1
|
Buhl EH, Christensen B, Pedersen FH, S Rensen ES. Milk osteopontin has high iron-binding capacity and facilitates iron absorption in intestinal cells. J Dairy Sci 2025; 108:90-100. [PMID: 39694241 DOI: 10.3168/jds.2024-25305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/02/2024] [Indexed: 12/20/2024]
Abstract
Insufficient absorption of iron and the consequent development of iron deficiency have serious health consequences. Hence, identification and development of iron delivery systems that can increase the bioavailability and uptake of dietary iron are important. Osteopontin (OPN) is an acidic and highly phosphorylated integrin-binding protein found in milk where it exists as a full-length protein and as N-terminally derived fragments. Milk OPN can be taken up by enterocytes and transported across the intestinal barrier into the circulation. Milk OPN has previously been shown to bind calcium and magnesium. This study investigates milk OPN as a carrier of iron and its potential to increase iron absorption in intestinal cells. Full-length OPN and N-terminal fragments of OPN were shown to bind ∼30 and ∼10 mol of iron, respectively, and the phosphorylated residues were crucial for iron binding. Osteopontin retained iron bound after simulated gastrointestinal digestion. Immunodetection of digested OPN and OPN-Fe complexes showed that the OPN-Fe complexes were more resistant to pepsin digestion than OPN without bound iron. The cellular uptake of iron was investigated by measuring intracellular ferritin formation and mRNA expression of divalent metal transporter 1 in Caco-2 cells. Osteopontin increased the uptake of iron even in the presence of phytic acid, a dietary inhibitor of iron absorption. These data indicate that OPN can function as an iron carrier for use in alternative strategies for delivering iron in a bioavailable form for intestinal uptake.
Collapse
Affiliation(s)
- Emilie H Buhl
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Freja H Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Esben S S Rensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
2
|
Fleming SA, Reyes SM, Donovan SM, Hernell O, Jiang R, Lönnerdal B, Neu J, Steinman L, Sørensen ES, West CE, Kleinman R, Wallingford JC. An expert panel on the adequacy of safety data and physiological roles of dietary bovine osteopontin in infancy. Front Nutr 2024; 11:1404303. [PMID: 38919388 PMCID: PMC11197938 DOI: 10.3389/fnut.2024.1404303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human milk, due to its unique composition, is the optimal standard for infant nutrition. Osteopontin (OPN) is abundant in human milk but not bovine milk. The addition of bovine milk osteopontin (bmOPN) to formula may replicate OPN's concentration and function in human milk. To address safety concerns, we convened an expert panel to assess the adequacy of safety data and physiological roles of dietary bmOPN in infancy. The exposure of breastfed infants to human milk OPN (hmOPN) has been well-characterized and decreases markedly over the first 6 months of lactation. Dietary bmOPN is resistant to gastric and intestinal digestion, absorbed and cleared from circulation within 8-24 h, and represents a small portion (<5%) of total plasma OPN. Label studies on hmOPN suggest that after 3 h, intact or digested OPN is absorbed into carcass (62%), small intestine (23%), stomach (5%), and small intestinal perfusate (4%), with <2% each found in the cecum, liver, brain, heart, and spleen. Although the results are heterogenous with respect to bmOPN's physiologic impact, no adverse impacts have been reported across growth, gastrointestinal, immune, or brain-related outcomes. Recombinant bovine and human forms demonstrate similar absorption in plasma as bmOPN, as well as effects on cognition and immunity. The panel recommended prioritization of trials measuring a comprehensive set of clinically relevant outcomes on immunity and cognition to confirm the safety of bmOPN over that of further research on its absorption, distribution, metabolism, and excretion. This review offers expert consensus on the adequacy of data available to assess the safety of bmOPN for use in infant formula, aiding evidence-based decisions on the formulation of infant formula.
