1
|
Rao R, Gulfishan M, Kim MS, Kashyap MK. Deciphering Cancer Complexity: Integrative Proteogenomics and Proteomics Approaches for Biomarker Discovery. Methods Mol Biol 2025; 2859:211-237. [PMID: 39436604 DOI: 10.1007/978-1-0716-4152-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Proteomics has revolutionized the field of cancer biology because the use of a large number of in vivo (SILAC), in vitro (iTRAQ, ICAT, TMT, stable-isotope Dimethyl, and 18O) labeling techniques or label-free methods (spectral counting or peak intensities) coupled with mass spectrometry enables us to profile and identify dysregulated proteins in diseases such as cancer. These proteome and genome studies have led to many challenges, such as the lack of consistency or correlation between copy numbers, RNA, and protein-level data. This review covers solely mass spectrometry-based approaches used for cancer biomarker discovery. It also touches on the emerging role of oncoproteogenomics or proteogenomics in cancer biomarker discovery and how this new area is attracting the integration of genomics and proteomics areas to address some of the important questions to help impinge on the biology and pathophysiology of different malignancies to make these mass spectrometry-based studies more realistic and relevant to clinical settings.
Collapse
Affiliation(s)
- Rashmi Rao
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP, India
| | - Mohd Gulfishan
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP, India
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute (ASCI), Amity Medical School (AMS), Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Guan J, Xu X, Qiu G, He C, Lu X, Wang K, Liu X, Li Y, Ling Z, Tang X, Liang Y, Tao X, Cheng B, Yang B. Cellular hierarchy framework based on single-cell/multi-patient sample sequencing reveals metabolic biomarker PYGL as a therapeutic target for HNSCC. J Exp Clin Cancer Res 2023; 42:162. [PMID: 37420300 DOI: 10.1186/s13046-023-02734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/04/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND A growing body of research has revealed the connection of metabolism reprogramming and tumor progression, yet how metabolism reprogramming affects inter-patient heterogeneity and prognosis in head and neck squamous cell carcinoma (HNSCC) still requires further explorations. METHODS A cellular hierarchy framework based on metabolic properties discrepancy, METArisk, was introduced to re-analyze the cellular composition from bulk transcriptomes of 486 patients through deconvolution utilizing single-cell reference profiles from 25 primary and 8 metastatic HNSCC sample integration of previous studies. Machine learning methods were used to identify the correlations between metabolism-related biomarkers and prognosis. The functions of the genes screened out in tumor progression, metastasis and chemotherapy resistance were validated in vitro by cellular functional experiments and in vivo by xenograft tumor mouse model. RESULTS Incorporating the cellular hierarchy composition and clinical properties, the METArisk phenotype divided multi-patient cohort into two classes, wherein poor prognosis of METArisk-high subgroup was associated with a particular cluster of malignant cells with significant activity of metabolism reprogramming enriched in metastatic single-cell samples. Subsequent analysis targeted for phenotype differences between the METArisk subgroups identified PYGL as a key metabolism-related biomarker that enhances malignancy and chemotherapy resistance by GSH/ROS/p53 pathway, leading to poor prognosis of HNSCC. CONCLUSION PYGL was identified as a metabolism-related oncogenic biomarker that promotes HNSCC progression, metastasis and chemotherapy resistance though GSH/ROS/p53 pathway. Our study revealed the cellular hierarchy composition of HNSCC from the cell metabolism reprogramming perspective and may provide new inspirations and therapeutic targets for HNSCC in the future.
Collapse
Affiliation(s)
- Jiezhong Guan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo Qiu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chong He
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyue Lu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Kang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xinyu Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yuanyuan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zihang Ling
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuan Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
3
|
Liu X, Li N. New thoughts and findings on invasion and metastasis of pancreatic ductal adenocarcinoma (PDAC) from comparative proteomics: multi-target therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03106-8. [PMID: 36745340 DOI: 10.1007/s12094-023-03106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/28/2023] [Indexed: 02/07/2023]
Abstract
As one of the most aggressive malignant tumors, pancreatic ductal adenocarcinoma (PDAC) ranks as the fourth cancer-related mortality in the world. The extremely low survival rate is closely related to early invasion and distant metastasis. However, effective target therapy for weakening its malignant behavior remains limited. Over the past decades, many proteins correlating with invasion and metastasis of PDAC have been discovered using proteomics. The discovery of these proteins gives us a deeper understanding of the invasive and migratory processes of PDAC. This review is a systemic integration of these proteomics findings over the past 10 years. The discovered proteins were typically associated with the glycolytic process, hypoxic microenvironment, post-translational modification, extracellular matrix, exosomes, cancer stem cells, and immune escape. Some proteins were found to have multiple functions, and, cooperation between different proteins in the invasive and metastatic processes was found. This cooperation, and not just single protein function, may play a more significant role in the poor prognosis of PDAC. Therefore, multi-target therapy against these cooperative networks should be a primary choice in the future.
