1
|
Yu R. Plea to radiologists: Please consider Mahvash disease when encountering an enlarged pancreas. World J Radiol 2024; 16:371-374. [PMID: 39239240 PMCID: PMC11372551 DOI: 10.4329/wjr.v16.i8.371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
Radiologists play a key role in establishing an early and accurate diagnosis, especially for rare diseases. Mahvash disease (OMIM 619290) is an autosomal recessive hereditary disease caused by inactivating mutations of the glucagon receptor and its main clinical consequences are pancreatic neuroendocrine tumors and in some cases, porto-sinusoidal vascular disease and portal hypertension. Untreated Mahvash disease can be lethal. The diagnosis of Mahvash disease has almost always been delayed in the past due to radiologists' unawareness of or unfamiliarity with the unique imaging features of Mahvash disease which are moderately to enormously enlarge pancreas with preserved pancreas contour and parenchyma without vascular involvement or lymphadenopathy. These features help differentiate Mahvash disease from other etiologies of diffusely enlarged pancreas such as diffuse pancreatic ductal carcinoma, diffuse pancreatic lymphoma, and autoimmune pancreatitis. Invoking Mahvash disease in the differential diagnosis of an enlarged pancreas has recently been shown to facilitate early diagnosis. To prevent missing the diagnosis of this significant disease, I sincerely ask radiologists to consider Mahvash disease in their differential diagnoses of diffusely enlarged pancreas.
Collapse
Affiliation(s)
- Run Yu
- Division of Endocrinology, Diabetes, and Metabolism, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, United States
| |
Collapse
|
2
|
Xu Y, Liu Q, Chen CW, Wang Q, Du T, Yu R, Zhou Q, Yang D, Wang MW. Absence of PNET formation and normal longevity in a mouse model of Mahvash disease. Heliyon 2024; 10:e35362. [PMID: 39170309 PMCID: PMC11336617 DOI: 10.1016/j.heliyon.2024.e35362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mahvash disease, a rare autosomal recessive metabolic disorder characterized by biallelic loss-of-function mutations in the glucagon receptor gene (GCGR), induces significant pancreatic hyperglucagonemia, resulting in α-cell hyperplasia and occasional hypoglycemia. Utilizing CRISPR-Cas9 technology, we engineered a mouse model, designated as Gcgr V369M/V369M, harboring a homozygous V369M substitution in the glucagon receptor (GCGR). Although wild-type (WT) and Gcgr V369M/V369M mice exhibited no discernible difference in appearance or weight, adult Gcgr V369M/V369M mice, approximately 12 months of age, displayed a notable decrease in fasting blood glucose levels and elevated the levels of cholesterol and low-density lipoprotein-cholesterol. Moreover, plasma amino acid levels such as alanine (Ala), proline (Pro) and arginine (Arg) were elevated in Gcgr V369M/V369M mice contributing to α-cell proliferation and hyperglucagonemia. Despite sustained α-cell hyperplasia and increased circulating glucagon levels in Gcgr V369M/V369M mice, metabolic disparities between the two groups gradually waned with age accompanied by a reduction in α-cell hyperplasia. Throughout the lifespan of the mice (up to approximately 30 months), pancreatic neuroendocrine tumors (PNETs) did not manifest. This prolonged observation of metabolic alterations in Gcgr V369M/V369M mice furnishes valuable insights for a deeper comprehension of mild Mahvash disease in humans.
Collapse
Affiliation(s)
- Yingna Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chuan-Wei Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Qiuying Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyuan Du
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Run Yu
- Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 570228, China
| |
Collapse
|
3
|
McGlone ER, Tan TMM. Glucagon-based therapy for people with diabetes and obesity: What is the sweet spot? Peptides 2024; 176:171219. [PMID: 38615717 DOI: 10.1016/j.peptides.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
People with obesity and type 2 diabetes have a high prevalence of metabolic-associated steatotic liver disease, hyperlipidemia and cardiovascular disease. Glucagon increases hepatic glucose production; it also decreases hepatic fat accumulation, improves lipidemia and increases energy expenditure. Pharmaceutical strategies to antagonize the glucagon receptor improve glycemic outcomes in people with diabetes and obesity, but they increase hepatic steatosis and worsen dyslipidemia. Co-agonism of the glucagon and glucagon-like peptide-1 (GLP-1) receptors has emerged as a promising strategy to improve glycemia in people with diabetes and obesity. Addition of glucagon receptor agonism enhances weight loss, reduces liver fat and ameliorates dyslipidemia. Prior to clinical use, however, further studies are needed to investigate the safety and efficacy of glucagon and GLP-1 receptor co-agonists in people with diabetes and obesity and related conditions, with specific concerns regarding a higher prevalence of gastrointestinal side effects, loss of muscle mass and increases in heart rate. Furthermore, co-agonists with differing ratios of glucagon:GLP-1 receptor activity vary in their clinical effect; the optimum balance is yet to be identified.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
4
|
Wang MY, Zhang Z, Zhao S, Onodera T, Sun XN, Zhu Q, Li C, Li N, Chen S, Paredes M, Gautron L, Charron MJ, Marciano DK, Gordillo R, Drucker DJ, Scherer PE. Downregulation of the kidney glucagon receptor, essential for renal function and systemic homeostasis, contributes to chronic kidney disease. Cell Metab 2024; 36:575-597.e7. [PMID: 38237602 PMCID: PMC10932880 DOI: 10.1016/j.cmet.2023.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/10/2023] [Accepted: 12/19/2023] [Indexed: 02/12/2024]
Abstract
The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.
