utility of Post-Transplant Monitoring of Donor-Specific Antibodies in Stable Renal Transplant Recipients: A Consensus Report With Guideline Statements for Clinical Practice. Transpl Int 2023; 36:11321. [PMID: 37560072 PMCID: PMC10408721 DOI: 10.3389/ti.2023.11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
Solid phase immunoassays improved the detection and determination of the antigen-specificity of donor-specific antibodies (DSA) to human leukocyte antigens (HLA). The widespread use of SPI in kidney transplantation also introduced new clinical dilemmas, such as whether patients should be monitored for DSA pre- or post-transplantation. Pretransplant screening through SPI has become standard practice and DSA are readily determined in case of suspected rejection. However, DSA monitoring in recipients with stable graft function has not been universally established as standard of care. This may be related to uncertainty regarding the clinical utility of DSA monitoring as a screening tool. This consensus report aims to appraise the clinical utility of DSA monitoring in recipients without overt signs of graft dysfunction, using the Wilson & Junger criteria for assessing the validity of a screening practice. To assess the evidence on DSA monitoring, the European Society for Organ Transplantation (ESOT) convened a dedicated workgroup, comprised of experts in transplantation nephrology and immunology, to review relevant literature. Guidelines and statements were developed during a consensus conference by Delphi methodology that took place in person in November 2022 in Prague. The findings and recommendations of the workgroup on subclinical DSA monitoring are presented in this article.
Collapse
Affiliation(s)
- Dennis A. J. van den Broek
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Soufian Meziyerh
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Kidney Transplant Department, Saint Louis Hospital, Université de Paris Cité, Paris, France
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Dominique Bertrand
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, Rouen, France
| | - Covadonga López del Moral
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain
| | - Anthony Dorling
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Aiko P. J. de Vries
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
4
|
Moein M, Gao SX, Martin SJ, Farkouh KM, Li BW, Ball AS, Dvorai RH, Saidi RF. Conversion to Belatacept in kidney transplant recipients with chronic antibody-mediated rejection (CAMR). Transpl Immunol 2023; 76:101737. [PMID: 36379374 DOI: 10.1016/j.trim.2022.101737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 11/05/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND The costimulatory inhibitor Belatacept (Bela) has been shown to be an effective alternative in several clinical situations, including chronic antibody-mediated rejection, calcineurin toxicity, and de novo alloantibody formation. To further explore the usefulness of Belatacept under various clinical scenarios, we performed a retrospective analysis of a prospective database of all recipients who had a BPAR diagnosis of CAMR and were converted to a Belatacept maintenance immunosuppression regimen after kidney transplantation. MATERIAL AND METHOD We conducted a retrospective analysis of a prospectively collected database of all kidney transplants adult patients at SUNY Upstate Medical Hospital from 1 January 2013 to 31 December 2021. Our inclusion criteria were the patients who have been diagnosed with CAMR according to their renal biopsy based on the 2013 Banff criteria. The primary objective was to compare the kidney viability and function using GFR between the two interest groups and finally compare the outcomes. RESULTS A total of 48 patients met our inclusion criteria based on the kidney biopsy result, which showed chronic antibody-mediated graft rejection (CAMR). Nineteen patients (39.6%) were converted to the Belatacept, and we continued the previous immunosuppression regimen in 29 patients (60.4%). The mean time from the transplant date to the diagnosis of CAMR was 1385 days in the Belatacept group and 914 days for the non-Belatacept group (P = 0.15). The mean GFR comparison at each time point between the groups did not show a significant difference, and Belatacept did not show superiority compared to the standard immunosuppression regimen in terms of kidney function preservation. 1 (5.2%) patient from the Belatacept group and 1 (3.4%) patient from the non-Belatacept group had a biopsy-proven acute rejection (BPAR) after CAMR confirmation, and it was comparable (P = 0.76). De novo synthesis of the DSA rate was 12.5% in the Belatacept group and 15% In the non-Belatacept group, which was comparable. (P = 0.90). The patient survival rate was 100% in both groups. CONCLUSIONS We conclude that compared to the standard Tacrolimus/MMF/Prednisone regimen, Belatacept did not significantly benefit in preserving the GFR in long-term follow-ups and stabilizing the DSA production, which is one of the main factors resulting in chronic graft failure.
