1
|
Zeng L, Yang K, Yu G, Hao W, Zhu X, Ge A, Chen J, Sun L. Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases. Cell Death Dis 2024; 15:481. [PMID: 38965216 PMCID: PMC11224426 DOI: 10.1038/s41419-024-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Autoimmune diseases commonly affect various systems, but their etiology and pathogenesis remain unclear. Currently, increasing research has highlighted the role of ferroptosis in immune regulation, with immune cells being a crucial component of the body's immune system. This review provides an overview and discusses the relationship between ferroptosis, programmed cell death in immune cells, and autoimmune diseases. Additionally, it summarizes the role of various key targets of ferroptosis, such as GPX4 and TFR, in immune cell immune responses. Furthermore, the release of multiple molecules, including damage-associated molecular patterns (DAMPs), following cell death by ferroptosis, is examined, as these molecules further influence the differentiation and function of immune cells, thereby affecting the occurrence and progression of autoimmune diseases. Moreover, immune cells secrete immune factors or their metabolites, which also impact the occurrence of ferroptosis in target organs and tissues involved in autoimmune diseases. Iron chelators, chloroquine and its derivatives, antioxidants, chloroquine derivatives, and calreticulin have been demonstrated to be effective in animal studies for certain autoimmune diseases, exerting anti-inflammatory and immunomodulatory effects. Finally, a brief summary and future perspectives on the research of autoimmune diseases are provided, aiming to guide disease treatment strategies.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- College of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
3
|
Broccoli-Derived Glucoraphanin Activates AMPK/PGC1α/NRF2 Pathway and Ameliorates Dextran-Sulphate-Sodium-Induced Colitis in Mice. Antioxidants (Basel) 2022; 11:antiox11122404. [PMID: 36552612 PMCID: PMC9774969 DOI: 10.3390/antiox11122404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
As the prevalence of inflammatory bowel diseases (IBD) rises, the etiology of IBD draws increasing attention. Glucoraphanin (GRP), enriched in cruciferous vegetables, is a precursor of sulforaphane, known to have anti-inflammatory and antioxidative effects. We hypothesized that dietary GRP supplementation can prevent mitochondrial dysfunction and oxidative stress in an acute colitis mouse model induced by dextran sulfate sodium (DSS). Eight-week-old mice were fed a regular rodent diet either supplemented with or without GRP. After 4 weeks of dietary treatments, half of the mice within each dietary group were subjected to 2.5% DSS treatment to induce colitis. Dietary GRP decreased DSS-induced body weight loss, disease activity index, and colon shortening. Glucoraphanin supplementation protected the colonic histological structure, suppressed inflammatory cytokines, interleukin (IL)-1β, IL-18, and tumor necrosis factor-α (TNF-α), and reduced macrophage infiltration in colonic tissues. Consistently, dietary GRP activated AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α, and nuclear factor erythroid 2-related factor 2 (NRF2) pathways in the colonic tissues of DSS-treated mice, which was associated with increased mitochondrial DNA and decreased content of the oxidative product 8-hydroxydeoxyguanosine (8-OHDG), a nucleotide oxidative product of DNA. In conclusion, dietary GRP attenuated mitochondrial dysfunction, inflammatory response, and oxidative stress induced by DSS, suggesting that dietary GRP provides a dietary strategy to alleviate IBD symptoms.
Collapse
|
4
|
Xu MM, Wu B, Huang GG, Feng CL, Wang XH, Wang HY, Wu YW, Tang W. Hemin protects against Zika virus infection by disrupting virus-endosome fusion. Antiviral Res 2022; 203:105347. [DOI: 10.1016/j.antiviral.2022.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
|
5
|
A Journey into the Clinical Relevance of Heme Oxygenase 1 for Human Inflammatory Disease and Viral Clearance: Why Does It Matter on the COVID-19 Scene? Antioxidants (Basel) 2022; 11:antiox11020276. [PMID: 35204159 PMCID: PMC8868141 DOI: 10.3390/antiox11020276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Heme oxygenase 1 (HO-1), the rate-limiting enzyme in heme degradation, is involved in the maintenance of cellular homeostasis, exerting a cytoprotective role by its antioxidative and anti-inflammatory functions. HO-1 and its end products, biliverdin, carbon monoxide and free iron (Fe2+), confer cytoprotection against inflammatory and oxidative injury. Additionally, HO-1 exerts antiviral properties against a diverse range of viral infections by interfering with replication or activating the interferon (IFN) pathway. Severe cases of coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are characterized by systemic hyperinflammation, which, in some cases, leads to severe or fatal symptoms as a consequence of respiratory failure, lung and heart damage, kidney failure, and nervous system complications. This review summarizes the current research on the protective role of HO-1 in inflammatory diseases and against a wide range of viral infections, positioning HO-1 as an attractive target to ameliorate clinical manifestations during COVID-19.
