1
|
Dolai S, Takahashi T, Qin T, Liang T, Xie L, Kang F, Miao YF, Xie H, Kang Y, Manuel J, Winter E, Roche PA, Cattral MS, Gaisano HY. Pancreas-specific SNAP23 depletion prevents pancreatitis by attenuating pathological basolateral exocytosis and formation of trypsin-activating autolysosomes. Autophagy 2020; 17:3068-3081. [PMID: 33213278 DOI: 10.1080/15548627.2020.1852725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Intrapancreatic trypsin activation by dysregulated macroautophagy/autophagy and pathological exocytosis of zymogen granules (ZGs), along with activation of inhibitor of NFKB/NF-κB kinase (IKK) are necessary early cellular events in pancreatitis. How these three pancreatitis events are linked is unclear. We investigated how SNAP23 orchestrates these events leading to pancreatic acinar injury. SNAP23 depletion was by knockdown (SNAP23-KD) effected by adenovirus-shRNA (Ad-SNAP23-shRNA/mCherry) treatment of rodent and human pancreatic slices and in vivo by infusion into rat pancreatic duct. In vitro pancreatitis induction by supraphysiological cholecystokinin (CCK) or ethanol plus low-dose CCK were used to assess SNAP23-KD effects on exocytosis and autophagy. Pancreatitis stimuli resulted in SNAP23 translocation from its native location at the plasma membrane to autophagosomes, where SNAP23 would bind and regulate STX17 (syntaxin17) SNARE complex-mediated autophagosome-lysosome fusion. This SNAP23 relocation was attributed to IKBKB/IKKβ-mediated SNAP23 phosphorylation at Ser95 Ser120 in rat and Ser120 in human, which was blocked by IKBKB/IKKβ inhibitors, and confirmed by the inability of IKBKB/IKKβ phosphorylation-disabled SNAP23 mutant (Ser95A Ser120A) to bind STX17 SNARE complex. SNAP23-KD impaired the assembly of STX4-driven basolateral exocytotic SNARE complex and STX17-driven SNARE complex, causing respective reduction of basolateral exocytosis of ZGs and autolysosome formation, with consequent reduction in trypsinogen activation in both compartments. Consequently, pancreatic SNAP23-KD rats were protected from caerulein and alcoholic pancreatitis. This study revealed the roles of SNAP23 in mediating pathological basolateral exocytosis and IKBKB/IKKβ's involvement in autolysosome formation, both where trypsinogen activation would occur to cause pancreatitis. SNAP23 is a strong candidate to target for pancreatitis therapy.
Collapse
Affiliation(s)
- Subhankar Dolai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Tairan Qin
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tao Liang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fei Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yi-Fan Miao
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Huanli Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Youhou Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Justin Manuel
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Erin Winter
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paul A Roche
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mark S Cattral
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Herbert Y Gaisano
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Liang T, Qin T, Kang F, Kang Y, Xie L, Zhu D, Dolai S, Greitzer-Antes D, Baker RK, Feng D, Tuduri E, Ostenson CG, Kieffer TJ, Banks K, Pessin JE, Gaisano HY. SNAP23 depletion enables more SNAP25/calcium channel excitosome formation to increase insulin exocytosis in type 2 diabetes. JCI Insight 2020; 5:129694. [PMID: 32051343 PMCID: PMC7098801 DOI: 10.1172/jci.insight.129694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 01/15/2020] [Indexed: 01/05/2023] Open
Abstract
SNAP23 is the ubiquitous SNAP25 isoform that mediates secretion in non-neuronal cells, similar to SNAP25 in neurons. However, some secretory cells like pancreatic islet β cells contain an abundance of both SNAP25 and SNAP23, where SNAP23 is believed to play a redundant role to SNAP25. We show that SNAP23, when depleted in mouse β cells in vivo and human β cells (normal and type 2 diabetes [T2D] patients) in vitro, paradoxically increased biphasic glucose-stimulated insulin secretion corresponding to increased exocytosis of predocked and newcomer insulin granules. Such effects on T2D Goto-Kakizaki rats improved glucose homeostasis that was superior to conventional treatment with sulfonylurea glybenclamide. SNAP23, although fusion competent in slower secretory cells, in the context of β cells acts as a weak partial fusion agonist or inhibitory SNARE. Here, SNAP23 depletion promotes SNAP25 to bind calcium channels more quickly and longer where granule fusion occurs to increase exocytosis efficiency. β Cell SNAP23 antagonism is a strategy to treat diabetes.
