1
|
Morel KL, Germán B, Hamid AA, Nanda JS, Linder S, Bergman AM, van der Poel H, Hofland I, Bekers EM, Trostel SY, Burkhart DL, Wilkinson S, Ku AT, Kim M, Kim J, Ma D, Plummer JT, You S, Su XA, Zwart W, Sowalsky AG, Sweeney CJ, Ellis L. Low tristetraprolin expression activates phenotypic plasticity and primes transition to lethal prostate cancer in mice. J Clin Invest 2024; 135:e175680. [PMID: 39560993 PMCID: PMC11735106 DOI: 10.1172/jci175680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Phenotypic plasticity is a hallmark of cancer and is increasingly realized as a mechanism of resistance to androgen receptor-targeted (AR-targeted) therapy. Now that many prostate cancer (PCa) patients are treated upfront with AR-targeted agents, it is critical to identify actionable mechanisms that drive phenotypic plasticity, to prevent the emergence of resistance. We showed that loss of tristetraprolin (TTP; gene ZFP36) increased NF-κB activation, and was associated with higher rates of aggressive disease and early recurrence in primary PCa. We also examined the clinical and biological impact of ZFP36 loss with co-loss of PTEN, a known driver of PCa. Analysis of multiple independent primary PCa cohorts demonstrated that PTEN and ZFP36 co-loss was associated with increased recurrence risk. Engineering prostate-specific Zfp36 deletion in vivo induced prostatic intraepithelial neoplasia, and, with Pten codeletion, resulted in rapid progression to castration-resistant adenocarcinoma. Zfp36 loss altered the cell state driven by Pten loss, as demonstrated by enrichment of epithelial-mesenchymal transition (EMT), inflammation, TNF-α/NF-κB, and IL-6-JAK/STAT3 gene sets. Additionally, our work revealed that ZFP36 loss also induced enrichment of multiple gene sets involved in mononuclear cell migration, chemotaxis, and proliferation. Use of the NF-κB inhibitor dimethylaminoparthenolide (DMAPT) induced marked therapeutic responses in tumors with PTEN and ZFP36 co-loss and reversed castration resistance.
Collapse
Affiliation(s)
- Katherine L. Morel
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Beatriz Germán
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Anis A. Hamid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Jagpreet S. Nanda
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | - Elise M. Bekers
- Division of Pathology; Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Shana Y. Trostel
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Deborah L. Burkhart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Wilkinson
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Anson T. Ku
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Minhyung Kim
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jina Kim
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, Bioinformatics and Computing Facility of Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jasmine T. Plummer
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sungyong You
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California, USA
| | - Xiaofeng A. Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- David H. Koch Institute for Integrative Cancer Research, Bioinformatics and Computing Facility of Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Adam G. Sowalsky
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Christopher J. Sweeney
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Bhoopathi P, Kumar A, Pradhan AK, Maji S, Mannangatti P, Windle JJ, Subler MA, Zhang D, Vudatha V, Trevino JG, Madan E, Atfi A, Sarkar D, Gogna R, Das SK, Emdad L, Fisher PB. Cytoplasmic-delivery of polyinosine-polycytidylic acid inhibits pancreatic cancer progression increasing survival by activating Stat1-CCL2-mediated immunity. J Immunother Cancer 2023; 11:e007624. [PMID: 37935566 PMCID: PMC10649894 DOI: 10.1136/jitc-2023-007624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective therapies and with poor prognosis, causing 7% of all cancer-related fatalities in the USA. Considering the lack of effective therapies for this aggressive cancer, there is an urgent need to define newer and more effective therapeutic strategies. Polyinosine-polycytidylic acid (pIC) is a synthetic double-stranded RNA (dsRNA) which directly activates dendritic cells and natural killer cells inhibiting tumor growth. When pIC is delivered into the cytoplasm using polyethyleneimine (PEI), pIC-PEI, programmed-cell death is induced in PDAC. Transfection of [pIC]PEI into PDAC cells inhibits growth, promotes toxic autophagy and also induces apoptosis in vitro and in vivo in animal models. METHODS The KPC transgenic mouse model that recapitulates PDAC development in patients was used to interrogate the role of an intact immune system in vivo in PDAC in response to [pIC]PEI. Antitumor efficacy and survival were monitored endpoints. Comprehensive analysis of the tumor microenvironment (TME) and immune cells, cytokines and chemokines in the spleen, and macrophage polarization were analyzed. RESULTS Cytosolic delivery of [pIC]PEI induces apoptosis and provokes strong antitumor immunity in vivo in immune competent mice with PDAC. The mechanism underlying the immune stimulatory properties of [pIC]PEI involves Stat1 activation resulting in CCL2 and MMP13 stimulation thereby provoking macrophage polarization. [pIC]PEI induces apoptosis via the AKT-XIAP pathway, as well as macrophage differentiation and T-cell activation via the IFNγ-Stat1-CCL2 signaling pathways in PDAC. In transgenic tumor mouse models, [pIC]PEI promotes robust and profound antitumor activity implying that stimulating the immune system contributes to biological activity. The [pIC]PEI anti-PDAC effects are enhanced when used in combination with a standard of care (SOC) treatment, that is, gemcitabine. CONCLUSIONS In summary, [pIC]PEI treatment is non-toxic toward normal pancreatic cells while displaying strong cytotoxic and potent immune activating activities in PDAC, making it an attractive therapeutic when used alone or in conjunction with SOC therapeutic agents, potentially providing a safe and effective treatment protocol with translational potential for the effective therapy of PDAC.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Amit Kumar