Collapse
Affiliation(s)
- May-Yun Wang
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Toshiharu Onodera
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xue-Nan Sun
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Li
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Na Li
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Paredes
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laurent Gautron
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Denise K Marciano
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Drucker
- Lunenfeld-TanenbaumResearchInstitute, Mt. Sinai Hospital, Toronto, ON M5G1X5, Canada; Department of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Tischler AS, LiVolsi VA, Asa SL. Insights Obtained from the Nontumorous Glandular Tissue in Patients with Endocrine Tumors. Endocr Pathol 2023; 34:393-405. [PMID: 36943629 DOI: 10.1007/s12022-023-09759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
The pathology of neoplasia tends to focus on the tumor that requires characterization, grading, and staging. However, nontumorous tissue surrounding the lesion can also provide information, particularly about pathogenetic mechanisms. In endocrine tissues, this takes the form of precursor lesions that characterize several genetic predisposition syndromes. In addition, because of the unique functional aspects of endocrine neoplasia, the nontumorous tissue provides evidence of hormone excess, with hyperplasia and/or atrophy and other involutional changes allowing the pathologist to confirm both hormone function by the tumor and the effects of medical therapies. In this article, we review the various clinically relevant features that should be assessed and reported to enhance clinical management of patients with endocrine neoplasms. For example, in thyroid there may be inflammatory thyroiditis or goiter of various etiologies; there may be C-cell hyperplasia either as a preneoplastic lesion in patients with genetic predisposition to medullary thyroid carcinoma or as a reactive phenomenon. Drug-induced changes can be seen in thyroid and adrenal cortex. In neuroendocrine tissues, the nontumorous tissues may show precursor lesions such as endocrine cell hyperplasia/dysplasia; there may be related or unrelated hyperplastic or neoplastic lesions. Some tissues, such as pituitary corticotrophs and adrenal cortex, develop changes that reflect feedback suppression by hormone excess that can serve as biomarkers of tumor functionality and provide enhanced clinicopathologic correlates.
Collapse
Affiliation(s)
- Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Virginia A LiVolsi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvia L Asa
- Department of Pathology, Institute of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Room 204, Cleveland, OH, 44106, USA.
| |
Collapse
|
6
|
Robbins J, Halegoua-DeMarzio D, Basu Mallick A, Vijayvergia N, Ganetzky R, Lavu H, Giri VN, Miller J, Maley W, Shah AP, DiMeglio M, Ambelil M, Yu R, Sato T, Lefler DS. Liver Transplantation in a Woman with Mahvash Disease. N Engl J Med 2023; 389:1972-1978. [PMID: 37991855 DOI: 10.1056/nejmoa2303226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Mahvash disease is an exceedingly rare genetic disorder of glucagon signaling characterized by hyperglucagonemia, hyperaminoacidemia, and pancreatic α-cell hyperplasia. Although there is no known definitive treatment, octreotide has been used to decrease systemic glucagon levels. We describe a woman who presented to our medical center after three episodes of small-volume hematemesis. She was found to have hyperglucagonemia and pancreatic hypertrophy with genetically confirmed Mahvash disease and also had evidence of portal hypertension (recurrent portosystemic encephalopathy and variceal hemorrhage) in the absence of cirrhosis. These findings established a diagnosis of portosinusoidal vascular disease, a presinusoidal type of portal hypertension previously known as noncirrhotic portal hypertension. Liver transplantation was followed by normalization of serum glucagon and ammonia levels, reversal of pancreatic hypertrophy, and resolution of recurrent encephalopathy and bleeding varices.