Collapse
Affiliation(s)
- Mahmoudreza Moein
- Department of Surgery, Division of Transplantation, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Shuqi X Gao
- Department of Surgery, Division of Transplantation, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Samuel J Martin
- Department of Surgery, Division of Transplantation, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Katie M Farkouh
- Department of Surgery, Division of Transplantation, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Benson W Li
- Department of Surgery, Division of Transplantation, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Angela S Ball
- Department of Surgery, Division of Transplantation, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Reut Hod Dvorai
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Reza F Saidi
- Department of Surgery, Division of Transplantation, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
5
|
Anti-interleukin-6 Antibody Clazakizumab in Antibody-mediated Renal Allograft Rejection: Accumulation of Antibody-neutralized Interleukin-6 Without Signs of Proinflammatory Rebound Phenomena. Transplantation 2023; 107:495-503. [PMID: 35969004 DOI: 10.1097/tp.0000000000004285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Blockade of interleukin-6 (IL-6) has emerged as a promising therapeutic option for antibody-mediated rejection. Subtherapeutic anti-IL-6 antibody level or treatment cessation following prolonged cytokine neutralization may result in proinflammatory rebound phenomena via accumulation of IL-6 and/or modulated gene expression of major components of the IL-6/IL-6 receptor (IL-6R) axis. METHODS We evaluated biologic material obtained from a randomized controlled, double-blind phase 2 trial designed to evaluate the safety and efficacy of the anti-IL-6 monoclonal antibody clazakizumab in late antibody-mediated rejection. Twenty kidney transplant recipients, allocated to clazakizumab or placebo, received 4-weekly doses over 12 wks, followed by a 40-wk extension where all recipients received clazakizumab. Serum proteins were detected using bead-based immunoassays and RNA transcripts using quantitative real-time polymerase chain reaction (peripheral blood) or microarray analysis (serial allograft biopsies). RESULTS Clazakizumab treatment resulted in a substantial increase in median total (bound and unbound to drug) serum IL-6 level (1.4, 8015, and 13 600 pg/mL at 0, 12, and 52 wks), but median level of free (unbound to drug) IL-6 did not increase (3.0, 2.3, and 2.3 pg/mL, respectively). Neutralization of IL-6 did not boost soluble IL-6R or leukocyte or allograft expression of IL-6, IL-6R, and glycoprotein 130 mRNA. Cessation of treatment at the end of the trial did not result in a meaningful increase in C-reactive protein or accelerated progression of graft dysfunction during 12 mo of follow-up. CONCLUSION Our results argue against clinically relevant rebound phenomena and modulation of major components of the IL-6/IL-6R axis following prolonged IL-6 neutralization with clazakizumab.
Collapse
|
6
|
Mayer KA, Budde K, Jilma B, Doberer K, Böhmig GA. Emerging drugs for antibody-mediated rejection after kidney transplantation: a focus on phase II & III trials. Expert Opin Emerg Drugs 2022; 27:151-167. [PMID: 35715978 DOI: 10.1080/14728214.2022.2091131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Antibody-mediated rejection (ABMR) is a leading cause of kidney allograft failure. Its therapy continues to be challenge, and no treatment has been approved for the market thus far. AREAS COVERED In this article, we discuss the pathophysiology and phenotypic presentation of ABMR, the current level of evidence to support the use of available therapeutic strategies, and the emergence of tailored drugs now being evaluated in systematic clinical trials. We searched PubMed, Clinicaltrials.gov and Citeline's Pharmaprojects for pertinent information on emerging anti-rejection strategies, laying a focus on phase II and III trials. EXPERT OPINION Currently, we rely on the use of apheresis for alloantibody depletion and intravenous immunoglobulin (referred to as standard of care), preferentially in early active ABMR. Recent systematic trials have questioned the benefits of using the CD20 antibody rituximab or the proteasome inhibitor bortezomib. However, there are now several promising treatment approaches in the pipeline, which are being trialed in phase II and III studies. These include interleukin-6 antagonism, CD38-targeting antibodies, and selective inhibitors of complement. On the basis of the information that has emerged so far, it seems that innovative treatment strategies for clinical use in ABMR may be available within the next 5-10 years.