Collapse
Affiliation(s)
- Xinlu Liu
- 1st Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Na Li
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
4
|
Ji Q, Li H, Cai Z, Yuan X, Pu X, Huang Y, Fu S, Chu L, Jiang C, Xue J, Zhang X, Li R. PYGL-mediated glucose metabolism reprogramming promotes EMT phenotype and metastasis of pancreatic cancer. Int J Biol Sci 2023; 19:1894-1909. [PMID: 37063425 PMCID: PMC10092766 DOI: 10.7150/ijbs.76756] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is closely associated with tumor invasion and metastasis. However, key regulators of EMT in pancreatic ductal adenocarcinoma (PDAC) need to be further studied. Bioinformatics analyses of pancreatic cancer public datasets showed that glycogen phosphorylase L (PYGL) expression is elevated in quasimesenchymal PDAC (QM-PDAC) and positively associated with EMT. In vitro cellular experiments further confirm PYGL as a crucial EMT regulator in PDAC cells. Functionally, PYGL overexpression promotes cell migration and invasion in vitro and facilitates liver metastasis in vivo, while PYGL knockdown has opposite effects. Mechanically, hypoxia induces PYGL expression in a hypoxia inducible factor 1α (HIF1α)-dependent manner and promotes glycogen accumulation. Elevated PYGL mobilizes accumulated glycogen to fuel glycolysis via its activity as a glycogen phosphorylase, thus inducing the EMT process, which could be suppressed by the glycolysis inhibitor 2-deoxy-D-glucose (2-DG). Clinically, PYGL expression is upregulated in PDAC and correlates with its malignant features and poor prognosis. Collectively, the data from our study reveal that the hypoxia/PYGL/glycolysis-induced EMT promotes PDAC metastasis, which establishes the rational for targeting hypoxia/PYGL/glycolysis/EMT signaling pathway against PDAC.
Collapse
Affiliation(s)
- Qian Ji
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hengchao Li
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhiwei Cai
- Department of General Surgery, Hepato-biliary-pancreatic Center, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xiao Yuan
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xi Pu
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yumeng Huang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Shengqiao Fu
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Liangmei Chu
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Chongyi Jiang
- Department of General Surgery, Hepato-biliary-pancreatic Center, Huadong Hospital, Fudan University, Shanghai 200040, China
- ✉ Corresponding authors: Rongkun Li (), Xiaoxin Zhang (), Junli Xue () and Chongyi Jiang ()
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
- ✉ Corresponding authors: Rongkun Li (), Xiaoxin Zhang (), Junli Xue () and Chongyi Jiang ()
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- ✉ Corresponding authors: Rongkun Li (), Xiaoxin Zhang (), Junli Xue () and Chongyi Jiang ()
| | - Rongkun Li
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- ✉ Corresponding authors: Rongkun Li (), Xiaoxin Zhang (), Junli Xue () and Chongyi Jiang ()
| |
Collapse
|
5
|
Barot S, Stephenson OJ, Priya Vemana H, Yadav A, Bhutkar S, Trombetta LD, Dukhande VV. Metabolic alterations and mitochondrial dysfunction underlie hepatocellular carcinoma cell death induced by a glycogen metabolic inhibitor. Biochem Pharmacol 2022; 203:115201. [PMID: 35926650 PMCID: PMC10039449 DOI: 10.1016/j.bcp.2022.115201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. There is an urgent need for new targets to treat HCC due to limited treatment options and drug resistance. Many cancer cells are known to have high amount of glycogen than their tissue of origin and inhibition of glycogen catabolism induces cancer cell death by apoptosis. To further understand the role of glycogen in HCC and target it for pharmacotherapy, we studied metabolic adaptations and mitochondrial function in HepG2 cells after pharmacological inhibition of glycogen phosphorylase (GP) by CP-91149 (CP). GP inhibition increased the glycogen levels in HepG2 cells without affecting overall glucose uptake. Glycolytic capacity and importantly glycolytic reserve decreased significantly. Electron microscopy revealed that CP treatment altered mitochondrial morphology leading to mitochondrial swelling with less defined cristae. A concomitant decrease in mitochondrial oxygen consumption and mitochondria-linked ATP generation was observed. Metabolomics and enzyme activity / expression studies showed a decrease in the pentose phosphate pathway. In addition, CP treatment decreased the growth of HepG2 3D tumor spheroids in a dose- and time-dependent manner. Taken together, our study provides insights into metabolic alterations and mitochondrial dysfunction accompanying apoptosis in HepG2 cells upon GP inhibition. Our study can aid in the understanding of the mechanism and development of metabolic inhibitors to treat HCC.