Collapse
Affiliation(s)
- Justin Robbins
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Dina Halegoua-DeMarzio
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Atrayee Basu Mallick
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Namrata Vijayvergia
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Rebecca Ganetzky
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Harish Lavu
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Veda N Giri
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Jeffrey Miller
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Warren Maley
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Ashesh P Shah
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Matthew DiMeglio
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Manju Ambelil
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Run Yu
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Takami Sato
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Daniel S Lefler
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| |
Collapse
|
7
|
Neumann J, Hofmann B, Dhein S, Gergs U. Glucagon and Its Receptors in the Mammalian Heart. Int J Mol Sci 2023; 24:12829. [PMID: 37629010 PMCID: PMC10454195 DOI: 10.3390/ijms241612829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Glucagon exerts effects on the mammalian heart. These effects include alterations in the force of contraction, beating rate, and changes in the cardiac conduction system axis. The cardiac effects of glucagon vary according to species, region, age, and concomitant disease. Depending on the species and region studied, the contractile effects of glucagon can be robust, modest, or even absent. Glucagon is detected in the mammalian heart and might act with an autocrine or paracrine effect on the cardiac glucagon receptors. The glucagon levels in the blood and glucagon receptor levels in the heart can change with disease or simultaneous drug application. Glucagon might signal via the glucagon receptors but, albeit less potently, glucagon might also signal via glucagon-like-peptide-1-receptors (GLP1-receptors). Glucagon receptors signal in a species- and region-dependent fashion. Small molecules or antibodies act as antagonists to glucagon receptors, which may become an additional treatment option for diabetes mellitus. Hence, a novel review of the role of glucagon and the glucagon receptors in the mammalian heart, with an eye on the mouse and human heart, appears relevant. Mouse hearts are addressed here because they can be easily genetically modified to generate mice that may serve as models for better studying the human glucagon receptor.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097 Halle (Saale), Germany;
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, D-06097 Halle (Saale), Germany;
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany;
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097 Halle (Saale), Germany;
| |
Collapse
|
8
|
Hofland J, Falconi M, Christ E, Castaño JP, Faggiano A, Lamarca A, Perren A, Petrucci S, Prasad V, Ruszniewski P, Thirlwell C, Vullierme MP, Welin S, Bartsch DK. European Neuroendocrine Tumor Society 2023 guidance paper for functioning pancreatic neuroendocrine tumour syndromes. J Neuroendocrinol 2023; 35:e13318. [PMID: 37578384 DOI: 10.1111/jne.13318] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 08/15/2023]
Abstract
This ENETS guidance paper aims to provide practical advice to clinicians for the diagnosis, treatment and follow-up of functioning syndromes in pancreatic neuroendocrine tumours (NET). A NET-associated functioning syndrome is defined by the presence of a clinical syndrome combined with biochemical evidence of inappropriately elevated hormonal levels. Different hormonal syndromes can be encountered in pancreatic NET patients, including insulinoma, gastrinoma as well as the rare glucagonoma, VIPoma, ACTHoma, PTHrPoma, carcinoid syndrome, calcitoninoma, GHRHoma and somatostatinoma. The recommendations provided in this paper focus on the biochemical, genetic and imaging work-up as well as therapeutic management of the individual hormonal syndromes in well-differentiated, grade 1-3, functioning NET with the primary tumour originating in the pancreas, and for specific subtypes also in the duodenum.