Collapse
|
6
|
Melo NMDC, Almeida MVS, Campos DMDO, Oliveira CBSD, Oliveira JIN. Animal models for inducing inflammatory bowel diseases: integrative review. REVISTA CIÊNCIAS EM SAÚDE 2021. [DOI: 10.21876/rcshci.v11i1.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Objective: To identify and describe comparatively the chemical models of the induction of inflammatory bowel diseases (IBD) in rodents most used and that best mimic the pathogenesis in humans. Methods: Based on an integrative review in the MEDLINE and LILACS databases, it was investigated which experimental induction models were most cited in articles published from 2004 to 2020, with the descriptors "Colitis/CI", "Colitis model ulcerative" and "Intestinal inflammation model." All empirical articles that addressed one or more inflammation models in rats or mice were included. Results: 239 articles were identified; of these, only ten empirical articles were selected. The most used models were colitis induced by TNBS acid, DSS, and colitis induced by acetic acid (AA). Conclusion: It was possible to identify the most used models to promote the induction of intestinal inflammation in rats, and both models proved to be effective according to the limitations observed in the models described, suggesting the need for new works that use more well-defined protocols and that more fully represent the pathophysiological complexity of the disease.
Collapse
|
7
|
Chen Y, Zhang P, Chen W, Chen G. Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway. Immunol Lett 2020; 225:9-15. [DOI: 10.1016/j.imlet.2020.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
8
|
Wu Y, Wu B, Zhang Z, Lu H, Fan C, Qi Q, Gao Y, Li H, Feng C, Zuo J, Tang W. Heme protects intestinal mucosal barrier in DSS-induced colitis through regulating macrophage polarization in both HO-1-dependent and HO-1-independent way. FASEB J 2020; 34:8028-8043. [PMID: 32301543 DOI: 10.1096/fj.202000313rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
Hemoglobin-derived heme was reported to play protective roles in hemorrhagic diseases by modulating the macrophages toward recovery. Mucosal bleeding is one of the pathological features of inflammatory bowel diseases (IBD). However, whether heme provides anti-inflammatory profiles in macrophages, thus contributing to the intestinal mucosal barrier protection, is unclear. In the current study, we investigated the beneficial effects of heme on DSS-induced colitis mice and explored the underlying mechanisms. In vivo, systemic heme supplementation by hemin injection relieved intestinal inflammation and remedied intestinal mucosal barrier damage by correcting abnormal intestinal macrophage polarization. In vitro, we confirmed the reciprocally regulating effects of hemin on M1/M2 macrophage polarization in BMDM. Intriguingly, with knockdown of HO-1, the inhibiting effects of hemin on M1 polarization were maintained, while the promoting effects on M2 polarization were reversed. Further research proved that hemin repressed the inflammatory profiles in macrophages through inhibiting the translocation of NF-κB p65 by disrupting IRF5-NF-κB p65 complex formation in Spi-C-dependent way. In conclusion, these results showed that the modification of colon tissue microenvironment with heme supplementation plays a protective role in DSS-induced colitis mice through regulating the macrophage polarization in both HO-1-dependent and HO-1-independent way, indicating a new choice to therapeutically modulate the macrophage function and prevent IBD.