Collapse
Affiliation(s)
| | | | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Olle Hernell
- Department of Clinical Sciences and Pediatrics, Umeå University, Umeå, Sweden
| | - Rulan Jiang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL, United States
| | - Lawrence Steinman
- Departments of Pediatrics and of Neurology and Neurological Sciences, Interdepartmental Program in Immunology, Beckman Center for Molecular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Esben S. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christina E. West
- Department of Clinical Sciences and Pediatrics, Umeå University, Umeå, Sweden
| | - Ronald Kleinman
- Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
3
|
Gao Y, Carne A, Young W, Burrow K, Naji S, Fraser-Miller SJ, Gordon KC, Bekhit AEDA. Effect of consumption of sheep and cow milk on rat brain fatty acid and phospholipid composition. Food Chem 2024; 439:138056. [PMID: 38035492 DOI: 10.1016/j.foodchem.2023.138056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The effect of sheep milk and cow milk on the lipid composition of rat brain was investigated in two feeding experiments of 28-days duration. Total lipids of the rat brain were extracted using ethanol-hexane, and the fatty acids and phospholipid contents analysed using gas chromatography with flame ionization detection (GC-FID) and phosphorus-31 nuclear magnetic resonance (31P NMR). Furthermore, freeze-dried pooled samples were analysed using attenuated total reflectance Fourier Transform Infrared and Fourier Transform Raman Spectroscopy and analysed with multivariate methods. A significantly (P < 0.05) higher C18:2 content was found in the cow milk group compared with sheep milk-treated groups in Study one. In Study two, a significantly (P < 0.05) lower C16:0 content was present in the sheep milk-treated group compared to the control low Ca/P group. No significant (P > 0.05) differences were observed in the spectroscopy analyses. It is concluded that sheep and cow milks fed to rats for 28-days had a low effect on the brain lipidome.
Collapse
Affiliation(s)
- Yutong Gao
- Food Science Department, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Alan Carne
- Biochemistry Department, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Wayne Young
- AgResearch Ltd, Tennent Drive, Palmerston North 4442, New Zealand
| | - Keegan Burrow
- Department of Wine, Food and Molecular Biosciences, RFH Building, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand
| | - Samer Naji
- Te Whai Ao - Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Sara J Fraser-Miller
- Te Whai Ao - Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Keith C Gordon
- Te Whai Ao - Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - Alaa El-Din A Bekhit
- Food Science Department, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand.
| |
Collapse
|
4
|
Li L, Chen J, Zheng Y, Lane J, Hu R, Zhu J, Fu X, Huang Q, Liu F, Zhang B. Gastro-Intestinal Digested Bovine Milk Osteopontin Modulates Gut Barrier Biomarkers In Vitro. Mol Nutr Food Res 2024; 68:e2200777. [PMID: 38193251 DOI: 10.1002/mnfr.202200777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/28/2023] [Indexed: 01/10/2024]
Abstract
SCOPE Osteopontin (OPN) is a multifunctional protein naturally present in mammals' milk, associated with immune homeostasis and intestinal maturation. This study aims to investigate the protein digestion pattern and the cellular bioactivity of bovine milk OPN digesta in vitro. METHODS AND RESULTS A modified INFOGEST static in vitro infant digestion protocol and a Caco-2/HT-29 co-culture cell model are employed to evaluate the digestion properties and the anti-inflammatory effects of OPN. OPN is resistant to gastric hydrolysis but degraded into large peptides during intestinal digestion. Its 10 kDa digesta permeate with predicted extensive bioactivities protects the co-culture cell model from the inflammation-induced dysfunction by dose-dependently recovering the expression of occludin, claudin-3, and ZO-1. Low dosage of OPN significantly decreases the production of IL-8 and IL-6, and downregulates the mRNA and protein expression of MyD88, NF-κB p65, and IκB-α, whereas a high dose evokes a mild pro-inflammatory response. Interestingly, anti-inflammatory effect of OPN digesta is stronger than lactoferrin and whey protein concentrate counterparts. CONCLUSION The findings demonstrate that the bioactive peptides released from in vitro infant gastrointestinal digestion of bovine milk OPN alleviates intestinal epithelial cell inflammation by inhibiting NF-κB pathway activation and potentiates the barrier function of the intestinal epithelium.