Collapse
Affiliation(s)
- Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Centre of Excellence, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Massimo Falconi
- Pancreatic Surgery and Transplantation Unit, Pancreas Translational and Clinical Research Centre, ENETS Center of Excellence, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Emanuel Christ
- ENETS Centre of Excellence for Neuroendocrine and Endocrine Tumours, University Hospital Basel, Basel, Switzerland
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Centre of Excellence, Sapienza University of Rome, Rome, Italy
| | - Angela Lamarca
- Department of Oncology - OncoHealth Institute, Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Department of Medical Oncology, The Christie NHS Foundation, Manchester, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Simona Petrucci
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Medical Genetics and Advanced Cell Diagnostics Unit, Sant Andrea University Hospital, Rome, Italy
| | - Vikas Prasad
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Philippe Ruszniewski
- Department of Pancreatology, FHU MOSAIC, Université Paris Cité - APHP Hôpital Beaujon, Clichy, France
| | | | - Marie-Pierre Vullierme
- Centre Hospitalier Annecy Genevois (CHANGE), Université Paris-Cité, Praticien Hospitalier Imagerie Médicale, Annecy, France
| | - Staffan Welin
- Department of Endocrine Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Detlef K Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Phillips-University Marburg and University Hospital Gießen Marburg GmbH, Marburg, Germany
| |
Collapse
|
9
|
Ruggeri RM, Benevento E, De Cicco F, Fazzalari B, Guadagno E, Hasballa I, Tarsitano MG, Isidori AM, Colao A, Faggiano A. Neuroendocrine neoplasms in the context of inherited tumor syndromes: a reappraisal focused on targeted therapies. J Endocrinol Invest 2023; 46:213-234. [PMID: 36038743 DOI: 10.1007/s40618-022-01905-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Neuroendocrine neoplasms can occur as part of inherited disorders, usually in the form of well-differentiated, slow-growing tumors (NET). The main predisposing syndromes include: multiple endocrine neoplasias type 1 (MEN1), associated with a large spectrum of gastroenteropancreatic and thoracic NETs, and type 4 (MEN4), associated with a wide tumour spectrum similar to that of MEN1; von Hippel-Lindau syndrome (VHL), tuberous sclerosis (TSC), and neurofibromatosis 1 (NF-1), associated with pancreatic NETs. In the present review, we propose a reappraisal of the genetic basis and clinical features of gastroenteropancreatic and thoracic NETs in the setting of inherited syndromes with a special focus on molecularly targeted therapies for these lesions. METHODS Literature search was systematically performed through online databases, including MEDLINE (via PubMed), and Scopus using multiple keywords' combinations up to June 2022. RESULTS Somatostatin analogues (SSAs) remain the mainstay of systemic treatment for NETs, and radiolabelled SSAs can be used for peptide-receptor radionuclide therapy for somatostatin receptor (SSTR)-positive NETs. Apart of these SSTR-targeted therapies, other targeted agents have been approved for NETs: the mTOR inhibitor everolimus for lung, gastroenteropatic and unknown origin NET, and sunitinib, an antiangiogenic tyrosine kinase inhibitor, for pancreatic NET. Novel targeted therapies with other antiangiogenic agents and immunotherapies have been also under evaluation. CONCLUSIONS Major advances in the understanding of genetic and epigenetic mechanisms of NET development in the context of inherited endocrine disorders have led to the recognition of molecular targetable alterations, providing a rationale for the implementation of treatments and development of novel targeted therapies.
Collapse
Affiliation(s)
- R M Ruggeri
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, AOU Policlinico "Gaetano Martino" University Hospital, 98125, Messina, Italy.
| | - E Benevento
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | - F De Cicco
- SSD Endocrine Disease and Diabetology, ASL TO3, Pinerolo, TO, Italy
| | - B Fazzalari
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - E Guadagno
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | - I Hasballa
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - M G Tarsitano
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - A M Isidori
- Gruppo NETTARE, Policlinico Umberto I, Università Sapienza, Rome, Italy
| | - A Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
- UNESCO Chair "Education for Health and Sustainable Development", Federico II University, Naples, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Gaspar TB, Lopes JM, Soares P, Vinagre J. An update on genetically engineered mouse models of pancreatic neuroendocrine neoplasms. Endocr Relat Cancer 2022; 29:R191-R208. [PMID: 36197786 DOI: 10.1530/erc-22-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare and clinically challenging entities. At the molecular level, PanNENs' genetic profile is well characterized, but there is limited knowledge regarding the contribution of the newly identified genes to tumor initiation and progression. Genetically engineered mouse models (GEMMs) are the most versatile tool for studying the plethora of genetic variations influencing PanNENs' etiopathogenesis and behavior over time. In this review, we present the state of the art of the most relevant PanNEN GEMMs available and correlate their findings with the human neoplasms' counterparts. We discuss the historic GEMMs as the most used and with higher translational utility models. GEMMs with Men1 and glucagon receptor gene germline alterations stand out as the most faithful models in recapitulating human disease; RIP-Tag models are unique models of early-onset, highly vascularized, invasive carcinomas. We also include a section of the most recent GEMMs that evaluate pathways related to cell cycle and apoptosis, Pi3k/Akt/mTOR, and Atrx/Daxx. For the latter, their tumorigenic effect is heterogeneous. In particular, for Atrx/Daxx, we will require more in-depth studies to evaluate their contribution; even though they are prevalent genetic events in PanNENs, they have low/inexistent tumorigenic capacity per se in GEMMs. Researchers planning to use GEMMs can find a road map of the main clinical features in this review, presented as a guide that summarizes the chief milestones achieved. We identify pitfalls to overcome, concerning the novel designs and standardization of results, so that future models can replicate human disease more closely.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - José Manuel Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar e Universitário de São João, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Vinagre
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Yu R. Diffuse Involvement of Pancreas Should Raise Suspicion of Mahvash Disease, an Autosomal Recessive Pancreatic Neuroendocrine Tumor Syndrome. Acad Radiol 2022; 29:1771. [PMID: 36075823 DOI: 10.1016/j.acra.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Run Yu
- Division of Endocrinology, UCLA David Geffen School of Medicine, 200 Medical Plaza Dr, Suite 530, Los Angeles, CA.