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Anjan K Pradhan
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Santanu Maji
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Padmanabhan Mannangatti
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Jolene J Windle
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Mark A Subler
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Dongyu Zhang
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Vignesh Vudatha
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Jose G Trevino
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Esha Madan
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Azeddine Atfi
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Rajan Gogna
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
3
|
Laurella LC, Mirakian NT, Garcia MN, Grasso DH, Sülsen VP, Papademetrio DL. Sesquiterpene Lactones as Promising Candidates for Cancer Therapy: Focus on Pancreatic Cancer. Molecules 2022; 27:3492. [PMID: 35684434 PMCID: PMC9182036 DOI: 10.3390/molecules27113492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease which confers to patients a poor prognosis at short term. PDAC is the fourth leading cause of death among cancers in the Western world. The rate of new cases of pancreatic cancer (incidence) is 10 per 100,000 but present a 5-year survival of less than 10%, highlighting the poor prognosis of this pathology. Furthermore, 90% of advanced PDAC tumor present KRAS mutations impacting in several oncogenic signaling pathways, many of them associated with cell proliferation and tumor progression. Different combinations of chemotherapeutic agents have been tested over the years without an improvement of significance in its treatment. PDAC remains as one the more challenging biomedical topics thus far. The lack of a proper early diagnosis, the notable mortality statistics and the poor outcome with the available therapies urge the entire scientific community to find novel approaches against PDAC with real improvements in patients' survival and life quality. Natural compounds have played an important role in the process of discovery and development of new drugs. Among them, terpenoids, such as sesquiterpene lactones, stand out due to their biological activities and pharmacological potential as antitumor agents. In this review, we will describe the sesquiterpene lactones with in vitro and in vivo activity against pancreatic tumor cells. We will also discuss the mechanism of action of the compounds as well as the signaling pathways associated with their activity.
Collapse
Affiliation(s)
- Laura Cecilia Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires CP 1113, Argentina;
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Nadia Talin Mirakian
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Maria Noé Garcia
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
| | - Daniel Héctor Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Valeria Patricia Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires CP 1113, Argentina;
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Daniela Laura Papademetrio
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
| |
Collapse
|
4
|
Penthala NR, Balasubramaniam M, Dachavaram SS, Morris EJ, Bhat-Nakshatri P, Ponder J, Jordan CT, Nakshatri H, Crooks PA. Antitumor properties of novel sesquiterpene lactone analogs as NFκB inhibitors that bind to the IKKβ ubiquitin-like domain (ULD). Eur J Med Chem 2021; 224:113675. [PMID: 34229108 DOI: 10.1016/j.ejmech.2021.113675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Melampomagnolide B (MMB, 3) is a parthenolide (PTL, 1) based sesquiterpene lactone that has been used as a template for the synthesis of a plethora of lead anticancer agents owing to its reactive C-10 primary hydroxyl group. Such compounds have been shown to inhibit the IKKβ subunit, preventing phosphorylation of the cytoplasmic IκB inhibitory complex. The present study focuses on the synthesis and in vitro antitumor properties of novel benzyl and phenethyl carbamates of MMB (7a-7k). Screening of these MMB carbamates identified analogs with potent growth inhibition properties against a panel of 60 human cancer cell lines (71% of the molecules screened had GI50 values < 2 μM). Two analogs, the benzyl carbamate 7b and the phenethyl carbamate7k, were the most active compounds. Lead compound 7b inhibited cell proliferation in M9 ENL AML cells, and in TMD-231, OV-MD-231 and SUM149 breast cancer cell lines. Interestingly, mechanistic studies showed that 7b did not inhibit p65 phosphorylation in M9 ENL AML and OV-MD-231 cells, but did inhibit phophorylation of both p65 and IκBα in SUM149 cells. 7b also reduced NFκB binding to DNA in both OV-MD-231 and SUM149 cells. Molecular docking studies indicated that 7b and 7k are both predicted to interact with the ubiquitin-like domain (ULD) of the IKKβ subunit. These data suggest that in SUM149 cells, 7b is likely acting as an allosteric inhibitor of IKKβ, whereas in M9 ENL AML and OV-MD-231 cells 7b is able to inhibit an event after IκB/p65/p50 phosphorylation by IKKβ that leads to inhibition of NFκB activation and reduction in NFκB-DNA binding. Analog 7b was by far the most potent compound in either carbamate series, and was considered an important lead compound for further optimization and development as an anticancer agent.