Collapse
Affiliation(s)
- Shrikant Barot
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Olivia J Stephenson
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Anjali Yadav
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Shraddha Bhutkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Louis D Trombetta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vikas V Dukhande
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
6
|
Khan T, Sullivan MA, Gunter JH, Kryza T, Lyons N, He Y, Hooper JD. Revisiting Glycogen in Cancer: A Conspicuous and Targetable Enabler of Malignant Transformation. Front Oncol 2020; 10:592455. [PMID: 33224887 PMCID: PMC7667517 DOI: 10.3389/fonc.2020.592455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Once thought to be exclusively a storage hub for glucose, glycogen is now known to be essential in a range of physiological processes and pathological conditions. Glycogen lies at the nexus of diverse processes that promote malignancy, including proliferation, migration, invasion, and chemoresistance of cancer cells. It is also implicated in processes associated with the tumor microenvironment such as immune cell effector function and crosstalk with cancer-associated fibroblasts to promote metastasis. The enzymes of glycogen metabolism are dysregulated in a wide variety of malignancies, including cancers of the kidney, ovary, lung, bladder, liver, blood, and breast. Understanding and targeting glycogen metabolism in cancer presents a promising but under-explored therapeutic avenue. In this review, we summarize the current literature on the role of glycogen in cancer progression and discuss its potential as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Tashbib Khan
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mitchell A. Sullivan
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Jennifer H. Gunter
- Faculty of Health, Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Thomas Kryza
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Nicholas Lyons
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Yaowu He
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - John D. Hooper
- Mater Research Institute—The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
7
|
Wasinger VC, Curnoe D, Boel C, Machin N, Goh HM. The Molecular Floodgates of Stress-Induced Senescence Reveal Translation, Signalling and Protein Activity Central to the Post-Mortem Proteome. Int J Mol Sci 2020; 21:ijms21176422. [PMID: 32899302 PMCID: PMC7504133 DOI: 10.3390/ijms21176422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022] Open
Abstract
The transitioning of cells during the systemic demise of an organism is poorly understood. Here, we present evidence that organismal death is accompanied by a common and sequential molecular flood of stress-induced events that propagate the senescence phenotype, and this phenotype is preserved in the proteome after death. We demonstrate activation of “death” pathways involvement in diseases of ageing, with biochemical mechanisms mapping onto neurological damage, embryonic development, the inflammatory response, cardiac disease and ultimately cancer with increased significance. There is sufficient bioavailability of the building blocks required to support the continued translation, energy, and functional catalytic activity of proteins. Significant abundance changes occur in 1258 proteins across 1 to 720 h post-mortem of the 12-week-old mouse mandible. Protein abundance increases concord with enzyme activity, while mitochondrial dysfunction is evident with metabolic reprogramming. This study reveals differences in protein abundances which are akin to states of stress-induced premature senescence (SIPS). The control of these pathways is significant for a large number of biological scenarios. Understanding how these pathways function during the process of cellular death holds promise in generating novel solutions capable of overcoming disease complications, maintaining organ transplant viability and could influence the findings of proteomics through “deep-time” of individuals with no historically recorded cause of death.
Collapse
Affiliation(s)
- Valerie C. Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Kensington, NSW 2052, Australia
- Palaeontology, Geobiology and Earth Archives Research Centre, University of New South Wales Sydney, Kensington, NSW 2052, Australia; (C.B.); (N.M.); (H.M.G.)