| |
Collapse
|
12
|
He M, Xue H. Authors' Reply to "Diffuse Involvement of Pancreas Should Raise Suspicion of Mahvash Disease, an Autosomal Recessive Pancreatic Neuroendocrine Tumor Syndrome". Acad Radiol 2022; 29:1772. [PMID: 36180326 DOI: 10.1016/j.acra.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Ming He
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong, China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
13
|
Jia J, Kang Q, Liu S, Song Y, Wong FS, Qiu Y, Li M. Artemether and aspterric acid induce pancreatic α cells to transdifferentiate into β cells in zebrafish. Br J Pharmacol 2021; 179:1962-1977. [PMID: 34871457 DOI: 10.1111/bph.15769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Recently, the anti-malarial drug, artemether, and the neurotransmitter γ-aminobutyric acid (GABA) were identified to convert α cells into β-like cells in vivo. However, some of these observations were challenged by other studies. To help address the controversy, we took advantage of zebrafish as a model to perform this study. EXPERIMENTAL APPROACH Firstly, we performed a small molecule screening for artemether and its skeleton analogs. Secondly, we used the Cre-LoxP system for lineage tracing to indicate the conversion of α cells into β cells in vivo. The stable transgenic ins2:eGFP αTC1-6 cell line were used for evaluation of α cell transdifferentiation in vitro. We further used multiple zebrafish transgenic and mutation lines to demonstrate β-cell differentiation, β-cell ablation and α-cell hyperplasia in this study. KEY RESULTS We showed that artemether and another sesquiterpene, aspterric acid, induced α cell transdifferentiation into β cells, both in zebrafish as well as using αTC1-6 cells. Furthermore, these two compounds also converted α cells into β cells when β cells were lost or α cells were hyperplastic in zebrafish. Unlike the previous report, the conversion of α cells to β cells was mediated by increasing Pax4 expression, but not suppression of Arx expression. CONCLUSIONS AND IMPLICATIONS Our data suggest that in zebrafish and αTC1-6 cells, both artemether and aspterric acid induce α cell transdifferentiation. Our data, along with those of Li et al. (2017), suggested that artemether and aspterric acid were able to induce α cell transdifferentiation, at least in zebrafish and αTC1-6 cells.
Collapse
Affiliation(s)
- Jianxin Jia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi Kang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shunzhi Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yabin Song
- Department of Neurology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Department of Otolaryngology Head and Neck Surgery, School of Medicine, Xiamen University
| |
Collapse
|
14
|
Rhyu J, Yu R. Newly discovered endocrine functions of the liver. World J Hepatol 2021; 13:1611-1628. [PMID: 34904032 PMCID: PMC8637678 DOI: 10.4254/wjh.v13.i11.1611] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
The liver, the largest solid visceral organ of the body, has numerous endocrine functions, such as direct hormone and hepatokine production, hormone metabolism, synthesis of binding proteins, and processing and redistribution of metabolic fuels. In the last 10 years, many new endocrine functions of the liver have been discovered. Advances in the classical endocrine functions include delineation of mechanisms of liver production of endocrine hormones [including 25-hydroxyvitamin D, insulin-like growth factor 1 (IGF-1), and angiotensinogen], hepatic metabolism of hormones (including thyroid hormones, glucagon-like peptide-1, and steroid hormones), and actions of specific binding proteins to glucocorticoids, sex steroids, and thyroid hormones. These studies have furthered insight into cirrhosis-associated endocrinopathies, such as hypogonadism, osteoporosis, IGF-1 deficiency, vitamin D deficiency, alterations in glucose and lipid homeostasis, and controversially relative adrenal insufficiency. Several novel endocrine functions of the liver have also been unraveled, elucidating the liver’s key negative feedback regulatory role in the pancreatic α cell-liver axis, which regulates pancreatic α cell mass, glucagon secretion, and circulating amino acid levels. Betatrophin and other hepatokines, such as fetuin-A and fibroblast growth factor 21, have also been discovered to play important endocrine roles in modulating insulin sensitivity, lipid metabolism, and body weight. It is expected that more endocrine functions of the liver will be revealed in the near future.