Collapse
Affiliation(s)
- Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States
| | - Meenakshisundaram Balasubramaniam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States
| | - Soma Shekar Dachavaram
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States
| | - Earl J Morris
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States
| | - Poornima Bhat-Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jessica Ponder
- Division of Hematology and University of Colorado, Aurora, CO, 80045, United States
| | - Craig T Jordan
- Division of Hematology and University of Colorado, Aurora, CO, 80045, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| |
Collapse
|
5
|
Karam L, Abou Staiteieh S, Chaaban R, Hayar B, Ismail B, Neipel F, Darwiche N, Abou Merhi R. Anticancer activities of parthenolide in primary effusion lymphoma preclinical models. Mol Carcinog 2021; 60:567-581. [PMID: 34101920 DOI: 10.1002/mc.23324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
The sesquiterpene lactone parthenolide is a major component of the feverfew medicinal plant, Tanacetum parthenium. Parthenolide has been extensively studied for its anti-inflammatory and anticancer properties in several tumor models. Parthenolide's antitumor activities depend on several mechanisms but it is mainly known as an inhibitor of the nuclear factor-κB (NF-κB) pathway. This pathway is constitutively activated and induces cell survival in primary effusion lymphoma (PEL), a rare aggressive AIDS-related lymphoproliferative disorder that is commonly caused by the human herpesvirus 8 (HHV-8) infection. The aim of this study is to evaluate the targeted effect of Parthenolide both in vitro and in vivo. Herein, parthenolide significantly inhibited cell growth, induced G0 /G1 cell cycle arrest, and induced massive apoptosis in PEL cells and ascites. In addition, parthenolide inhibited the NF-ĸB pathway suppressing IĸB phosphorylation and p65 nuclear translocation. It also reduced the expression of the DNA methylase inhibitor (DNMT1). Parthenolide induced HHV-8 lytic gene expression without inhibiting latent viral gene expression. Importantly, DMAPT, the more soluble parthenolide prodrug, promoted delay in ascites development and prolonged the survival of PEL xenograft mice. This study supports the therapeutic use of parthenolide in PEL and encourages its further clinical development.
Collapse
Affiliation(s)
- Louna Karam
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon.,Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Beirut, Lebanon
| | - Soumaiah Abou Staiteieh
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Rady Chaaban
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Berthe Hayar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Bassel Ismail
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Frank Neipel
- Virologisches Institut, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Raghida Abou Merhi
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| |
Collapse
|
6
|
Quy AS, Li X, Male L, Stankovic T, Agathanggelou A, Fossey JS. Aniline-containing derivatives of parthenolide: Synthesis and anti-chronic lymphocytic leukaemia activity. Tetrahedron 2020; 76:131631. [PMID: 33299257 PMCID: PMC7695678 DOI: 10.1016/j.tet.2020.131631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
Parthenolide exhibits anti-leukaemia activity, whilst its synthetic modification to impart improve drug-like properties, including 1,4-conjugate addition of primary and secondary amines, have previously been used, 1,4-addition of aniline derivatives to parthenolide has not been fully explored. A protocol for such additions to parthenolide is outlined herein. Reaction conditions were determined using tulipane as a model Michael acceptor. Subsequently, aniline-containing parthenolide derivatives were prepared under the optimised conditions and single crystal X-ray diffraction structures were resolved for three of the compounds synthesised. The synthesised derivatives, along with compounds resulting from a side reaction, were tested for their in vitro anti-leukaemia activity using the chronic lymphocytic leukaemia (CLL) MEC1 cell line. Computational studies with the 2RAM protein structure suggested that the activity of the derivatives was independent of their in silico ability to dock with the Cys38 residue of NF-κB.
Collapse
Affiliation(s)
- Alex S. Quy
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK
| | - Xingjian Li
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK
| | - Louise Male
- X-Ray Crystallography Facility, School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK
| | - Tatjana Stankovic
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands, UK
| | - Angelo Agathanggelou
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands, UK
| | - John S. Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK
| |
Collapse
|
7
|
Parthenolide as Cooperating Agent for Anti-Cancer Treatment of Various Malignancies. Pharmaceuticals (Basel) 2020; 13:ph13080194. [PMID: 32823992 PMCID: PMC7466132 DOI: 10.3390/ph13080194] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Primary and acquired resistance of cancer to therapy is often associated with activation of nuclear factor kappa B (NF-κB). Parthenolide (PN) has been shown to inhibit NF-κB signaling and other pro-survival signaling pathways, induce apoptosis and reduce a subpopulation of cancer stem-like cells in several cancers. Multimodal therapies that include PN or its derivatives seem to be promising approaches enhancing sensitivity of cancer cells to therapy and diminishing development of resistance. A number of studies have demonstrated that several drugs with various targets and mechanisms of action can cooperate with PN to eliminate cancer cells or inhibit their proliferation. This review summarizes the current state of knowledge on PN activity and its potential utility as complementary therapy against different cancers.