Collapse
Affiliation(s)
- Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Zongwang Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Huimin Lu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Fan
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qing Qi
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanzhuo Gao
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Heng Li
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Chunlan Feng
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianping Zuo
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Van Dingenen J, Pieters L, Van Nuffel E, Lefebvre RA. Hemin reduces postoperative ileus in a heme oxygenase 1-dependent manner while dimethyl fumarate does without heme oxygenase 1-induction. Neurogastroenterol Motil 2020; 32:e13624. [PMID: 31121086 DOI: 10.1111/nmo.13624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Postoperative ileus (POI), the impairment of gastrointestinal motility after abdominal surgery, is mainly due to intestinal muscular inflammation. Carbon monoxide (CO)-releasing compounds were shown to exert an anti-inflammatory effect in murine POI partially through induction of heme oxygenase-1 (HO-1). The influence of hemin and dimethyl fumarate (DMF), currently used for multiple sclerosis (MS), was therefore tested in murine POI. METHODS C57BL/6J mice were anesthetized and after laparotomy, POI was induced via intestinal manipulation (IM). Animals were treated with either 30 mg kg-1 hemin intraperitoneally (ip), 30 mg kg-1 DMF ip, or 100 mg kg-1 intragastrically (ig) 24 hours before IM. Intestinal transit was assessed 24 hours postoperatively and mucosa-free muscularis or whole segments of the small intestine were stored for later analysis. Intestinal HO-1 protein expression was studied at 6, 12, and 24 hours after administration of hemin or DMF in non-manipulated mice. KEY RESULTS Pretreatment with hemin and DMF, both ig and ip, prevented the delayed transit seen after IM. Concomitantly, both hemin and DMF significantly reduced the increased interleukin-6 levels and the elevated leukocyte infiltration in the muscularis. Hemin but not DMF caused a significant increase in intestinal HO-1 protein expression and co-administration of the HO-1 inhibitor chromium mesoporphyrin abolished the protective effects of hemin on POI; DMF reduced the IM-induced activation of NF-κB and ERK 1/2. CONCLUSIONS AND INFERENCES Both hemin and DMF improve the delayed transit and inflammation seen in murine POI, but only hemin does so in a HO-1-dependent manner.
Collapse
Affiliation(s)
- Jonas Van Dingenen
- Department of Basic and Applied Medical Sciences, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Leen Pieters
- Department of Human Structure and Repair, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Elien Van Nuffel
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Romain A Lefebvre
- Department of Basic and Applied Medical Sciences, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Seiwert N, Heylmann D, Hasselwander S, Fahrer J. Mechanism of colorectal carcinogenesis triggered by heme iron from red meat. Biochim Biophys Acta Rev Cancer 2019; 1873:188334. [PMID: 31783067 DOI: 10.1016/j.bbcan.2019.188334] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the major tumor entities worldwide, with an increasing incidence in younger people. CRC formation is causally linked to various genetic, life-style and dietary risk factors. Among the ladder, the consumption of red meat has emerged as important risk factor contributing to CRC. A large body of evidence shows that heme iron is the critical component of red meat, which promotes colorectal carcinogenesis. In this review, we describe the uptake and cellular fate of both heme and inorganic iron in intestinal epithelial cells. Next, an overview on the DNA damaging properties of heme iron is provided, highlighting the DNA adducts relevant for CRC etiology. Moreover, heme triggered mechanisms leading to colonic hyperproliferation are presented, which are intimately linked to changes in the intestinal microbiota induced by heme. A special focus was set on the impact of heme iron on innate and adaptive immune cells, which could be relevant in the context of CRC. Finally, we recapitulate in vivo studies providing evidence for the tumor-promoting potential of dietary heme iron. Altogether, heme iron affects numerous key pathways involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Nina Seiwert
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
11
|
Wu B, Wu Y, Tang W. Heme Catabolic Pathway in Inflammation and Immune Disorders. Front Pharmacol 2019; 10:825. [PMID: 31396090 PMCID: PMC6667928 DOI: 10.3389/fphar.2019.00825] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, the heme catabolic pathway is considered to play an important regulatory role in cell protection, apoptosis, inflammation, and other physiological and pathological processes. An appropriate amount of heme forms the basic elements of various life activities, while when released in large quantities, it can induce toxicity by mediating oxidative stress and inflammation. Heme oxygenase (HO) -1 can catabolize free heme into carbon monoxide (CO), ferrous iron, and biliverdin (BV)/bilirubin (BR). The diverse functions of these metabolites in immune systems are fascinating. Decades work shows that administration of degradation products of heme such as CO and BV/BR exerts protective activities in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS) and other immune disorders. This review elaborates the molecular and biochemical characterization of heme catabolic pathway, discusses the signal transduction and immunomodulatory mechanism in inflammation and summarizes the promising therapeutic strategies based on this pathway in inflammatory and immune disorders.