Collapse
Affiliation(s)
- Jane Rhyu
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Run Yu
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, United States
| |
Collapse
|
15
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
16
|
Liu Q, Lin G, Chen Y, Feng W, Xu Y, Lyu J, Yang D, Wang MW. Deleterious mutation V369M in the mouse GCGR gene causes abnormal plasma amino acid levels indicative of a possible liver-α-cell axis. Biosci Rep 2021; 41:BSR20210758. [PMID: 34002801 PMCID: PMC8173527 DOI: 10.1042/bsr20210758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/30/2023] Open
Abstract
Glucagon plays an important role in glucose homeostasis and amino acid metabolism. It regulates plasma amino acid levels which in turn modulate glucagon secretion from the pancreatic α-cell, thereby establishing a liver-α-cell axis described recently. We reported previously that the knock-in mice bearing homozygous V369M substitution (equivalent to a naturally occurring mutation V368M in the human glucagon receptor, GCGR) led to hypoglycemia with improved glucose tolerance. They also exhibited hyperglucagonemia, pancreas enlargement and α-cell hyperplasia. Here, we investigated the effect of V369M/V368M mutation on glucagon-mediated amino acid metabolism. It was found that GcgrV369M+/+ mice displayed increased plasma amino acid levels in general, but significant accumulation of the ketogenic/glucogenic amino acids was observed in animals fed with a high-fat diet (HFD), resulting in deleterious metabolic consequence characteristic of α-cell proliferation and hyperglucagonemia.
Collapse
Affiliation(s)
- Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Guangyao Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenbo Feng
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yingna Xu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar BioTech Nantong Co., Ltd., Nantong 226133, China
| | - Dehua Yang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Tang LH. Pancreatic Neuroendocrine Neoplasms: Landscape and Horizon. Arch Pathol Lab Med 2021; 144:816-828. [PMID: 32298138 DOI: 10.5858/arpa.2019-0654-ra] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Since the initial description of pancreatic endocrine physiology and the recognition of islet cell tumors in the 1800s, there have been noteworthy advances in the pathobiology of pancreatic neuroendocrine neoplasms (PanNENs), and definition of the important distinction between well-differentiated neuroendocrine tumor (PanNET) and poorly differentiated neuroendocrine carcinoma (PanNEC). The evolving knowledge has resulted in a continuous update in terminology, classification, and grading system for this group of neoplasms. Pancreatic neuroendocrine tumors associated with hereditary conditions have been linked to unique molecular and genetic events, and sporadic PanNETs have specific gene signatures. Based on accumulative experience and knowledge, therapeutic strategies have been defined for this group of neoplasms. OBJECTIVE.— To review the evolution and description of the pathologic-genomic evolution of PanNENs, and to facilitate accurate pathologic interpretation for the corresponding clinical management. DATA SOURCES.— Literature review of published studies and author's own work. CONCLUSIONS.— Evolving experience and knowledge have established subtypes of pancreatic neuroendocrine neoplasms, based on their genotype and phenotype. Accurate pathologic interpretation of the specific neoplasm has significant implications for therapy and prognosis.
Collapse
Affiliation(s)
- Laura H Tang
- From the Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
18
|
The V369M Gcgr knock-in mice are a precision medicine model of mild Mahvash disease. Biochem J 2021; 477:2873-2874. [PMID: 32785645 DOI: 10.1042/bcj20200522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/05/2023]
Abstract
The detailed metabolic characterization of the glucagon receptor (Gcgr)V369M+/+ mutant mice described in Lin et al. in the Biochemical Journal is of interest and resulting in the expected metabolic profile. We would like to point out that these mice might also be extremely useful as a precision medicine model of mild Mahvash disease, a rare hereditary pancreatic neuroendocrine tumor syndrome characterized by inactivating mutations in the glucagon receptor. Further characterization of pancreas morphology and histology in the GcgrV369M+/+ mice at more advanced ages will be critically important to understand mild Mahvash disease in humans.