Collapse
Affiliation(s)
- Lu Li
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China
| | - Juchun Chen
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Yuxing Zheng
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Jonathan Lane
- H&H Group, H&H Research, Global Research and Technology Centre, P61 K202 Co, Cork, Ireland
| | - Ruibiao Hu
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Jianzhong Zhu
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China
| | - Feitong Liu
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Bin Zhang
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China
- Sino-Singapore International Research Institute, Guangzhou, 510555, China
| |
Collapse
|
5
|
Li C, Lu Y, Wang J, Liu B, Szeto IMY, Zhang W, Bi R, Duan S, Quan R, Wang X, Li Y, Xiong W, Sun J, Sun Y. Immunoregulation of bovine lactoferrin together with osteopontin promotes immune system development and maturation. Food Funct 2024; 15:866-880. [PMID: 38165790 DOI: 10.1039/d3fo03515h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system of infants is partly weak and immature, and supplementation of infant formula can be of vital importance to boost the development of the immune system. Lactoferrin (LF) and osteopontin (OPN) are essential proteins in human milk with immunoregulation function. An increasing number of studies indicate that proteins have interactions with each other in milk, and our previous study found that a ratio of LF : OPN at 1 : 5 (w/w, denoted as LOP) had a synergistic effect on intestinal barrier protection. It remains unknown whether LOP can also exert a stronger effect on immunoregulation. Hence, we used an in vitro model of LPS-induced macrophage inflammation and in vivo models of LPS-induced intestinal inflammation and early life development. We showed that LOP increased the secretion of the granulocyte-macrophage colony-stimulating factor (132%), stem cell factor (167%) and interleukin-3 (176%) in bone marrow cells, as well as thymosin (155%) and interleukin-10 (161%) in the thymus, more than LF or OPN alone during development, and inhibited changes in immune cells and cytokines during the LPS challenge. In addition, analysis of the components of digested proteins in vitro revealed that differentially expressed peptides may provide immunoregulation. Lastly, LOP increased the abundance of Rikenellaceae, Muribaculum, Faecalibaculum, and Elisenbergiella in the cecum content. These results imply that LOP is a potential immunomodifier for infants and offers a new theoretical basis for infant formula innovation.
Collapse
Affiliation(s)
- Chuangang Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Yao Lu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Jian Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Biao Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Wen Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Ran Bi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot, China
| | - Rui Quan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Xuemin Wang
- Inner Mongolia Yili Industrial Group Co. Ltd, Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. @
| |
Collapse
|
6
|
Han L, Li Q, Du M, Mao X. Bovine milk osteopontin improved intestinal health of pregnant rats fed a high-fat diet through improving bile acid metabolism. J Dairy Sci 2024; 107:24-39. [PMID: 37690710 DOI: 10.3168/jds.2023-23802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
The main purpose of the current study was to investigate the ameliorative effects of bovine milk osteopontin (bmOPN) on the gut dysfunction of pregnant rats fed a high-fat diet (HFD). Bovine milk osteopontin was supplemented at a dose of 6 mg/kg body weight. Bovine milk osteopontin supplementation during pregnancy reduced colonic inflammation of HFD dams, and it also increased the colonic expression of ZO-1 and claudin-4 of HFD dams. Bovine milk osteopontin significantly enriched the relative abundance of Bacteroidetes, whereas it decreased Proteobacteria, Helicobacteraceae, and Desulfovibrionaceae in feces of HFD dams. The levels of isobutyric acid and pentanoic acid in the HFD + bmOPN group were higher than that of the HFD group. Functional predication analysis of microbial genomes revealed that bmOPN supplementation to HFD pregnancies changed 4 Kyoto Encyclopedia of Genes and Genomes pathways including bile acid biosynthesis. Further, bmOPN enriched hepatic taurochenodeoxycholic acid and tauroursodeoxycholic acid plus taurohyodeoxycholic acid in the gut of HFD maternal rats. Our findings suggested that bmOPN improved the gut health of HFD pregnant rats partially through modulating bile acid biosynthesis.