Collapse
|
8
|
Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093001] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones, a vast range of terpenoids isolated from Asteraceae species, exhibit a broad spectrum of biological effects and several of them are already commercially available, such as artemisinin. Here the most recent and impactful results of in vivo, preclinical and clinical studies involving a selection of ten sesquiterpene lactones (alantolactone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide, thapsigargin and tomentosin) are presented and discussed, along with some of their derivatives. In the authors’ opinion, these compounds have been neglected compared to others, although they could be of great use in developing important new pharmaceutical products. The selected sesquiterpenes show promising anticancer and anti-inflammatory effects, acting on various targets. Moreover, they exhibit antifungal, anxiolytic, analgesic, and antitrypanosomal activities. Several studies discussed here clearly show the potential that some of them have in combination therapy, as sensitizing agents to facilitate and enhance the action of drugs in clinical use. The derivatives show greater pharmacological value since they have better pharmacokinetics, stability, potency, and/or selectivity. All these natural terpenoids and their derivatives exhibit properties that invite further research by the scientific community.
Collapse
|
9
|
Li X, Payne DT, Ampolu B, Bland N, Brown JT, Dutton MJ, Fitton CA, Gulliver A, Hale L, Hamza D, Jones G, Lane R, Leach AG, Male L, Merisor EG, Morton MJ, Quy AS, Roberts R, Scarll R, Schulz-Utermoehl T, Stankovic T, Stevenson B, Fossey JS, Agathanggelou A. Derivatisation of parthenolide to address chemoresistant chronic lymphocytic leukaemia. MEDCHEMCOMM 2019; 10:1379-1390. [PMID: 32952998 PMCID: PMC7478165 DOI: 10.1039/c9md00297a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Parthenolide is a natural product that exhibits anti-leukaemic activity, however, its clinical use is limited by its poor bioavailability. It may be extracted from feverfew and protocols for growing, extracting and derivatising it are reported. A novel parthenolide derivative with good bioavailability and pharmacological properties was identified through a screening cascade based on in vitro anti-leukaemic activity and calculated "drug-likeness" properties, in vitro and in vivo pharmacokinetics studies and hERG liability testing. In vitro studies showed the most promising derivative to have comparable anti-leukaemic activity to DMAPT, a previously described parthenolide derivative. The newly identified compound was shown to have pro-oxidant activity and in silico molecular docking studies indicate a prodrug mode of action. A synthesis scheme is presented for the production of amine 7 used in the generation of 5f.
Collapse
Affiliation(s)
- Xingjian Li
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Daniel T Payne
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Badarinath Ampolu
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Nicholas Bland
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Jane T Brown
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Mark J Dutton
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Catherine A Fitton
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Abigail Gulliver
- Winterbourne Botanic Garden, University of Birmingham, 58 Edgbaston Park Road, Edgbaston, Birmingham, West Midlands B15 2RT, UK
| | - Lee Hale
- Winterbourne Botanic Garden, University of Birmingham, 58 Edgbaston Park Road, Edgbaston, Birmingham, West Midlands B15 2RT, UK
| | - Daniel Hamza
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Geraint Jones
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Rebecca Lane
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Louise Male
- X-Ray Crystallography Facility, School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Elena G Merisor
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Michael J Morton
- ApconiX Ltd, Alderly Park, Nether Alderly, Cheshire, SK10 4TG, UK
| | - Alex S Quy
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Ruth Roberts
- ApconiX Ltd, Alderly Park, Nether Alderly, Cheshire, SK10 4TG, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Rosanna Scarll
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | | | - Tatjana Stankovic
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Brett Stevenson
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Angelo Agathanggelou
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| |
Collapse
|
10
|
Morel KL, Ormsby RJ, Klebe S, Sweeney CJ, Sykes PJ. DMAPT is an Effective Radioprotector from Long-Term Radiation-Induced Damage to Normal Mouse Tissues In Vivo. Radiat Res 2019; 192:231-239. [PMID: 31095445 DOI: 10.1667/rr15404.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While radiotherapy is widely used in cancer treatment, the benefits can be limited by radiation-induced damage to neighboring healthy tissues. We previously demonstrated in mice that the anti-inflammatory compound dimethylaminoparthenolide (DMAPT) selectively induces radiosensitivity in prostate tumor tissue from transgenic adenocarcinoma of mouse prostate (TRAMP) mice, while simultaneously protecting healthy tissues from 6 Gy whole-body radiation-induced apoptosis. Here, we examined the radioprotective effect of DMAPT on fibrosis in normal tissues after a partial-body fractionated radiation protocol that more closely mimics the image-guided fractionated radiotherapy protocols used clinically. Male C57BL/6J mice, 16 weeks old, received 20 Gy fractionated doses of X rays (2 Gy daily fractions, five days/week for two weeks) or sham irradiation to the lower abdomen, with or without a prior 20 mGy dose to mimic an image dose. In addition, mice received thrice weekly DMAPT (100 mg/kg by oral gavage) or vehicle control from 15 weeks of age until time of analysis at 6 weeks postirradiation. In the absence of exposure to radiation, there were no significant differences observed in the tissues of DMAPT and vehicle-treated mice (P > 0.05). DMAPT treatment significantly reduced radiation-induced testis weight loss by 60.9% (P < 0.0001), protected against a decrease in the seminiferous tubule diameter by 42.1% (P < 0.0001) and largely preserved testis morphology. Inclusion of the image dose had no significant effect on testis mass, seminiferous tubule diameter or testis morphology. DMAPT reduced radiation-induced fibrosis in the corpus cavernous region of the penis (98.1% reduction, P = 0.009) and in the muscle layer around the bladder (80.1% reduction, P = 0.0001). There was also a trend towards reduced collagen infiltration into the submucosal and muscle layers in the rectum. These results suggest that DMAPT could be useful in providing protection from the radiation-induced side effects of impotence and infertility, urinary incontinence and fecal urgency resulting from prostate cancer radiotherapy. DMAPT is a very well-tolerated drug and can conveniently be delivered orally without strict time windows relative to radiation exposure. Protection of normal tissues by DMAPT could potentially be useful in radiotherapy of other cancer types as well.