Collapse
Affiliation(s)
- Bing Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yanwei Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Li J, Wang H, Zheng Z, Luo L, Wang P, Liu K, Namani A, Jiang Z, Wang XJ, Tang X. Mkp-1 cross-talks with Nrf2/Ho-1 pathway protecting against intestinal inflammation. Free Radic Biol Med 2018; 124:541-549. [PMID: 30061089 DOI: 10.1016/j.freeradbiomed.2018.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/15/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with intense oxidative stress, contributes to colonic damage and tumorigenesis. Mitogen-activated protein kinase phosphatase 1 (Mkp-1) is an essential negative regulator of the innate immune response. However, its role in colitis, and its association with the nuclear factor-erythroid 2 related factor 2 (Nrf2), a master regulator of cytoprotection program against oxidative stress, in inflammatory response, is elusive. In this study, we found that increased expression of Mkp-1, Nrf2, and heme oxygenase 1 (Ho-1) was correlated in colonic tissues in patients with ulcerative colitis and Crohn's disease, as well as wild-type mice with colitis induced by dextran sodium sulfate (DSS). Mkp-1-/- mice were more susceptible to DSS-induced colitis with more severe crypt injury and inflammation. Mechanistically, directly interacting with the DIDLID motif of Nrf2, Mkp-1 increased Nrf2 stability and positively regulated the constitutive and lipopolysaccharide (LPS)-inducible Nrf2/Ho-1 expression. Conversely, upon exposure to LPS, Nrf2 activated Mkp-1 transcription through the antioxidant response elements in the promoter of Mkp-1. Our results revealed a novel link between Mkp-1 and Nrf2 signaling pathways in protecting against colonic inflammation. Mkp-1 might be a therapeutic target for IBD.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Hongyan Wang
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Zhaohong Zheng
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Lin Luo
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Peng Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Kaihua Liu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Akhileshwar Namani
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, PR China
| | - Xiu Jun Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China.
| | - Xiuwen Tang
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou 310058, PR China; Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China.
| |
Collapse
|
13
|
The regulatory role of Nrf2 in antioxidants phase2 enzymes and IL-17A expression in patients with ulcerative colitis. Pathol Res Pract 2018; 214:1149-1155. [DOI: 10.1016/j.prp.2018.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/27/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
|
14
|
H2S confers colonoprotection against TNBS-induced colitis by HO-1 upregulation in rats. Inflammopharmacology 2017; 26:479-489. [DOI: 10.1007/s10787-017-0382-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/22/2017] [Indexed: 12/31/2022]
|
15
|
Longhi MS, Vuerich M, Kalbasi A, Kenison JE, Yeste A, Csizmadia E, Vaughn B, Feldbrugge L, Mitsuhashi S, Wegiel B, Otterbein L, Moss A, Quintana FJ, Robson SC. Bilirubin suppresses Th17 immunity in colitis by upregulating CD39. JCI Insight 2017; 2:92791. [PMID: 28469075 DOI: 10.1172/jci.insight.92791] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Unconjugated bilirubin (UCB), a product of heme oxidation, has known immunosuppressant properties but the molecular mechanisms, other than antioxidant effects, remain largely unexplored. We note that UCB modulates T helper type 17 (Th17) immune responses, in a manner dependent upon heightened expression of CD39 ectonucleotidase. UCB has protective effects in experimental colitis, where it enhances recovery after injury and preferentially boosts IL-10 production by colonic intraepithelial CD4+ cells. In vitro, UCB confers immunoregulatory properties on human control Th17 cells, as reflected by increased levels of FOXP3 and CD39 with heightened cellular suppressor ability. Upregulation of CD39 by Th17 cells is dependent upon ligation of the aryl hydrocarbon receptor (AHR) by UCB. Genetic deletion of CD39, as in Entpd1-/- mice, or dysfunction of AHR, as in Ahrd mice, abrogates these UCB salutary effects in experimental colitis. However, in inflammatory bowel disease (IBD) samples, UCB fails to confer substantive immunosuppressive properties upon Th17 cells, because of decreased AHR levels under the conditions tested in vitro. Immunosuppressive effects of UCB are mediated by AHR resulting in CD39 upregulation by Th17. Boosting downstream effects of AHR via UCB or enhancing CD39-mediated ectoenzymatic activity might provide therapeutic options to address development of Th17 dysfunction in IBD.