Collapse
Affiliation(s)
- Lihua Han
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiqi Li
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99163
| | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Hettinga K, Pellis L, Rombouts W, Du X, Grigorean G, Lönnerdal B. Effect of pH and protein composition on proteolysis of goat milk proteins by pepsin and pancreatin. Food Res Int 2023; 173:113294. [PMID: 37803606 DOI: 10.1016/j.foodres.2023.113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 10/08/2023]
Abstract
The roles of protein composition, pH and enzymes in goat milk protein hydrolysis is still unclear and the proteolysis of low abundant goat milk proteins has received limited attention. The aim of this study was to study the impact of protein composition and proteolytic conditions on goat milk protein hydrolysis in a simplified digestion model. Both whole milk and infant formula were hydrolyzed at pH 2 and 4, using pepsin as well as pepsin combined with pancreatin. Intact proteins were separated from digests using spin filters, followed by bottom-up proteomics of the separated proteins. Results show that under all conditions, caseins are hydrolyzed quickly. Goat casein hydrolysis in infant formula was slightly faster than in goat whole milk, possibly due to less casein coagulation during pepsin hydrolysis at both pH 2 and 4. Several low abundant immunoactive goat milk proteins, especially immunoglobulins, GLYCAM-1 and osteopontin, resisted proteolysis more than high abundant proteins, independent of the pH and enzyme used for hydrolysis. Fast hydrolysis of casein and slow hydrolysis of immunoactive proteins may indicate a good balance between protein utilization and protection of the infant by goat milk proteins.
Collapse
Affiliation(s)
- Kasper Hettinga
- Dairy Science and Technology, Food Quality & Design Group, Wageningen University, 6708WG Wageningen, the Netherlands.
| | | | | | - Xiaogu Du
- University of California, Department of Nutrition, Davis, CA 95616, USA
| | | | - Bo Lönnerdal
- University of California, Department of Nutrition, Davis, CA 95616, USA
| |
Collapse
|
8
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
9
|
Sørensen ES, Christensen B. Milk Osteopontin and Human Health. Nutrients 2023; 15:nu15112423. [PMID: 37299387 DOI: 10.3390/nu15112423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Osteopontin (OPN) is a multifunctional protein found in all vertebrates. OPN is expressed in many different cell types, and is consequently found in most tissues and physiological secretions. OPN is involved in a multitude of biological processes, such as activation and regulation of the immune system; biomineralization; tissue-transformative processes, including growth and development of the gut and brain; interaction with bacteria; and many more. OPN is found in the highest concentrations in milk, where it is believed to initiate and regulate developmental, immunological and physiological processes in infants who consume milk. Processes for the isolation of bovine OPN for use in infant formula have been developed, and in recent years, many studies have investigated the effects of the intake of milk OPN. The purpose of this article is to review and compare existing knowledge about the structure and function of milk OPN, with a particular focus on the effects of milk OPN on human health and disease.
Collapse
Affiliation(s)
- Esben S Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
10
|
Christensen B, Nielsen NR, Sørensen MR, Jacobsen LN, Ostenfeld MS, Sørensen ES. Naturally Occurring N-Terminal Fragments of Bovine Milk Osteopontin Are Transported across Models of the Intestinal Barrier. Biomedicines 2023; 11:biomedicines11030893. [PMID: 36979872 PMCID: PMC10045268 DOI: 10.3390/biomedicines11030893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Osteopontin (OPN) is a bioactive integrin-binding protein found in high concentrations in milk, where it is present both as a full-length protein and as several N-terminally derived fragments. OPN resists gastric digestion, and via interaction with receptors in the gut or by crossing the intestinal barrier into circulation, ingested milk OPN may influence physiological processes. The aim of this study was to investigate OPN interaction with intestinal cells and its transport across models of the intestinal barrier. Immunodetection of OPN incubated with Caco-2 cells at 4 °C and 37 °C showed that OPN binds to the intestinal cells, but it is not internalised. Transepithelial transport was studied using mono- and co-cultures of Caco-2 cells and mucus-producing HT29-MTX cells in transwell membranes. OPN was shown to cross the barrier models in a time-, temperature-, and energy-dependent process inhibited by wortmannin, indicating that the transport takes place via the transcytosis pathway. Analyses of the naturally occurring milk mixture of full-length and N-terminal fragments showed that the N-terminal fragments of OPN bound intestinal cells most effectively and that the fragments were transported across the intestinal membrane models. This suggests that proteolytic processing of OPN increases its biological activity after ingestion.