- Correspondence: (V.C.W.); (D.C.)
| | - Darren Curnoe
- Palaeontology, Geobiology and Earth Archives Research Centre, University of New South Wales Sydney, Kensington, NSW 2052, Australia; (C.B.); (N.M.); (H.M.G.)
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales Sydney, Kensington, NSW 2052, Australia
- Correspondence: (V.C.W.); (D.C.)
| | - Ceridwen Boel
- Palaeontology, Geobiology and Earth Archives Research Centre, University of New South Wales Sydney, Kensington, NSW 2052, Australia; (C.B.); (N.M.); (H.M.G.)
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Naomi Machin
- Palaeontology, Geobiology and Earth Archives Research Centre, University of New South Wales Sydney, Kensington, NSW 2052, Australia; (C.B.); (N.M.); (H.M.G.)
| | - Hsiao Mei Goh
- Palaeontology, Geobiology and Earth Archives Research Centre, University of New South Wales Sydney, Kensington, NSW 2052, Australia; (C.B.); (N.M.); (H.M.G.)
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales Sydney, Kensington, NSW 2052, Australia
- Centre for Global Archaeological Research, University Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
8
|
Barot S, Abo-Ali EM, Zhou DL, Palaguachi C, Dukhande VV. Inhibition of glycogen catabolism induces intrinsic apoptosis and augments multikinase inhibitors in hepatocellular carcinoma cells. Exp Cell Res 2019; 381:288-300. [PMID: 31128107 DOI: 10.1016/j.yexcr.2019.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading cancers in the world in incidence and mortality. Current pharmacotherapy of HCC is limited in the number and efficacy of anticancer agents. Metabolic reprogramming is a prominent feature of many cancers and has rekindled interest in targeting metabolic proteins for cancer therapy. Glycogen is a storage form of glucose, and the levels of glycogen have been found to correlate with biological processes in reprogrammed cancer cells. However, the contribution of glycogen metabolism to carcinogenesis, cancer cell growth, metastasis, and chemoresistance is poorly understood. Thus, we studied the processes involved in the inhibition of glycogen metabolism in HCC cells. Pharmacological inhibition of glycogen phosphorylase (GP), a rate-limiting enzyme in glycogen catabolism, by CP-91149 led to a decrease in HCC cell viability. GP inhibition induced cancer cell death through the intrinsic apoptotic pathway. Mitochondrial dysfunction and autophagic adaptations accompanied this apoptosis process whereas endoplasmic reticulum stress, necrosis, and necroptosis were not major components of the cell death. In addition, GP inhibition potentiated the effects of multikinase inhibitors sorafenib and regorafenib, which are key drugs in advanced-stage HCC therapy. Our study provides mechanistic insights into cell death by perturbation of glycogen metabolism and identifies GP inhibition as a potential HCC pharmacotherapy target.
Collapse
Affiliation(s)
- Shrikant Barot
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Ehab M Abo-Ali
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Daisy L Zhou
- Department of Biological Sciences, St. John's College of Liberal Arts and Sciences, St. John's University, Queens, NY, USA
| | - Christian Palaguachi
- Department of Biological Sciences, St. John's College of Liberal Arts and Sciences, St. John's University, Queens, NY, USA
| | - Vikas V Dukhande
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
9
|
A critical review of the role of M 2PYK in the Warburg effect. Biochim Biophys Acta Rev Cancer 2019; 1871:225-239. [PMID: 30708038 PMCID: PMC6525063 DOI: 10.1016/j.bbcan.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
It is becoming generally accepted in recent literature that the Warburg effect in cancer depends on inhibition of M2PYK, the pyruvate kinase isozyme most commonly expressed in tumors. We remain skeptical. There continues to be a general lack of solid experimental evidence for the underlying idea that a bottle neck in aerobic glycolysis at the level of M2PYK results in an expanded pool of glycolytic intermediates (which are thought to serve as building blocks necessary for proliferation and growth of cancer cells). If a bottle neck at M2PYK exists, then the remarkable increase in lactate production by cancer cells is a paradox, particularly since a high percentage of the carbons of lactate originate from glucose. The finding that pyruvate kinase activity is invariantly increased rather than decreased in cancer undermines the logic of the M2PYK bottle neck, but is consistent with high lactate production. The "inactive" state of M2PYK in cancer is often described as a dimer (with reduced substrate affinity) that has dissociated from an active tetramer of M2PYK. Although M2PYK clearly dissociates easier than other isozymes of pyruvate kinase, it is not clear that dissociation of the tetramer occurs in vivo when ligands are present that promote tetramer formation. Furthermore, it is also not clear whether the dissociated dimer retains any activity at all. A number of non-canonical functions for M2PYK have been proposed, all of which can be challenged by the finding that not all cancer cell types are dependent on M2PYK expression. Additional in-depth studies of the Warburg effect and specifically of the possible regulatory role of M2PYK in the Warburg effect are needed.