Collapse
Affiliation(s)
- Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Mayer KA, Budde K, Halloran PF, Doberer K, Rostaing L, Eskandary F, Christamentl A, Wahrmann M, Regele H, Schranz S, Ely S, Firbas C, Schörgenhofer C, Kainz A, Loupy A, Härtle S, Boxhammer R, Jilma B, Böhmig GA. Safety, tolerability, and efficacy of monoclonal CD38 antibody felzartamab in late antibody-mediated renal allograft rejection: study protocol for a phase 2 trial. Trials 2022; 23:270. [PMID: 35395951 PMCID: PMC8990453 DOI: 10.1186/s13063-022-06198-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Antibody-mediated rejection (ABMR) is a cardinal cause of renal allograft loss. This rejection type, which may occur at any time after transplantation, commonly presents as a continuum of microvascular inflammation (MVI) culminating in chronic tissue injury. While the clinical relevance of ABMR is well recognized, its treatment, particularly a long time after transplantation, has remained a big challenge. A promising strategy to counteract ABMR may be the use of CD38-directed treatment to deplete alloantibody-producing plasma cells (PC) and natural killer (NK) cells. METHODS This investigator-initiated trial is planned as a randomized, placebo-controlled, double-blind, parallel-group, multi-center phase 2 trial designed to assess the safety and tolerability (primary endpoint), pharmacokinetics, immunogenicity, and efficacy of the fully human CD38 monoclonal antibody felzartamab (MOR202) in late ABMR. The trial will include 20 anti-HLA donor-specific antibody (DSA)-positive renal allograft recipients diagnosed with active or chronic active ABMR ≥ 180 days post-transplantation. Subjects will be randomized 1:1 to receive felzartamab (16 mg/kg per infusion) or placebo for a period of 6 months (intravenous administration on day 0, and after 1, 2, 3, 4, 8, 12, 16, and 20 weeks). Two follow-up allograft biopsies will be performed at weeks 24 and 52. Secondary endpoints (preliminary assessment) will include morphologic and molecular rejection activity in renal biopsies, immunologic biomarkers in the blood and urine, and surrogate parameters predicting the progression to allograft failure (slope of renal function; iBOX prediction score). DISCUSSION Based on the hypothesis that felzartamab is able to halt the progression of ABMR via targeting antibody-producing PC and NK cells, we believe that our trial could potentially provide the first proof of concept of a new treatment in ABMR based on a prospective randomized clinical trial. TRIAL REGISTRATION EU Clinical Trials Register (EudraCT) 2021-000545-40 . Registered on 23 June 2021. CLINICALTRIALS gov NCT05021484 . Registered on 25 August 2021.
Collapse
Affiliation(s)
- Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Klemens Budde
- Department of Nephrology, Charité University Medicine Berlin, Berlin, Germany
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Lionel Rostaing
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, University Hospital Grenoble, Grenoble, France
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Anna Christamentl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Markus Wahrmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Heinz Regele
- Department of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Sabine Schranz
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sarah Ely
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christa Firbas
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Alexander Kainz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Alexandre Loupy
- INSERM UMR 970, Paris Translational Research Centre for Organ Transplantation, Université de Paris, Paris, France
| | | | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| |
Collapse
|
8
|
Cheung CY, Tang SCW. Personalized immunosuppression after kidney transplantation. Nephrology (Carlton) 2022; 27:475-483. [PMID: 35238110 DOI: 10.1111/nep.14035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
Abstract
With advances in immunosuppressive therapy, there have been significant improvements in acute rejection rates and short-term allograft survival in kidney transplant recipients. However, this success has not been translated into long-term benefits by the same magnitude. Optimization of immunosuppression is important to improve the clinical outcome of transplant recipients. It is important to note that each patient has unique attributes and immunosuppression management should not be a one-size-fits-all approach. Elderly transplant patients are less likely to develop acute rejection but more likely to die from infectious and cardiovascular causes than younger patients. For those with post-transplant cancers and BK polyomavirus-associated nephropathy, reduction of immunosuppression can increase the risk of rejection. Therapeutic drug monitoring (TDM) is routinely used for dosage adjustment of several immunosuppressive drugs. It has been hoped that pharmacogenetics can be used to complement TDM in optimizing drug exposure. Among the various drug-genotype pairs being investigated, tacrolimus and CYP3A5 gives the most promising results. Different studies have consistently shown that CYP3A5 expressers require a higher tacrolimus dose and take longer time to achieve target blood tacrolimus levels than nonexpressers. However, for pharmacogenetics to be widely used clinically, further trials are necessary to demonstrate the clinical benefits of genotype-guided dosing such as reduction of rejection and drug-related toxicities. The development of different biomarkers in recent years may help to achieve true personalized therapy in transplant patients.