Collapse
Affiliation(s)
- Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.)
| | - Nanna R. Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.)
| | - Marie R. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.)
| | - Lotte N. Jacobsen
- Arla Foods Ingredients Group P/S, DK-8260 Viby J, Denmark; (L.N.J.); (M.S.O.)
| | - Marie S. Ostenfeld
- Arla Foods Ingredients Group P/S, DK-8260 Viby J, Denmark; (L.N.J.); (M.S.O.)
| | - Esben S. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.)
- Correspondence:
| |
Collapse
|
11
|
Levy E, Marcil V, Tagharist Ép Baumel S, Dahan N, Delvin E, Spahis S. Lactoferrin, Osteopontin and Lactoferrin–Osteopontin Complex: A Critical Look on Their Role in Perinatal Period and Cardiometabolic Disorders. Nutrients 2023; 15:nu15061394. [PMID: 36986124 PMCID: PMC10052990 DOI: 10.3390/nu15061394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Milk-derived bioactive proteins have increasingly gained attention and consideration throughout the world due to their high-quality amino acids and multiple health-promoting attributes. Apparently, being at the forefront of functional foods, these bioactive proteins are also suggested as potential alternatives for the management of various complex diseases. In this review, we will focus on lactoferrin (LF) and osteopontin (OPN), two multifunctional dairy proteins, as well as to their naturally occurring bioactive LF–OPN complex. While describing their wide variety of physiological, biochemical, and nutritional functionalities, we will emphasize their specific roles in the perinatal period. Afterwards, we will evaluate their ability to control oxidative stress, inflammation, gut mucosal barrier, and intestinal microbiota in link with cardiometabolic disorders (CMD) (obesity, insulin resistance, dyslipidemia, and hypertension) and associated complications (diabetes and atherosclerosis). This review will not only attempt to highlight the mechanisms of action, but it will critically discuss the potential therapeutic applications of the underlined bioactive proteins in CMD.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Sarah Tagharist Ép Baumel
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Noam Dahan
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
| | - Edgard Delvin
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Biochemistry &Molecular Medicine, Faculty of Medicine, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Schohraya Spahis
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Biochemistry &Molecular Medicine, Faculty of Medicine, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
- Correspondence: ; Tel.: +1-(514)-345-4832
| |
Collapse
|
12
|
The Effect of Human and Bovine Milk Osteopontin on Intestinal Caco-2 Cells: A Transcriptome Comparison. Nutrients 2023; 15:nu15051166. [PMID: 36904165 PMCID: PMC10005736 DOI: 10.3390/nu15051166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Osteopontin (OPN) is a multifunctional protein abundantly present in human milk, whereas the concentration is significantly lower in bovine milk. Human and bovine milk OPN are structurally similar and both proteins resist gastric digestion and reach the intestines in a bioactive form. Intervention studies have indicated the beneficial effects of supplementing infant formula with bovine milk OPN and several in vivo and in vitro studies have shown that bovine milk OPN positively influences intestinal development. To investigate the functional relationship, we compared the effect of simulated gastrointestinal digested human and bovine milk OPN on gene expression in Caco-2 cells. After incubation, total RNA was extracted and sequenced and transcripts were mapped to the human genome. Human and bovine milk OPN regulated the expression of 239 and 322 genes, respectively. A total of 131 genes were similarly regulated by the OPNs. As a control, a whey protein fraction with a high content of alpha-lactalbumin had a very limited transcriptional impact on the cells. Enrichment data analysis showed that biological processes related to the ubiquitin system, DNA binding, and genes associated with transcription and transcription control pathways were affected by the OPNs. Collectively, this study shows that human and bovine milk OPN have a significant and highly comparable effect on the intestinal transcriptome.