Collapse
|
10
|
Dienel GA. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J Neurosci Res 2017; 95:2103-2125. [PMID: 28151548 DOI: 10.1002/jnr.24015] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Abstract
Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMRglc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMRO2 /CMRglc ) fell during activation in human brain, and the small rise in CMRO2 could not fully support oxidation of lactate produced by disproportionate increases in CMRglc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMRglc -CMRO2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
11
|
Spasov AA, Chepljaeva NI, Vorob’ev ES. Glycogen phosphorylase inhibitors in the regulation of carbohydrate metabolism in type 2 diabetes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016020138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Vaitheesvaran B, Xu J, Yee J, Q-Y L, Go VL, Xiao GG, Lee WN. The Warburg effect: a balance of flux analysis. Metabolomics 2015; 11:787-796. [PMID: 26207106 PMCID: PMC4507278 DOI: 10.1007/s11306-014-0760-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer metabolism is characterized by increased macromolecular syntheses through coordinated increases in energy and substrate metabolism. The observation that cancer cells produce lactate in an environment of oxygen sufficiency (aerobic glycolysis) is a central theme of cancer metabolism known as the Warburg effect. Aerobic glycolysis in cancer metabolism is accompanied by increased pentose cycle and anaplerotic activities producing energy and substrates for macromolecular synthesis. How these processes are coordinated is poorly understood. Recent advances have focused on molecular regulation of cancer metabolism by oncogenes and tumor suppressor genes which regulate numerous enzymatic steps of central glucose metabolism. In the past decade, new insights in cancer metabolism have emerged through the application of stable isotopes particularly from 13C carbon tracing. Such studies have provided new evidence for system-wide changes in cancer metabolism in response to chemotherapy. Interestingly, experiments using metabolic inhibitors on individual biochemical pathways all demonstrate similar system-wide effects on cancer metabolism as in targeted therapies. Since biochemical reactions in the Warburg effect place competing demands on available precursors, high energy phosphates and reducing equivalents, the cancer metabolic system must fulfill the condition of balance of flux (homeostasis). In this review, the functions of the pentose cycle and of the tricarboxylic acid (TCA) cycle in cancer metabolism are analyzed from the balance of flux point of view. Anticancer treatments that target molecular signaling pathways or inhibit metabolism alter the invasive or proliferative behavior of the cancer cells by their effects on the balance of flux (homeostasis) of the cancer metabolic phenotype.
Collapse
Affiliation(s)
- B Vaitheesvaran
- Department of Medicine, Diabetes Center, Stable Isotope and
Metabolomics Core Facility, Albert Einstein College of Medicine Diabetes Center,
Bronx, New York, USA
| | - J Xu
- Department of Pathology, University of Southern California, Los
Angeles, Caligornia, USA
| | - J Yee
- Department of Pediatrics, Division of Endocrinology and Metabolism,
University of California, Los Angeles, California, USA
| | - Lu Q-Y
- Department of Medicine, University of California, Los Angeles, CA,
USA
| | - VL Go
- Department of Medicine, University of California, Los Angeles, CA,
USA
| | - G G Xiao
- Functional Genomics/Proteomics Laboratories Creighton University
medical Center, Nebraska, and School of Pharmaceutical Science and Technology at
Dalian University of Technology, Dalian, China
| | - WN Lee
- LA Biomedical Research Institute, Torrance, CA, USA and Department
of Pediatrics, Division of Endocrinology and Metabolism, University of California,
Los Angeles, California USA
| |
Collapse
|
13
|
Ritterson Lew C, Guin S, Theodorescu D. Targeting glycogen metabolism in bladder cancer. Nat Rev Urol 2015; 12:383-91. [PMID: 26032551 DOI: 10.1038/nrurol.2015.111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metabolism has been a heavily investigated topic in cancer research for the past decade. Although the role of aerobic glycolysis (the Warburg effect) in cancer has been extensively studied, abnormalities in other metabolic pathways are only just being understood in cancer. One such pathway is glycogen metabolism; its involvement in cancer development, particularly in urothelial malignancies, and possible ways of exploiting aberrations in this process for treatment are currently being studied. New research shows that the glycogen debranching enzyme amylo-α-1,6-glucosidase, 4-α-glucanotransferase (AGL) is a novel tumour suppressor in bladder cancer. Loss of AGL leads to rapid proliferation of bladder cancer cells. Another enzyme involved in glycogen debranching, glycogen phosphorylase, has been shown to be a tumour promoter in cancer, including in prostate cancer. Studies demonstrate that bladder cancer cells in which AGL expression is lost are more metabolically active than cells with intact AGL expression, and these cells are more sensitive to inhibition of both glycolysis and glycine synthesis--two targetable pathways. As a tumour promoter and enzyme, glycogen phosphorylase can be directly targeted, and preclinical inhibitor studies are promising. However, few of these glycogen phosphorylase inhibitors have been tested for cancer treatment in the clinical setting. Several possible limitations to the targeting of AGL and glycogen phosphorylase might also exist.