Collapse
Affiliation(s)
- Katherine L Morel
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia.,c Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts
| | - Rebecca J Ormsby
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| | - Sonja Klebe
- b Department of Anatomical Pathology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | - Pamela J Sykes
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Prostaglandin E 2: A Pancreatic Fluid Biomarker of Intraductal Papillary Mucinous Neoplasm Dysplasia. J Am Coll Surg 2017; 225:481-487. [PMID: 28739154 DOI: 10.1016/j.jamcollsurg.2017.07.521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND With the increased frequency of diagnostic imaging, pancreatic cysts are now detected in >3% of American adults. Most of these are intraductal papillary mucinous neoplasms (IPMNs) with well-established but variable malignant potential. A biomarker that predicts malignant potential or dysplastic grade would help determine which IPMNs require removal and which can be observed safely. We previously reported that pancreatic fluid prostaglandin E2 (PGE2) levels might have promise as a predictor of IPMN dysplasia and we seek to validate those results in the current study. STUDY DESIGN Pancreatic cyst/duct fluid was prospectively collected from 100 patients with IPMN undergoing pancreatic resection. Surgical pathology revealed 47 low-/moderate-grade, 34 high-grade, and 20 invasive IPMNs. The PGE2 levels were assessed by ELISA and correlated with IPMN dysplasia grade, demographics, clinical radiologic/pathologic variables, acute/chronic pancreatitis, and NSAID use. RESULTS Mean pancreatic cyst fluid PGE2 levels in high-grade and invasive IPMNs were significantly higher than low-/moderate-grade IPMNs (3.5 and 4.4 pg/μL, respectively, vs 1.2 pg/μL; p < 0.0016). At a threshold of 1.1 pg/μL, PGE2 was 63% sensitive, 79% specific, and 71% accurate for detection of high-grade/invasive IPMNs. When tested in the subset of IPMN patients with preoperative pancreatic cyst fluid CEA >192 ng/mL, PGE2 at a threshold of 0.5 pg/μL demonstrated 78% sensitivity, 100% specificity, and 86% accuracy for detection of high-grade/invasive IPMN. CONCLUSIONS Our results validate pancreatic cyst fluid PGE2 as an indicator of IPMN dysplasia, especially in select patients with preoperative pancreatic cyst fluid CEA >192 ng/mL. The inclusion of PGE2/CEA in a diagnostic biomarker panel can facilitate more optimal treatment stratification of IPMN patients.
Collapse
|
12
|
Romiti A, Falcone R, Roberto M, Marchetti P. Tackling pancreatic cancer with metronomic chemotherapy. Cancer Lett 2017; 394:88-95. [PMID: 28232048 DOI: 10.1016/j.canlet.2017.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 12/20/2022]
Abstract
Pancreatic tumours, the majority of which arise from the exocrine pancreas, have recently shown an increasing incidence in western countries. Over the past few years more and more new selective molecules directed against specific cellular targets have become available for cancer therapy, leading to significant improvements. However, despite such advances in therapy, prognosis of pancreatic cancer remains disappointing. Metronomic chemotherapy (MCT), which consists in the administration of continuous, low-dose anticancer drugs, has demonstrated the ability to suppress tumour growth. Thus, it may provide an additional therapeutic opportunity for counteracting the progression of the tumour. Here we discuss evidence arising from preclinical and clinical studies regarding the use of MCT in pancreatic cancer. Good results have generally been achieved in preclinical studies, particularly when MCT was combined with standard dose chemotherapy or antinflammatory, antiangiogenic and immunostimolatory agents. The few available clinical experiences, which mainly refer to retrospective data, have reported good tolerability though mild activity of metronomic schedules. Further studies are therefore awaited to confirm both preclinical findings and the preliminary clinical data.