Collapse
|
19
|
Characterization of a naturally occurring mutation V368M in the human glucagon receptor and its association with metabolic disorders. Biochem J 2020; 477:2581-2594. [PMID: 32677665 DOI: 10.1042/bcj20200235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 01/19/2023]
Abstract
Glucagon is a peptide hormone secreted by islet α cells. It plays crucial roles in glucose homeostasis and metabolism by activating its cognate glucagon receptor (GCGR). A naturally occurring deleterious mutation V368M in the human GCGR leads to reduced ligand binding and down-regulation of glucagon signaling. To examine the association between this mutation and metabolic disorders, a knock-in mouse model bearing homozygous V369M substitution (equivalent to human V368M) in GCGR was made using CRISPR-Cas9 technology. These GcgrV369M+/+ mice displayed lower fasting blood glucose levels with improved glucose tolerance compared with wild-type controls. They also exhibited hyperglucagonemia, pancreas enlargement and α cell hyperplasia with a lean phenotype. Additionally, V369M mutation resulted in a reduction in adiposity with normal body weight and food intake. Our findings suggest a key role of V369M/V368M mutation in GCGR-mediated glucose homeostasis and pancreatic functions, thereby pointing to a possible interplay between GCGR defect and metabolic disorders.
Collapse
|
20
|
Hofland J, Kaltsas G, de Herder WW. Advances in the Diagnosis and Management of Well-Differentiated Neuroendocrine Neoplasms. Endocr Rev 2020; 41:bnz004. [PMID: 31555796 PMCID: PMC7080342 DOI: 10.1210/endrev/bnz004] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Neuroendocrine neoplasms constitute a diverse group of tumors that derive from the sensory and secretory neuroendocrine cells and predominantly arise within the pulmonary and gastrointestinal tracts. The majority of these neoplasms have a well-differentiated grade and are termed neuroendocrine tumors (NETs). This subgroup is characterized by limited proliferation and patients affected by these tumors carry a good to moderate prognosis. A substantial subset of patients presenting with a NET suffer from the consequences of endocrine syndromes as a result of the excessive secretion of amines or peptide hormones, which can impair their quality of life and prognosis. Over the past 15 years, critical developments in tumor grading, diagnostic biomarkers, radionuclide imaging, randomized controlled drug trials, evidence-based guidelines, and superior prognostic outcomes have substantially altered the field of NET care. Here, we review the relevant advances to clinical practice that have significantly upgraded our approach to NET patients, both in diagnostic and in therapeutic options.
Collapse
Affiliation(s)
- Johannes Hofland
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus MC Cancer Center, Erasmus MC, Rotterdam, The Netherlands
| | - Gregory Kaltsas
- 1st Department of Propaupedic Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Wouter W de Herder
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus MC Cancer Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Abstract
Glucagon and its partner insulin are dually linked in both their secretion from islet cells and their action in the liver. Glucagon signaling increases hepatic glucose output, and hyperglucagonemia is partly responsible for the hyperglycemia in diabetes, making glucagon an attractive target for therapeutic intervention. Interrupting glucagon signaling lowers blood glucose but also results in hyperglucagonemia and α-cell hyperplasia. Investigation of the mechanism for α-cell proliferation led to the description of a conserved liver-α-cell axis where glucagon is a critical regulator of amino acid homeostasis. In return, amino acids regulate α-cell function and proliferation. New evidence suggests that dysfunction of the axis in humans may result in the hyperglucagonemia observed in diabetes. This discussion outlines important but often overlooked roles for glucagon that extend beyond glycemia and supports a new role for α-cells as amino acid sensors.
Collapse
Affiliation(s)
- E Danielle Dean
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
22
|
Global Transcriptomic Analysis of Zebrafish Glucagon Receptor Mutant Reveals Its Regulated Metabolic Network. Int J Mol Sci 2020; 21:ijms21030724. [PMID: 31979106 PMCID: PMC7037442 DOI: 10.3390/ijms21030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
The glucagon receptor (GCGR) is a G-protein-coupled receptor (GPCR) that mediates the activity of glucagon. Disruption of GCGR results in many metabolic alterations, including increased glucose tolerance, decreased adiposity, hypoglycemia, and pancreatic α-cell hyperplasia. To better understand the global transcriptomic changes resulting from GCGR deficiency, we performed whole-organism RNA sequencing analysis in wild type and gcgr-deficient zebrafish. We found that the expression of 1645 genes changes more than two-fold among mutants. Most of these genes are related to metabolism of carbohydrates, lipids, and amino acids. Genes related to fatty acid β-oxidation, amino acid catabolism, and ureagenesis are often downregulated. Among gcrgr-deficient zebrafish, we experimentally confirmed increases in lipid accumulation in the liver and whole-body glucose uptake, as well as a modest decrease in total amino acid content. These results provide new information about the global metabolic network that GCGR signaling regulates in addition to a better understanding of the receptor’s physiological functions.