Collapse
Affiliation(s)
- Carolyn Ritterson Lew
- Department of Surgery (Urology), University of Colorado, 12700 East 19th Avenue, RC2/P15-6430D/MS-8609, Aurora, CO 80045, USA
| | - Sunny Guin
- Department of Surgery (Urology), University of Colorado, 12700 East 19th Avenue, RC2/P15-6430D/MS-8609, Aurora, CO 80045, USA
| | - Dan Theodorescu
- University of Colorado Comprehensive Cancer Center, MS F-434, 13001 East 17th Place, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Kunnimalaiyaan S, Trevino J, Tsai S, Gamblin TC, Kunnimalaiyaan M. Xanthohumol-Mediated Suppression of Notch1 Signaling Is Associated with Antitumor Activity in Human Pancreatic Cancer Cells. Mol Cancer Ther 2015; 14:1395-403. [PMID: 25887885 DOI: 10.1158/1535-7163.mct-14-0915] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer remains a lethal disease with limited treatment options. At the time of diagnosis, approximately 80% of these patients present with unresectable tumors caused by either locally advanced lesions or progressive metastatic growth. Therefore, development of novel treatment strategies and new therapeutics is needed. Xanthohumol (XN) has emerged as a potential compound that inhibits various types of cancer, but the molecular mechanism underlying the effects of XN remains unclear. In the present study, we have assessed the efficacy of XN on pancreatic cancer cell lines (AsPC-1, PANC-1, L3.6pl, MiaPaCa-2, 512, and 651) against cell growth in real time and using colony-forming assays. Treatment with XN resulted in reduction in cellular proliferation in a dose- and time-dependent manner. The growth suppression effect of XN in pancreatic cancer cell lines is due to increased apoptosis via the inhibition of the Notch1 signaling pathway, as evidenced by reduction in Notch1, HES-1, and survivin both at mRNA as well as protein levels. Notch1 promoter reporter analysis after XN treatment indicated that XN downregulates Notch promoter activity. Importantly, overexpression of active Notch1 in XN-treated pancreatic cancer cells resulted in negation of growth suppression. Taken together, these findings demonstrate, for the first time, that the growth suppressive effect of XN in pancreatic cancer cells is mainly mediated by Notch1 reduction.