Collapse
|
13
|
Kyaw HM, Sato H, Tagami T, Yanagawa Y, Nagano M, Katagiri S. Effects of milk osteopontin on the endometrial epidermal growth factor profile and restoration of fertility in repeat breeder dairy cows. Theriogenology 2022; 184:26-33. [PMID: 35255245 DOI: 10.1016/j.theriogenology.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Endometrial epidermal growth factor (EGF) shows a cyclic change with two peaks on Days 2-4 and 13-14 during the estrous cycle. An altered (i.e., loss of the two peaks) profile has been linked to reduced fertility in repeat breeder cows. We previously demonstrated that a form of osteopontin (OPN), with a molecular weight of 29 kDa and found in bull seminal plasma (SP), normalized the EGF profile and restored fertility in repeat breeder cows. OPN has many molecular forms due to post-translational modifications and is abundant in bovine milk. The purpose of the present study was to investigate whether mOPN normalizes the endometrial EGF profile and restores fertility in repeat breeder dairy cows with an altered EGF profile. OPN was separated by one-step anion-exchange column chromatography from the whey of bovine milk. Purified mOPN was verified by Western blotting and peptide mass fingerprinting analyses. The OPN fraction showed three major protein bands of 61, 37 and 31 kDa (peptides I, II, and III, respectively) on SDS-PAGE. All three major bands were identified as OPNs by Western blotting and their tryptic peptide masses were matched at approximately 50, 40, and 10%, respectively, to the bovine OPN amino acid sequence by a peptide mass finger printing analysis. The three bands accounted for approximately 85% of the total protein content and 6-23 mg of OPN was obtained from 1 L of bovine milk. A lyophilized eluate containing 1.3 mg of mOPN (171 cows), 0.5 mL of frozen SP (62 cows), and PBS (84 cows) was infused at estrus into the vagina of repeat breeder cows with an altered EGF profile. Some of the cows treated with mOPN, SP, and PBS (46, 50, and 45 cows, respectively) were inseminated immediately before the infusion and then examined for pregnancy between Days 60 and 65. The rate at which mOPN to normalize the EGF profile (56.1%) was similar to that of SP (58.1%) and higher than that of PBS (23.8%) (P < 0.05). The conception rate after the infusion of mOPN (43.5%) was similar to that of SP (40.0%) and higher than that of PBS (22.2%) (P < 0.05). The present results indicate that the infusion of mOPN into the vagina is a treatment option for repeat breeder cows with an altered EGF profile. Further studies are needed to compare the capacity of the three OPN molecules in milk to normalize the EGF profile, together with their molecular characteristics due to post-translational modifications.
Collapse
Affiliation(s)
- Hay Mar Kyaw
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Hiroko Sato
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Takayoshi Tagami
- Laboratory of Molecular Enzymology, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Masashi Nagano
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Seiji Katagiri
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| |
Collapse
|
14
|
Wang Y, Ze X, Rui B, Li X, Zeng N, Yuan J, Li W, Yan J, Li M. Studies and Application of Sialylated Milk Components on Regulating Neonatal Gut Microbiota and Health. Front Nutr 2021; 8:766606. [PMID: 34859034 PMCID: PMC8631720 DOI: 10.3389/fnut.2021.766606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Breast milk is rich in sialic acids (SA), which are commonly combined with milk oligosaccharides and glycoconjugates. As a functional nutrient component, SA-containing milk components have received increasing attention in recent years. Sialylated human milk oligosaccharides (HMOs) have been demonstrated to promote the growth and metabolism of beneficial gut microbiota in infants, bringing positive outcomes to intestinal health and immune function. They also exhibit antiviral and bacteriostatic activities in the intestinal mucosa of new-borns, thereby inhibiting the adhesion of pathogens to host cells. These properties play a pivotal role in regulating the intestinal microbial ecosystem and preventing the occurrence of neonatal inflammatory diseases. In addition, some recent studies also support the promoting effects of sialylated HMOs on neonatal bone and brain development. In addition to HMOs, sialylated glycoproteins and glycolipids are abundant in milk, and are also critical to neonatal health. This article reviews the current research progress in the regulation of sialylated milk oligosaccharides and glycoconjugates on neonatal gut microbiota and health.