Collapse
Affiliation(s)
- Maria Serena Longhi
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marta Vuerich
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alireza Kalbasi
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica E Kenison
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ada Yeste
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eva Csizmadia
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Byron Vaughn
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Linda Feldbrugge
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuji Mitsuhashi
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Barbara Wegiel
- Division of Transplantation, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Leo Otterbein
- Division of Transplantation, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan Moss
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon C Robson
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Aziz NM, Kamel MY, Rifaai RA. Eff ects of hemin, a heme oxygenase-1 inducer in L-arginine-induced acute pancreatitis and associated lung injury in adult male albino rats. Endocr Regul 2017; 51:20-30. [DOI: 10.1515/enr-2017-0003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Objective. The aim of the current study was to assess the protective outcome of hemin, a heme oxygenase-1 (HO-1) inducer on L-arginine-induced acute pancreatitis in rats. Acute pancreatitis (AP) is considered to be a critical inflammatory disorder with a major impact on the patient health. Various theories have been recommended regarding the pathophysiology of AP and associated pulmonary complications.
Methods. Twenty-four adult male albino rats were randomly divided into four groups: control group, acute pancreatitis (AP), hemin pre-treated AP group, and hemin post-treated AP group.
Results. Administration of hemin before induction of AP significantly attenuated the L-arginine- induced pancreatitis and associated pulmonary complications characterized by the increasing serum levels of amylase, lipase, tumor necrosis factor-α, nitric oxide, and histo-architectural changes in pancreas and lungs as compared to control group. Additionally, pre-treatment with hemin significantly compensated the deficits in total antioxidant capacities and lowered the elevated malondialdehyde levels observed with AP. On the other hand, post-hemin administration did not show any protection against L-arginine-induced AP.
Conclusions. The current study indicates that the induction of HO-1 by hemin pre-treatment significantly ameliorated the L-arginine-induced pancreatitis and associated pulmonary complications may be due to its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- N. M. Aziz
- Assistant Professor, Department of Physiology, Faculty of Medicine, Minia University, 61111, Minia, Egypt
| | - M. Y. Kamel
- Departments of Physiology, Pharmacology and Histology, Faculty of Medicine, Minia University, Minia, Egypt
| | - R. A. Rifaai
- Departments of Physiology, Pharmacology and Histology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
17
|
Zhong W, Di C, Lv J, Zhang Y, Lin X, Yuan Y, Lv J, Xia Z. Heme oxygenase-1 inhibits basophil maturation and activation but promotes its apoptosis in T helper type 2-mediated allergic airway inflammation. Immunology 2016; 147:321-37. [PMID: 26879758 DOI: 10.1111/imm.12564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/26/2015] [Accepted: 12/04/2015] [Indexed: 12/17/2022] Open
Abstract
The anti-inflammatory role of heme oxygenase-1 (HO-1) has been studied extensively in many disease models including asthma. Many cell types are anti-inflammatory targets of HO-1, such as dendritic cells and regulatory T cells. In contrast to previous reports that HO-1 had limited effects on basophils, which participate in T helper type 2 immune responses and antigen-induced allergic airway inflammation, we demonstrated in this study, for the first time, that the up-regulation of HO-1 significantly suppressed the maturation of mouse basophils, decreased the expression of CD40, CD80, MHC-II and activation marker CD200R on basophils, blocked DQ-ovalbumin uptake and promoted basophil apoptosis both in vitro and in vivo, leading to the inhibition of T helper type 2 polarization. These effects of HO-1 were mimicked by exogenous carbon monoxide, which is one of the catalytic products of HO-1. Furthermore, adoptive transfer of HO-1-modified basophils reduced ovalbumin-induced allergic airway inflammation. The above effects of HO-1 can be reversed by the HO-1 inhibitor Sn-protoporphyrin IX. Moreover, conditional depletion of basophils accompanying hemin treatment further attenuated airway inflammation compared with the hemin group, indicating that the protective role of HO-1 may involve multiple immune cells. Collectively, our findings demonstrated that HO-1 exerted its anti-inflammatory function through suppression of basophil maturation and activation, but promotion of basophil apoptosis, providing a possible novel therapeutic target in allergic asthma.