Collapse
Affiliation(s)
- Adriana Romiti
- Sapienza University, Sant'Andrea Hospital, Medical Oncology Unit, Via di Grottarossa 1035-1039, 00189, Rome, Italy.
| | - Rosa Falcone
- Sapienza University, Sant'Andrea Hospital, Medical Oncology Unit, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Michela Roberto
- Sapienza University, Sant'Andrea Hospital, Medical Oncology Unit, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Paolo Marchetti
- Sapienza University, Sant'Andrea Hospital, Medical Oncology Unit, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| |
Collapse
|
13
|
Ren Y, Yu J, Kinghorn AD. Development of Anticancer Agents from Plant-Derived Sesquiterpene Lactones. Curr Med Chem 2017; 23:2397-420. [PMID: 27160533 DOI: 10.2174/0929867323666160510123255] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
Sesquiterpene lactones are of considerable interest due to their potent bioactivities, including cancer cell cytotoxicity and antineoplastic efficacy in in vivo studies. Among these compounds, artesunate, dimethylaminoparthenolide, and L12ADT peptide prodrug, a derivative of thapsigargin, are being evaluated in the current cancer clinical or preclinical trials. Based on the structures of several antitumor sesquiterpene lactones, a number of analogues showing greater potency have been either isolated as natural products or partially synthesized, and some potential anticancer agents that have emerged from this group of lead compounds have been investigated extensively. The present review focuses on artemisinin, parthenolide, thapsigargin, and their naturally occurring or synthetic analogues showing potential anticancer activity. This provides an overview of the advances in the development of these types of sesquiterpene lactones as potential anticancer agents, including their structural characterization, synthesis and synthetic modification, and antitumor potential, with the mechanism of action and structure-activity relationships also discussed. It is hoped that this will be helpful in stimulating the further interest in developing sesquiterpene lactones and their derivatives as new anticancer agents.
Collapse
Affiliation(s)
| | | | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
14
|
Natural Products as Adjunctive Treatment for Pancreatic Cancer: Recent Trends and Advancements. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8412508. [PMID: 28232946 PMCID: PMC5292383 DOI: 10.1155/2017/8412508] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/09/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is a type of common malignant tumors with high occurrence in the world. Most patients presented in clinic had pancreatic cancer at advanced stages. Furthermore, chemotherapy or radiotherapy had very limited success in treating pancreatic cancer. Complementary and alternative medicines, such as natural products/herbal medicines, represent exciting adjunctive therapies. In this review, we summarize the recent advances of using natural products/herbal medicines, such as Chinese herbal medicine, in combination with conventional chemotherapeutic agents to treat pancreatic cancer in preclinical and clinical trials.
Collapse
|
15
|
Penthala NR, Janganati V, Alpe TL, Apana SM, Berridge MS, Crooks PA, Borrelli MJ. N-[ 11CH 3]Dimethylaminoparthenolide (DMAPT) uptake into orthotopic 9LSF glioblastoma tumors in the rat. Bioorg Med Chem Lett 2016; 26:5883-5886. [PMID: 27866815 DOI: 10.1016/j.bmcl.2016.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/27/2022]
Abstract
The aim of this study was to determine the uptake of intravenously administered N-[11CH3]-dimethylaminoparthenolide (DMAPT) into orthotopic 9LSF glioblastoma brain tumors in Fisher 344 rats from positron emission tomography (PET) imaging studies. [11C]methyl iodide (11CH3I) was utilized as a [11C]-labeling reagent to label the precursor methylaminoparthenolide (MAPT) intermediate. From PET imaging studies it was found that brain uptake of N-[11CH3]DMAPT into brain tumor tissue was rapid (30min), and considerably higher than that in the normal brain tissue.
Collapse
Affiliation(s)
- Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Venumadhav Janganati
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Terri L Alpe
- College of Medicine, Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | | | | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Michael J Borrelli
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA; College of Medicine, Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| |
Collapse
|
16
|
Yang X, Xu Y, Brooks A, Guo B, Miskimins KW, Qian SY. Knockdown delta-5-desaturase promotes the formation of a novel free radical byproduct from COX-catalyzed ω-6 peroxidation to induce apoptosis and sensitize pancreatic cancer cells to chemotherapy drugs. Free Radic Biol Med 2016; 97:342-350. [PMID: 27368132 PMCID: PMC5807006 DOI: 10.1016/j.freeradbiomed.2016.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/26/2022]
Abstract