Collapse
Affiliation(s)
- Tao Liang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tairan Qin
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fei Kang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Youhou Kang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Xie
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dan Zhu
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Subhankar Dolai
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dafna Greitzer-Antes
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Robert K. Baker
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daorong Feng
- Michael F. Price Center for Genetic and Translational Medicine, Department of Medicine and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eva Tuduri
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claes-Goran Ostenson
- Department of Molecular Medicine and,Department of Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kate Banks
- Division of Comparative Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey E. Pessin
- Michael F. Price Center for Genetic and Translational Medicine, Department of Medicine and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert Y. Gaisano
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Qin T, Liang T, Zhu D, Kang Y, Xie L, Dolai S, Sugita S, Takahashi N, Ostenson CG, Banks K, Gaisano HY. Munc18b Increases Insulin Granule Fusion, Restoring Deficient Insulin Secretion in Type-2 Diabetes Human and Goto-Kakizaki Rat Islets with Improvement in Glucose Homeostasis. EBioMedicine 2017; 16:262-274. [PMID: 28163042 PMCID: PMC5474508 DOI: 10.1016/j.ebiom.2017.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/09/2017] [Accepted: 01/20/2017] [Indexed: 01/22/2023] Open
Abstract
Reduced pancreatic islet levels of Munc18a/SNARE complex proteins have been postulated to contribute to the deficient glucose-stimulated insulin secretion (GSIS) in type-2 diabetes (T2D). Whereas much previous work has purported Munc18a/SNARE complex (Syntaxin-1A/VAMP-2/SNAP25) to be primarily involved in predocked secretory granule (SG) fusion, less is known about newcomer SGs that undergo minimal docking time at the plasma membrane before fusion. Newcomer SG fusion has been postulated to involve a distinct SM/SNARE complex (Munc18b/Syntaxin-3/VAMP8/SNAP25), whose levels we find also reduced in islets of T2D humans and T2D Goto-Kakizaki (GK) rats. Munc18b overexpression by adenovirus infection (Ad-Munc18b), by increasing assembly of Munc18b/SNARE complexes, mediated increased fusion of not only newcomer SGs but also predocked SGs in T2D human and GK rat islets, resulting in rescue of the deficient biphasic GSIS. Infusion of Ad-Munc18b into GK rat pancreas led to sustained improvement in glucose homeostasis. However, Munc18b overexpression in normal islets increased only newcomer SG fusion. Therefore, Munc18b could potentially be deployed in human T2D to rescue the deficient GSIS. Human T2D islet β-cells exhibit reduced fusion of predocked & newcomer secretory granules (SGs). Munc18b increases SNARE complexes involved in fusions of both newcomer & predocked SGs. Munc18b rescue of newcomer & predocked SGs increased biphasic secretion in human T2D β-cells. Munc18b rescue of T2D Goto-Kakizaki rat β-cell secretion improves glucose homeostasis.
Deficient insulin secretion from pancreatic islet β-cells in type-2 diabetes (T2D) is partly due to reduced expression of many proteins that assemble into specific complexes that mediate fusion of insulin secretory granules (SGs) with plasma membrane, termed exocytosis. We here show we can infuse a virus that contains the construct of one of the SG fusion proteins, Munc18b, into pancreatic ducts of T2D rats to reach the islets, which restored insulin secretion and improved glycemic control. Munc18b acts to promote the assembly of SG fusion complexes. This strategy could potentially be applied to treat human T2D by endoscopic infusion.
Collapse
Affiliation(s)
- Tairan Qin
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tao Liang
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dan Zhu
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Youhou Kang
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Li Xie
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Subhankar Dolai
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuzo Sugita
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Fundamental Neurobiology, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Claes-Goran Ostenson
- Department of Molecular Medicine and Surgery, Endocrinology and Diabetology Unit, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Kate Banks
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Comparative Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|