Collapse
Affiliation(s)
- Yushuang Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaolei Ze
- Science and Technology Centre, By-Health Co., Ltd., Guangzhou, China
| | - Binqi Rui
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xinke Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Nina Zeng
- Science and Technology Centre, By-Health Co., Ltd., Guangzhou, China
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wenzhe Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jingyu Yan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Milk Osteopontin for Gut, Immunity and Brain Development in Preterm Pigs. Nutrients 2021; 13:nu13082675. [PMID: 34444835 PMCID: PMC8400468 DOI: 10.3390/nu13082675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
Deficient levels of milk osteopontin (OPN) in infant formula may partly account for developmental differences between infants fed formula or maternal milk. We hypothesized that a milk diet supplemented with bovine milk OPN improves gut, immunity and brain development and tested this in a preterm pig model. Preterm pigs delivered by cesarean section (90% gestation) were fed raw bovine milk (CON, n = 19) or the same diet supplemented with a physiologically relevant dose of OPN (46 mg/(kg·d), n = 16). Endpoints related to clinical outcomes, systemic immunity and neurocognitive development were assessed during the study and gut tissues were collected at Day 19. Growth pattern, early motor development and most systemic immune parameters were similar between OPN and CON pigs. The OPN pigs had higher villus-to-crypt ratios than CON pigs and higher monocyte and lymphocyte counts on Day 8. Gut digestive and absorptive functions and cognitive performance (T-maze test) were similar between OPN and CON pigs. In conclusion, dietary supplementation with OPN above basal bovine milk levels induced minor improvements in gut structure and systemic immunity without any effects on cognitive performance. The minimal levels of OPN in infant formula to secure optimal adaptation in the immediate neonatal period remain to be determined.
Collapse
|
16
|
Jia Q, Wang Y, Zhu J, Yu H, Tong X. A literature review on lactopontin and its roles in early life. Transl Pediatr 2021; 10:1924-1931. [PMID: 34430441 PMCID: PMC8349962 DOI: 10.21037/tp-21-293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Our study aims to review the functions and possible mechanisms of lactopontin (LPN) in early life. BACKGROUND Human milk proteins provide a variety of protection and health benefits in early life. One of these multifunctional proteins is LPN, which is osteopontin (OPN) derived from milk. METHODS Information used to write this paper was collected from Uniprot, PubMed, and Google Scholar, including in vitro, in vivo, and clinical studies. CONCLUSIONS LPN is a highly phosphorylated, O-glycosylated acidic protein and a unique type of OPN, as it presents at the highest concentration and a higher degree of posttranslational modifications (PTMs) in human milk than other tissues and excretions. LPN is present in milk and the intestinal tracts of infants after consumption as a mixture of intact protein and peptides, which can bind diverse integrin and receptors in the target cell and drive downstream signaling pathways. LPN is found to play important roles in developing the immune, intestinal and nervous systems in early life. Moreover, LPN has also shown to support preterm infants' health when they are especially vulnerable after delivery via animal studies. Additionally, LPN can form protein complex with another milk bioactive protein, lactoferrin (LF), to withstand proteolysis and perform more efficient biological activity. Therefore, LPN showed great potential for early life while more clinical trials and evidence are still emergying.
Collapse
Affiliation(s)
- Qiong Jia
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Yiran Wang
- Department of Nutritional and Functional Assessment, Beijing Institute of Nutritional Resources, Beijing, China
| | - Jing Zhu
- Department of Nutritional and Functional Assessment, Beijing Institute of Nutritional Resources, Beijing, China
| | - Huanling Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaomei Tong
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
Jiang R, Tran M, Lönnerdal B. Recombinant Bovine and Human Osteopontin Generated by Chlamydomonas reinhardtii Exhibit Bioactivities Similar to Bovine Milk Osteopontin When Assessed in Mouse Pups Fed Osteopontin-Deficient Milk. Mol Nutr Food Res 2021; 65:e2000644. [PMID: 34050612 DOI: 10.1002/mnfr.202000644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 05/11/2021] [Indexed: 11/09/2022]
Abstract
SCOPE Osteopontin (OPN), a highly phosphorylated and glycosylated protein, is present in most body fluids, including milk. OPN appears at a high concentration in human milk (130-180 mg L-1 ), but not bovine milk (≈18 mg mL-1 ). It is previously shown that milk OPN is involved in various biological processes and therefore may be a valuable infant formula additive. METHODS AND RESULTS In the present study, recombinant bovine OPN (rbOPN) and recombinant human OPN (rhOPN) are generated in a Chlamydomonas reinhardtii (C. reinhardtii) algal expression system. The rbOPN and rhOPN are phosphorylated but not glycosylated. To assess the bioactivities of rbOPN and rhOPN and compare their bioactivities to those of bovine milk OPN (bmOPN), wild-type (WT) mouse pups nursed by OPN knock-out (KO) dams are orally fed bmOPN, rbOPN, and rhOPN daily from postnatal days 1-21 (P1-21). Effects of these OPNs on development of the brain, intestine, and immune function are evaluated. The results show that rbOPN and rhOPN exhibit effects similar to those of bmOPN as well as mouse milk OPN on stimulating proliferation of the small intestine, increasing brain myelination and cognitive development, and enhancing development of immune function. CONCLUSION rbOPN and rhOPN are likely to provide beneficial bioactivities when added to infant diets.