Recent research has demonstrated that colon cancer cell proliferation can be suppressed in the cells that overexpress COX-2 via generating 8-hydroxyoctanoic acid (a free radical byproduct) during dihomo-γ-linolenic acid (DGLA, an ω-6 fatty acid) peroxidation from knocking down cellular delta-5-desaturase (D5D, the key enzyme for converting DGLA to the downstream ω-6, arachidonic acid). Here, this novel research finding is extended to pancreatic cancer growth, as COX-2 is also commonly overexpressed in pancreatic cancer. The pancreatic cancer cell line, BxPC-3 (with high COX-2 expression and mutated p53), was used to assess not only the inhibitory effects of the enhanced formation of 8-hydroxyoctanoic acid from cellular COX-2-catalyzed DGLA peroxidation but also its potential synergistic and/or additive effect on current chemotherapy drugs. This work demonstrated that, by inducing DNA damage through inhibition of histone deacetylase, a threshold level of 8-hydroxyoctanoic acid achieved in DGLA-treated and D5D-knockdown BxPC-3 cells subsequently induce cancer cell apoptosis. Furthermore, it was shown that a combination of D5D knockdown along with DGLA treatment could also significantly sensitize BxPC-3 cells to various chemotherapy drugs, likely via a p53-independent pathway through downregulating of anti-apoptotic proteins (e.g., Bcl-2) and activating pro-apoptotic proteins (e.g., caspase 3, -9). This study reinforces the supposition that using commonly overexpressed COX-2 for molecular targeting, a strategy conceptually distinct from the prevailing COX-2 inhibition strategy used in cancer treatment, is an important as well as viable alternative to inhibit cancer cell growth. Based on the COX-2 metabolic cascade, the outcomes presented here could guide the development of a novel ω-6-based dietary care strategy in combination with chemotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, United States
| | - Yi Xu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, United States
| | - Amanda Brooks
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, United States
| | - Bin Guo
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, United States
| | - Keith W Miskimins
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, United States
| | - Steven Y Qian
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
17
|
Waters JA, Matos J, Yip-Schneider M, Aguilar-Saavedra JR, Crean CD, Beane JD, Dumas RP, Suvannasankha A, Schmidt CM. Targeted nuclear factor-kappaB suppression enhances gemcitabine response in human pancreatic tumor cell line murine xenografts. Surgery 2015. [PMID: 26209568 DOI: 10.1016/j.surg.2015.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Quinn BA, Dash R, Sarkar S, Azab B, Bhoopathi P, Das SK, Emdad L, Wei J, Pellecchia M, Sarkar D, Fisher PB. Pancreatic Cancer Combination Therapy Using a BH3 Mimetic and a Synthetic Tetracycline. Cancer Res 2015; 75:2305-15. [PMID: 26032425 DOI: 10.1158/0008-5472.can-14-3013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Improved treatments for pancreatic cancer remain a clinical imperative. Sabutoclax, a small-molecule BH3 mimetic, inhibits the function of antiapoptotic Bcl-2 proteins. Minocycline, a synthetic tetracycline, displays antitumor activity. Here, we offer evidence of the combinatorial antitumor potency of these agents in several preclinical models of pancreatic cancer. Sabutoclax induced growth arrest and apoptosis in pancreatic cancer cells and synergized with minocycline to yield a robust mitochondria-mediated caspase-dependent cytotoxicity. This combinatorial property relied upon loss of phosphorylated Stat3 insofar as reintroduction of activated Stat3-rescued cells from toxicity. Tumor growth was inhibited potently in both immune-deficient and immune-competent models with evidence of extended survival. Overall, our results showed that the combination of sabutoclax and minocycline was highly cytotoxic to pancreatic cancer cells and safely efficacious in vivo.
Collapse
Affiliation(s)
- Bridget A Quinn
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Rupesh Dash
- Institute of Life Sciences, Bhubaneswar, Orissa, India
| | - Siddik Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Belal Azab
- The University of Jordan, Department of Biological Sciences, Amman, Jordan
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Jun Wei
- Sanford-Burnham Medical Research Institute, La Jolla, California
| | | | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.
| |
Collapse
|
19
|
Mohammed A, Janakiram NB, Pant S, Rao CV. Molecular Targeted Intervention for Pancreatic Cancer. Cancers (Basel) 2015; 7:1499-542. [PMID: 26266422 PMCID: PMC4586783 DOI: 10.3390/cancers7030850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Shubham Pant
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
20
|
Sen S, Hassane DC, Corbett C, Becker MW, Jordan CT, Guzman ML. Novel mTOR inhibitory activity of ciclopirox enhances parthenolide antileukemia activity. Exp Hematol 2013; 41:799-807.e4. [PMID: 23660068 PMCID: PMC3809917 DOI: 10.1016/j.exphem.2013.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/07/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Ciclopirox, an antifungal agent commonly used for the dermatologic treatment of mycoses, has been shown recently to have antitumor properties. Although the exact mechanism of ciclopirox is unclear, its antitumor activity has been attributed to iron chelation and inhibition of the translation initiation factor eIF5A. In this study, we identify a novel function of ciclopirox in the inhibition of mTOR. As with other mTOR inhibitors, we show that ciclopirox significantly enhances the ability of the established preclinical antileukemia compound, parthenolide, to target acute myeloid leukemia. The combination of parthenolide and ciclopirox demonstrates greater toxicity against acute myeloid leukemia than treatment with either compound alone. We also demonstrate that the ability of ciclopirox to inhibit mTOR is specific to ciclopirox because neither iron chelators nor other eIF5A inhibitors affect mTOR activity, even at high doses. We have thus identified a novel function of ciclopirox that might be important for its antileukemic activity.