Collapse
Affiliation(s)
- Selvi Kunnimalaiyaan
- Division of Surgical Oncology and Medical College of Wisconsin Cancer Center, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jose Trevino
- Department of Surgery, Section of Pancreatobiliary Surgery, University of Florida-Gainesville, Gainesville, Florida
| | - Susan Tsai
- Division of Surgical Oncology and Medical College of Wisconsin Cancer Center, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - T Clark Gamblin
- Division of Surgical Oncology and Medical College of Wisconsin Cancer Center, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Muthusamy Kunnimalaiyaan
- Division of Surgical Oncology and Medical College of Wisconsin Cancer Center, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
15
|
Lu QY, Zhang L, Yee JK, Go VLW, Lee WN. Metabolic Consequences of LDHA inhibition by Epigallocatechin Gallate and Oxamate in MIA PaCa-2 Pancreatic Cancer Cells. Metabolomics 2015; 11:71-80. [PMID: 26246802 PMCID: PMC4523095 DOI: 10.1007/s11306-014-0672-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lactate dehydrogenase A (LDHA) is the enzyme that converts pyruvate to lactate and oxidizes the reduced form of nicotinamide adenine dinucleotide (NADH) to NAD+. Several human cancers including the pancreas display elevated expression of LDHA. Because of its essential role in cancer metabolism, LDHA has been considered to be a potential target for cancer therapy. Recently, we have shown that a green tea extract significantly down-regulated LDHA in HPAF-II pancreatic cancer cells using global proteomics profiling. The present study is to investigate how EGCG, a major biological active constituent of green tea, targets the metabolism of human pancreatic adenocarcinoma MIA PaCa-2 cells. We compared the effect of EGCG to that of oxamate, an inhibitor of LDHA, on the multiple metabolic pathways as measured by extracellular lactate production, glucose consumption, as well as intracellular aspartate and glutamate production, fatty acid synthesis, acetyl-CoA, RNA ribose and deoxyribose. Specific metabolic pathways were studied using [1, 2-13C2]-d-glucose as the single precursor metabolic tracer. Isotope incorporations in metabolites were analyzed using gas chromatography/mass spectrometry (GC/MS) and stable isotope-based dynamic metabolic profiling (SiDMAP). We found that the EGCG treatment of MIA PaCa-2 cells significantly reduced lactate production, anaerobic glycolysis, glucose consumption and glycolytic rate that are comparable to the inhibition of LDHA by oxamate treatment. Significant changes in intracellular glucose carbon re-distribution among major glucose-utilizing macromolecule biosynthesis pathways in response to EGCG and oxamate treatment were observed. The inhibition of LDHA by EGCG or oxamate impacts on various pathways of the cellular metabolic network and significantly modifies the cancer metabolic phenotype. These results suggest that phytochemical EGCG and LDHA inhibitor oxamate confer their anti-cancer activities by disrupting the balance of flux throughout the cellular metabolic network.
Collapse
Affiliation(s)
- Qing-Yi Lu
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Lifeng Zhang
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Jennifer K Yee
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Vay-Liang W Go
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Wai-Nang Lee
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| |
Collapse
|
16
|
Zois CE, Favaro E, Harris AL. Glycogen metabolism in cancer. Biochem Pharmacol 2014; 92:3-11. [PMID: 25219323 DOI: 10.1016/j.bcp.2014.09.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 12/30/2022]
Abstract
Since its identification more than 150 years ago, there has been an extensive characterisation of glycogen metabolism and its regulatory pathways in the two main glycogen storage organs of the body, i.e. liver and muscle. In recent years, glycogen metabolism has also been demonstrated to be upregulated in many tumour types, suggesting it is an important aspect of cancer cell pathophysiology. Here, we provide an overview of glycogen metabolism and its regulation, with a focus on its role in metabolic reprogramming of cancer cells. The various methods to detect glycogen in tumours in vivo are also reviewed. Finally, we discuss the targeting of glycogen metabolism as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Christos E Zois
- Molecular Oncology Laboratories, Oxford University, Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom.
| | - Elena Favaro
- Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University, Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom.