Collapse
Affiliation(s)
- Wenwei Zhong
- Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Paediatrics, Shanghai Children's Medical Centre affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caixia Di
- Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Lv
- Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjie Zhang
- Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoliang Lin
- Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufan Yuan
- Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lv
- Department of Paediatrics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenwei Xia
- Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
WEI JINGJING, FAN GUOQUAN, ZHAO HUI, LI JIANQIANG. Heme oxygenase-1 attenuates inflammation and oxidative damage in a rat model of smoke-induced emphysema. Int J Mol Med 2015; 36:1384-92. [DOI: 10.3892/ijmm.2015.2353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/07/2015] [Indexed: 11/06/2022] Open
|
19
|
Kook SH, Kim KA, Ji H, Lee D, Lee JC. Irradiation inhibits the maturation and mineralization of osteoblasts via the activation of Nrf2/HO-1 pathway. Mol Cell Biochem 2015; 410:255-66. [PMID: 26346162 DOI: 10.1007/s11010-015-2559-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/03/2015] [Indexed: 01/18/2023]
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the induction of antioxidant gene expression and protects cells against oxidative injury. However, there are controversial findings regarding the roles of Nrf2 on bone metabolism under oxidative stress. The role of Nrf2 on the differentiation of radiation-exposed osteoblasts is also unclear. We investigated whether Nrf2 negatively or positively affects osteoblast differentiation in response to irradiation. Irradiation inhibited osteoblast differentiation of MC3T3-E1 cells in a dose-dependent manner. This inhibition was evidenced by the irradiation-mediated decreases in bone-like nodule formation, alkaline phosphatase (ALP) activity, calcium accumulation, and expression of osteoblast markers, such as ALP, osteocalcin, osteopontin, bone sialoprotein, osterix, and Runx2. These reductions were accompanied by increased induction of Nrf2 and heme oxygenase-1 (HO-1), accumulation of cellular oxidants, and depletion of antioxidant defense enzymes. siRNA-mediated silencing of Nrf2 markedly reversed the negative effect of irradiation on osteoblast differentiation of the cells, leading to a decrease in HO-1 and an increase in Runx2 levels. Irradiation-mediated decreases in the levels of Runx2 and osteocalcin mRNA, but not of Nrf2 protein, were also significantly inhibited by HO-1 inhibitor, zinc protoporphyrin IX. Furthermore, N-acetyl cysteine restored all of the changes induced by irradiation to near-normal levels in the cells. These results demonstrate that irradiation inhibits osteoblast differentiation and mineralization of MC3T3-E1 cells through the oxidative stress-mediated activation of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Sung-Ho Kook
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 561-756, South Korea
- Research Center of Bioactive Materials and Institute of Molecular Biology and Genetics, Chonbuk National University, Jeonju, 561-756, South Korea
| | - Kyoung-A Kim
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 561-756, South Korea
- Department of Oral and Maxillofacial Radiology and Research Institute of Clinical Medicine, Chonbuk National University, Jeonju, 561-756, South Korea
| | - Hyeok Ji
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 561-756, South Korea
| | - Daewoo Lee
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 561-756, South Korea
| | - Jeong-Chae Lee
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 561-756, South Korea.
- Research Center of Bioactive Materials and Institute of Molecular Biology and Genetics, Chonbuk National University, Jeonju, 561-756, South Korea.