Collapse
Affiliation(s)
- Rulan Jiang
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| | - Miller Tran
- Triton Algae Innovations, San Diego, CA, 92121, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| |
Collapse
|
18
|
Joung S, Fil JE, Heckmann AB, Kvistgaard AS, Dilger RN. Early-Life Supplementation of Bovine Milk Osteopontin Supports Neurodevelopment and Influences Exploratory Behavior. Nutrients 2020; 12:E2206. [PMID: 32722080 PMCID: PMC7469054 DOI: 10.3390/nu12082206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Osteopontin (OPN) is a whey protein found at high concentration in human milk and is involved in processes such as bone cell proliferation and differentiation. Milk OPN has shown to be involved in various aspects of development, including the immune system and gut health. However, the influence of dietary bovine milk OPN inclusion on brain and cognitive development has not been studied extensively until recently. This research examines whether dietary supplementation of bovine milk OPN supports brain and cognitive development in the translational pig model. METHODS From postnatal day (PND) 2 to 34, twenty-one intact male pigs were provided ad libitum access to one of two dietary treatments, a standard soy protein isolate-based milk replacer to serve as a control diet (n = 11) and the same base diet supplemented with bovine milk OPN to serve as a test diet (n = 10). In addition to growth and health outcomes, recognition memory was tested using the novel object recognition (NOR) task from PND 28 to 32, and magnetic resonance imaging was conducted at PND 34 to evaluate brain development. RESULTS No dietary effects were observed for growth performance or health indices. For the behavioral analysis, pigs that received the test diet exhibited shorter (p < 0.05) latency to the first object visited compared with pigs fed the control diet. Although the control group exhibited novelty preference, there was no difference in recognition index between dietary groups. Neuroimaging outcomes revealed increased (p < 0.05) relative brain volumes of the corpus callosum, lateral ventricle, left and right internal capsule, left and right putamen-globus pallidus, and right hippocampus, and right cortex in the test group. Diffusion tensor imaging revealed higher (p < 0.05) radial diffusivity in the corpus callosum and lower (p < 0.05) fractional anisotropy in pigs provided the test diet. CONCLUSION Dietary supplementation of bovine milk OPN increased the relative volume of several brain regions and altered behaviors in the NOR task. Underlying mechanisms of bovine milk OPN influencing the development of brain structures and additional behaviors warrant further investigation.
Collapse
Affiliation(s)
- Sangyun Joung
- University of Illinois, Neuroscience Program, Urbana, IL 61801, USA; (S.J.); (J.E.F.)
| | - Joanne E. Fil
- University of Illinois, Neuroscience Program, Urbana, IL 61801, USA; (S.J.); (J.E.F.)
| | - Anne B. Heckmann
- Arla Foods Ingredients, Arla Foods Ingredients Group P/S, DK-8260 Viby, Denmark; (A.B.H.); (A.S.K.)
| | - Anne S. Kvistgaard
- Arla Foods Ingredients, Arla Foods Ingredients Group P/S, DK-8260 Viby, Denmark; (A.B.H.); (A.S.K.)
| | - Ryan N. Dilger
- University of Illinois, Neuroscience Program, Urbana, IL 61801, USA; (S.J.); (J.E.F.)
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|