| |
Collapse
|
17
|
Vaitheesvaran B, Hartil K, Navare A, Zheng, ÓBroin P, Golden A, Guha, Lee WN, Kurland I, Bruce JE. Role of the tumor suppressor IQGAP2 in metabolic homeostasis: Possible link between diabetes and cancer. Metabolomics 2014; 10:920-937. [PMID: 25254002 PMCID: PMC4169985 DOI: 10.1007/s11306-014-0639-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deficiency of IQGAP2, a scaffolding protein expressed primarily in liver leads to rearrangements of hepatic protein compartmentalization and altered regulation of enzyme functions predisposing development of hepatocellular carcinoma and diabetes. Employing a systems approach with proteomics, metabolomics and fluxes characterizations, we examined the effects of IQGAP2 deficient proteomic changes on cellular metabolism and the overall metabolic phenotype. Iqgap2-/- mice demonstrated metabolic inflexibility, fasting hyperglycemia and obesity. Such phenotypic characteristics were associated with aberrant hepatic regulations of glycolysis/gluconeogenesis, glycogenolysis, lipid homeostasis and futile cycling corroborated with corresponding proteomic changes in cytosolic and mitochondrial compartments. IQGAP2 deficiency also led to truncated TCA-cycle, increased anaplerosis, increased supply of acetyl-CoA for de novo lipogenesis, and increased mitochondrial methyl-donor metabolism necessary for nucleotides synthesis. Our results suggest that changes in metabolic networks in IQGAP2 deficiency create a hepatic environment of a 'pre-diabetic' phenotype and a predisposition to non-alcoholic fatty liver disease (NAFLD) which has been linked to the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- B. Vaitheesvaran
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - K. Hartil
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - A. Navare
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109
| | - Zheng
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109
| | - P. ÓBroin
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, 10461
- Department of Genetics., Division of Computational Genetics, Albert Einstein College of Medicine, Bronx, NewYork, 10461
| | - A. Golden
- Department of Genetics., Division of Computational Genetics, Albert Einstein College of Medicine, Bronx, NewYork, 10461
| | - Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - WN. Lee
- Department of Pediatrics, Division of Endocrinology and Metabolism, University of California, Los Angeles, California 90502
| | - I.J Kurland
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - J. E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98109
- Corresponding author: James E. Bruce. Department of Genome Sciences, University of Washington, Seattle, Washington, 98109., , Phone: 206-543-0220, Fax: 206-616-0008
| |
Collapse
|
18
|
Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L. Requirement of Glycogenolysis for Uptake of Increased Extracellular K+ in Astrocytes: Potential Implications for K+ Homeostasis and Glycogen Usage in Brain. Neurochem Res 2012; 38:472-85. [DOI: 10.1007/s11064-012-0938-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/09/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022]
|
19
|
Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJP, Snell C, Steers G, Turley H, Li JL, Günther UL, Buffa FM, McIntyre A, Harris AL. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab 2012. [PMID: 23177934 DOI: 10.1016/j.cmet.2012.10.017] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolic reprogramming of cancer cells provides energy and multiple intermediates critical for cell growth. Hypoxia in tumors represents a hostile environment that can encourage these transformations. We report that glycogen metabolism is upregulated in tumors in vivo and in cancer cells in vitro in response to hypoxia. In vitro, hypoxia induced an early accumulation of glycogen, followed by a gradual decline. Concordantly, glycogen synthase (GYS1) showed a rapid induction, followed by a later increase of glycogen phosphorylase (PYGL). PYGL depletion and the consequent glycogen accumulation led to increased reactive oxygen species (ROS) levels that contributed to a p53-dependent induction of senescence and markedly impaired tumorigenesis in vivo. Metabolic analyses indicated that glycogen degradation by PYGL is important for the optimal function of the pentose phosphate pathway. Thus, glycogen metabolism is a key pathway induced by hypoxia, necessary for optimal glucose utilization, which represents a targetable mechanism of metabolic adaptation.
Collapse
Affiliation(s)
- Elena Favaro
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Niu S, Wang Z, Ge D, Zhang G, Li Y. Prediction of functional phosphorylation sites by incorporating evolutionary information. Protein Cell 2012; 3:675-90. [PMID: 22802047 DOI: 10.1007/s13238-012-2048-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/27/2012] [Indexed: 01/05/2023] Open
Abstract
Protein phosphorylation is a ubiquitous protein post-translational modification, which plays an important role in cellular signaling systems underlying various physiological and pathological processes. Current in silico methods mainly focused on the prediction of phosphorylation sites, but rare methods considered whether a phosphorylation site is functional or not. Since functional phosphorylation sites are more valuable for further experimental research and a proportion of phosphorylation sites have no direct functional effects, the prediction of functional phosphorylation sites is quite necessary for this research area. Previous studies have shown that functional phosphorylation sites are more conserved than non-functional phosphorylation sites in evolution. Thus, in our method, we developed a web server by integrating existing phosphorylation site prediction methods, as well as both absolute and relative evolutionary conservation scores to predict the most likely functional phosphorylation sites. Using our method, we predicted the most likely functional sites of the human, rat and mouse proteomes and built a database for the predicted sites. By the analysis of overall prediction results, we demonstrated that protein phosphorylation plays an important role in all the enriched KEGG pathways. By the analysis of protein-specific prediction results, we demonstrated the usefulness of our method for individual protein studies. Our method would help to characterize the most likely functional phosphorylation sites for further studies in this research area.
Collapse
Affiliation(s)
- Shen Niu
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | | | | | |
Collapse
|