Collapse
Affiliation(s)
- Siddhartha Sen
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Duane C. Hassane
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Cheryl Corbett
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester, New York, USA
| | - Michael W. Becker
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester, New York, USA
| | - Craig T. Jordan
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester, New York, USA
| | - Monica L. Guzman
- Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
21
|
Skopiński P, Bałan BJ, Kocik J, Zdanowski R, Lewicki S, Niemcewicz M, Gawrychowski K, Skopińska-Różewska E, Stankiewicz W. Inhibitory effect of herbal remedy PERVIVO and anti-inflammatory drug sulindac on L-1 sarcoma tumor growth and tumor angiogenesis in Balb/c mice. Mediators Inflamm 2013; 2013:289789. [PMID: 23935247 PMCID: PMC3712210 DOI: 10.1155/2013/289789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/10/2013] [Indexed: 11/18/2022] Open
Abstract
Anticancer activity of many herbs was observed for hundreds of years. They act as modifiers of biologic response, and their effectiveness may be increased by combining multiple herbal extracts . PERVIVO, traditional digestive herbal remedy, contains some of them, and we previously described its antiangiogenic activity. Numerous studies documented anticancer effects of nonsteroidal anti-inflammatory drugs. We were the first to show that sulindac and its metabolites inhibit angiogenesis. In the present paper the combined in vivo effect of multicomponent herbal remedy PERVIVO and nonsteroidal anti-inflammatory drug sulindac on tumor growth, tumor angiogenesis, and tumor volume in Balb/c mice was studied. These effects were checked after grafting cells collected from syngeneic sarcoma L-1 tumors into mice skin. The strongest inhibitory effect was observed in experimental groups treated with PERVIVO and sulindac together. The results of our investigation showed that combined effect of examined drugs may be the best way to get the strongest antiangiogenic and antitumor effect.
Collapse
Affiliation(s)
- P. Skopiński
- Department of Histology and Embryology, Center for Biostructure Research, Warsaw Medical University, Chałubińskiego 5, 02-004 Warsaw, Poland
| | - B. J. Bałan
- Department of Immunology, Biochemistry and Nutrition, Warsaw Medical University, Pawińskiego 3a, 01-002 Warsaw, Poland
| | - J. Kocik
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - R. Zdanowski
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - S. Lewicki
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - M. Niemcewicz
- Biological Threats Identification and Countermeasure Center of the Military Institute of Hygiene and Epidemiology, Lubelska 2, 24-100 Pulawy, Poland
| | - K. Gawrychowski
- Department of Gynecological Oncology and Oncology, Medicover Hospital, Aleja Rzeczypospolitej 5, 02-972 Warsaw, Poland
| | - E. Skopińska-Różewska
- Pathology Department, Center for Biostructure Research, Warsaw Medical University, Chałubińskiego 5, 02-004 Warsaw, Poland
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - W. Stankiewicz
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| |
Collapse
|
22
|
Yip-Schneider MT, Wu H, Stantz K, Agaram N, Crooks PA, Schmidt CM. Dimethylaminoparthenolide and gemcitabine: a survival study using a genetically engineered mouse model of pancreatic cancer. BMC Cancer 2013; 13:194. [PMID: 23590467 PMCID: PMC3672012 DOI: 10.1186/1471-2407-13-194] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 04/11/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pancreatic cancer remains one of the deadliest cancers due to lack of early detection and absence of effective treatments. Gemcitabine, the current standard-of-care chemotherapy for pancreatic cancer, has limited clinical benefit. Treatment of pancreatic cancer cells with gemcitabine has been shown to induce the activity of the transcription factor nuclear factor-kappaB (NF-κB) which regulates the expression of genes involved in the inflammatory response and tumorigenesis. It has therefore been proposed that gemcitabine-induced NF-κB activation may result in chemoresistance. We hypothesize that NF-κB suppression by the novel inhibitor dimethylaminoparthenolide (DMAPT) may enhance the effect of gemcitabine in pancreatic cancer. METHODS The efficacy of DMAPT and gemcitabine was evaluated in a chemoprevention trial using the mutant Kras and p53-expressing LSL-KrasG12D/+; LSL-Trp53R172H; Pdx-1-Cre mouse model of pancreatic cancer. Mice were randomized to treatment groups (placebo, DMAPT [40 mg/kg/day], gemcitabine [50 mg/kg twice weekly], and the combination DMAPT/gemcitabine). Treatment was continued until mice showed signs of ill health at which time they were sacrificed. Plasma cytokine levels were determined using a Bio-Plex immunoassay. Statistical tests used included log-rank test, ANOVA with Dunnett's post-test, Student's t-test, and Fisher exact test. RESULTS Gemcitabine or the combination DMAPT/gemcitabine significantly increased median survival and decreased the incidence and multiplicity of pancreatic adenocarcinomas. The DMAPT/gemcitabine combination also significantly decreased tumor size and the incidence of metastasis to the liver. No significant differences in the percentages of normal pancreatic ducts or premalignant pancreatic lesions were observed between the treatment groups. Pancreata in which no tumors formed were analyzed to determine the extent of pre-neoplasia; mostly normal ducts or low grade pancreatic lesions were observed, suggesting prevention of higher grade lesions in these animals. While gemcitabine treatment increased the levels of the inflammatory cytokines interleukin 1α (IL-1α), IL-1β, and IL-17 in mouse plasma, DMAPT and DMAPT/gemcitabine reduced the levels of the inflammatory cytokines IL-12p40, monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1 beta (MIP-1β), eotaxin, and tumor necrosis factor-alpha (TNF-α), all of which are NF-κB target genes. CONCLUSION In summary, these findings provide preclinical evidence supporting further evaluation of agents such as DMAPT and gemcitabine for the prevention and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Michele T Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, 980 W. Walnut St,, Building R3, Rm. 541C, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|