Collapse
Affiliation(s)
- Chi Yuen Cheung
- Renal Unit, Department of Medicine, Queen Elizabeth Hospital, Hong Kong SAR
| | - Sydney Chi Wai Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| |
Collapse
|
9
|
Caveolin-1 in Kidney Chronic Antibody-Mediated Rejection: An Integrated Immunohistochemical and Transcriptomic Analysis Based on the Banff Human Organ Transplant (B-HOT) Gene Panel. Biomedicines 2021; 9:biomedicines9101318. [PMID: 34680435 PMCID: PMC8533527 DOI: 10.3390/biomedicines9101318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 overexpression has previously been reported as a marker of endothelial injury in kidney chronic antibody-mediated rejection (c-ABMR), but conclusive evidence supporting its use for daily diagnostic practice is missing. This study aims to evaluate if Caveolin-1 can be considered an immunohistochemical surrogate marker of c-ABMR. Caveolin-1 expression was analyzed in a selected series of 22 c-ABMR samples and 11 controls. Caveolin-1 immunohistochemistry proved positive in peritubular and glomerular capillaries of c-ABMR specimens, irrespective of C4d status whereas all controls were negative. Multiplex gene expression profiling in c-ABMR cases confirmed Caveolin-1 overexpression and identified additional genes (n = 220) and pathways, including MHC Class II antigen presentation and Type II interferon signaling. No differences in terms of gene expression (including Caveolin-1 gene) were observed according to C4d status. Conversely, immune cell signatures showed a NK-cell prevalence in C4d-negative samples compared with a B-cell predominance in C4d-positive cases, a finding confirmed by immunohistochemical assessment. Finally, differentially expressed genes were observed between c-ABMR and controls in pathways associated with Caveolin-1 functions (angiogenesis, cell metabolism and cell–ECM interaction). Based on our findings, Caveolin-1 resulted as a key player in c-ABMR, supporting its role as a marker of this condition irrespective of C4d status.
Collapse
|
10
|
Mühlbacher J, Schörgenhofer C, Doberer K, Dürr M, Budde K, Eskandary F, Mayer KA, Schranz S, Ely S, Reiter B, Chong E, Adler SH, Jilma B, Böhmig GA. Anti-interleukin-6 antibody clazakizumab in late antibody-mediated kidney transplant rejection: effect on cytochrome P450 drug metabolism. Transpl Int 2021; 34:1542-1552. [PMID: 34153143 PMCID: PMC8456861 DOI: 10.1111/tri.13954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
Targeting interleukin-6 (IL-6) is a promising strategy to counteract antibody-mediated rejection (ABMR). In inflammatory states, IL-6 antagonism was shown to modulate cytochrome P450 (CYP), but its impact on drug metabolism in ABMR treatment was not addressed so far. We report a sub-study of a phase 2 trial of anti-IL-6 antibody clazakizumab in late ABMR (ClinicalTrials.gov, NCT03444103). Twenty kidney transplant recipients were randomized to clazakizumab versus placebo (4-weekly doses; 12 weeks), followed by a 9-month extension where all recipients received clazakizumab. To study CYP2C19/CYP3A4 metabolism, we administered pantoprazole (20 mg intravenously) at prespecified time points. Dose-adjusted C0 levels (C0 /D ratio) of tacrolimus (n = 13) and cyclosporin A (CyA, n = 6) were monitored at 4-weekly intervals. IL-6 and C-reactive protein were not elevated at baseline, the latter was then suppressed to undetectable levels under clazakizumab. IL-6 blockade had no clinically meaningful impact on pantoprazole pharmacokinetics (area under the curve; baseline versus week 52: 3.16 [2.21-7.84] versus 4.22 [1.99-8.18] μg/ml*h, P = 0.36) or calcineurin inhibitor C0 /D ratios (tacrolimus: 1.49 [1.17-3.20] versus 1.37 [0.98-2.42] ng/ml/mg, P = 0.21; CyA: 0.69 [0.57-0.85] versus 1.08 [0.52-1.38] ng/ml/mg, P = 0.47). We conclude that IL-6 blockade in ABMR - in absence of systemic inflammation - may have no meaningful effect on CYP metabolism.