Collapse
|
23
|
Dean ED, Vuguin PM, Charron MJ. Glucagon: The Name Says It All, or Not! Endocrinology 2019; 160:1359-1361. [PMID: 31144717 PMCID: PMC6482032 DOI: 10.1210/en.2019-00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022]
Affiliation(s)
- E Danielle Dean
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Patricia M Vuguin
- Department of Pediatrics, Pediatric Endocrinology, Columbia University, Vagelos College of Physicians & Surgeons, New York, New York
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Obstetrics and Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
24
|
The first pediatric case of glucagon receptor defect due to biallelic mutations in GCGR is identified by newborn screening of elevated arginine. Mol Genet Metab Rep 2018; 17:46-52. [PMID: 30294546 PMCID: PMC6171159 DOI: 10.1016/j.ymgmr.2018.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Glucagon receptor (GCGR) defect (Mahvash disease) is an autosomal recessive hereditary pancreatic neuroendocrine tumor (PNET) syndrome that has only been reported in adults with pancreatic α cell hyperplasia and PNETs. We describe a 7-year-old girl with persistent hyperaminoacidemia, notable for elevations of glutamine (normal ammonia), alanine (normal lactate), dibasic amino acids (arginine, lysine and ornithine), threonine and serine. She initially was brought to medical attention by an elevated arginine on newborn screening (NBS) and treated for presumed arginase deficiency with a low protein diet, essential amino acids formula and an ammonia scavenger drug. This treatment normalized plasma amino acids. She had intermittent emesis and anorexia, but was intellectually normal. Arginase enzyme assay and ARG1 sequencing and deletion/duplication analysis were normal. Treatments were stopped, but similar pattern of hyperaminoacidemia recurred. She also had hypercholesterolemia type IIa, with only elevated LDL cholesterol, despite an extremely lean body habitus. Exome sequencing was initially non-diagnostic. Through a literature search, we recognized the pattern of hyperaminoacidemia was strikingly similar to that reported in the Gcgr−/− knockout mice. Subsequently the patient was found to have an extremely elevated plasma glucagon and a novel, homozygous c.958_960del (p.Phe320del) variant in GCGR. Functional studies confirmed the pathogenicity of this variant. This case expands the clinical phenotype of GCGR defect in children and emphasizes the clinical utility of plasma amino acids in screening, diagnosis and monitoring glucagon signaling interruption. Early identification of a GCGR defect may provide an opportunity for potential beneficial treatment for an adult onset tumor predisposition disease. Describe the first case of glucagon receptor defect uniquely identified by abnormal newborn screening for elevated arginine. Characterize the pattern of hyperaminoacidemia in GCGR defect. Expand the clinical spectrum of GCGR defect from adult to childhood with a unique gastrointestinal manifestation.
Collapse
|
25
|
Abstract
OBJECTIVE Endocrine tumor markers (ETMs) are important and indispensable tools in the diagnosis and follow-up of endocrine tumors. Unexpectedly high level of ETM (UHLETM) is often encountered in clinical practice. The objectives of this article are to discuss the approach to UHLETMs and describe the most common UHLETMs. METHODS Literature review and personal experience with UHLETMs. RESULTS A UHLETM is defined as an ETM level much higher than what an endocrinologist would expect based on the patient's clinical information, other biochemical test results, and imaging findings. Most UHLETMs are false positive, in that they do not indicate the existence or growth of an endocrine tumor. The key issue, however, is how to convincingly prove that a UHLETM is false positive. The most important question to help resolve UHLETMs is whether the UHLETMs are due to false or true results. Some UHLETMs are due to interpretation errors, laboratory errors, or spurious test results, while the true levels of the ETMs are normal or unchanged from previous results. Other UHLETMs are due to nontumor conditions or medications, and the true levels of the ETMs are indeed very high. When it is not straightforward to assess whether certain UHLETMs are due to false or true results, they may be due to novel conditions. CONCLUSION UHLETMs provide endocrinologists great opportunities to learn the basic biology and measurement of ETMs. Unresolved UHLETMs are exciting clinical research opportunities which may lead to discovery of new diseases and new mechanisms of measurement interference. ABBREVIATIONS 5-HIAAA = 5-hydroxyindoleacetic acid; 5-HTP = 5-hydroxytryptophan; CGA = chromogranin A; ETM = endocrine tumor marker; MTC = medullary thyroid carcinoma; UHLETM = unexpectedly high level of endocrine tumor marker.
Collapse
|