Collapse
Affiliation(s)
- Jakob Mühlbacher
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Dürr
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sabine Schranz
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sarah Ely
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Birgit Reiter
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Edward Chong
- Vitaeris Inc. (a subsidiary of CSL Behring, King of Prussia, PA, USA), Vancouver, BC, Canada
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Joher N, Matignon M, Grimbert P. HLA Desensitization in Solid Organ Transplantation: Anti-CD38 to Across the Immunological Barriers. Front Immunol 2021; 12:688301. [PMID: 34093594 PMCID: PMC8173048 DOI: 10.3389/fimmu.2021.688301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
The presence of anti-human leucocyte antigen (HLA) antibodies in the potential solid organ transplant recipient's blood is one of the main barriers to access to a transplantation. The HLA sensitization is associated with longer waitlist time, antibody mediated rejection and transplant lost leading to increased recipient's morbidity and mortality. However, solid organ transplantation across the HLA immunological barriers have been reported in recipients who were highly sensitized to HLA using desensitization protocols. These desensitization regimens are focused on the reduction of circulating HLA antibodies. Despite those strategies improve rates of transplantation, it remains several limitations including persistent high rejection rate and worse long-term outcomes when compare with non-sensitized recipient population. Currently, interest is growing in the development of new desensitization approaches which, beyond targeting antibodies, would be based on the modulation of alloimmune pathways. Plasma cells appears as an interesting target given their critical role in antibody production. In the last decade, CD38-targeting immunotherapies, such as daratumumab, have been recognized as a key component in the treatment of myeloma by inducing an important plasma cell depletion. This review focuses on an emerging concept based on targeting CD38 to desensitize in the field of transplantation.
Collapse
Affiliation(s)
- Nizar Joher
- Assistance Publique-Hôpitaux de Paris AP-HP, Hôpital Universitaire Henri Mondor, Service de Néphrologie et Transplantation, Fédération Hospitalo-Universitaire (Innovative Therapy for Immune Disorders), Créteil, France.,Université Paris Est Créteil UPEC, Institut National de la Santé et de la Recherche Médicale INSERM U955, Institut Mondor de Recherche Biomédicale IMRB, Équipe 21, Créteil, France
| | - Marie Matignon
- Assistance Publique-Hôpitaux de Paris AP-HP, Hôpital Universitaire Henri Mondor, Service de Néphrologie et Transplantation, Fédération Hospitalo-Universitaire (Innovative Therapy for Immune Disorders), Créteil, France.,Université Paris Est Créteil UPEC, Institut National de la Santé et de la Recherche Médicale INSERM U955, Institut Mondor de Recherche Biomédicale IMRB, Équipe 21, Créteil, France
| | - Philippe Grimbert
- Assistance Publique-Hôpitaux de Paris AP-HP, Hôpital Universitaire Henri Mondor, Service de Néphrologie et Transplantation, Fédération Hospitalo-Universitaire (Innovative Therapy for Immune Disorders), Créteil, France.,Université Paris Est Créteil UPEC, Institut National de la Santé et de la Recherche Médicale INSERM U955, Institut Mondor de Recherche Biomédicale IMRB, Équipe 21, Créteil, France
| |
Collapse
|