- Department of Orthodontics and Institute of Oral Biosciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 561-756, South Korea.
| |
Collapse
|
20
|
Zhu Y, Xie F, Ding L, Fan X, Ding X, Zhang QY. Intestinal epithelium-specific knockout of the cytochrome P450 reductase gene exacerbates dextran sulfate sodium-induced colitis. J Pharmacol Exp Ther 2015; 354:10-7. [PMID: 25926522 DOI: 10.1124/jpet.115.223263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
The potential involvement of intestinal microsomal cytochrome P450 (P450) enzymes in defending against colon inflammation and injury was studied in mice treated with dextran sulfate sodium (DSS) to induce colitis. Wild-type (WT) mice and mice with intestinal epithelium (IE)-specific deletion of the P450 reductase gene (IE-Cpr-null) were compared. IE-Cpr-null mice have little microsomal P450 activity in IE cells. DSS treatment (2.5% in drinking water for 6 days) caused more severe colon inflammation, as evidenced by the presence of higher levels of myeloperoxidase and proinflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-6, and IL-1β], and greater weight loss, colonic tissue damage, and colon shortening, in IE-Cpr-null mice than in WT mice. The IE-Cpr-null mice were deficient in colonic corticosterone (CC) synthesis, as indicated by the inability of ex vivo cultured colonic tissues from DSS-treated IE-Cpr-null mice (in contrast to DSS-treated WT mice) to show increased CC production, compared with vehicle-treated mice, and by the ability of added deoxycorticosterone (DOC), a precursor of CC biosynthesis via mitochondrial CYP11B1, to restore ex vivo CC production by colonic tissues from DSS-treated null mice. Intriguingly, null (but not WT) mice failed to show increased serum CC levels following DSS treatment. Nevertheless, cotreatment of DSS-exposed mice with DOC, which did not restore DSS-induced increase in serum CC, abolished the hypersensitivity of IE-Cpr-null mice to DSS-induced colon injury. Taken together, our results strongly support the notion that microsomal P450 enzymes in the intestine play an important role in protecting colon epithelium from DSS-induced inflammation and injury, possibly through increased local CC synthesis in response to DSS challenge.
Collapse
Affiliation(s)
- Yi Zhu
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Fang Xie
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Liang Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Xiaoyu Fan
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| |
Collapse
|
21
|
Effects of hemin and nitrite on intestinal tumorigenesis in the A/J Min/+ mouse model. PLoS One 2015; 10:e0122880. [PMID: 25836260 PMCID: PMC4383626 DOI: 10.1371/journal.pone.0122880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
Red and processed meats are considered risk factors for colorectal cancer (CRC); however, the underlying mechanisms are still unclear. One cause for the potential link between CRC and meat is the heme iron in red meat. Two pathways by which heme and CRC promotion may be linked have been suggested: fat peroxidation and N-nitrosation. In the present work we have used the novel A/J Min/+ mouse model to test the effects of dietary hemin (a model of red meat), and hemin in combination with nitrite (a model of processed meat) on intestinal tumorigenesis. Mice were fed a low Ca2+ and vitamin D semi-synthetic diet with added hemin and/or nitrite for 8 weeks post weaning, before termination followed by excision and examination of the intestinal tract. Our results indicate that dietary hemin decreased the number of colonic lesions in the A/J Min/+ mouse. However, our results also showed that the opposite occurred in the small intestine, where dietary hemin appeared to stimulate tumor growth. Furthermore, we find that nitrite, which did not have an effect in the colon, appeared to have a suppressive effect on tumor growth in the small intestine.
Collapse
|
22
|
Chang M, Xue J, Sharma V, Habtezion A. Protective role of hemeoxygenase-1 in gastrointestinal diseases. Cell Mol Life Sci 2015; 72:1161-73. [PMID: 25428780 PMCID: PMC4342274 DOI: 10.1007/s00018-014-1790-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/16/2014] [Accepted: 11/20/2014] [Indexed: 12/22/2022]
Abstract
Disorders and diseases of the gastrointestinal system encompass a wide array of pathogenic mechanisms as a result of genetic, infectious, neoplastic, and inflammatory conditions. Inflammatory diseases in general are rising in incidence and are emerging clinical problems in gastroenterology and hepatology. Hemeoxygenase-1 (HO-1) is a stress-inducible enzyme that has been shown to confer protection in various organ-system models. Its downstream effectors, carbon monoxide and biliverdin have also been shown to offer these beneficial effects. Many studies suggest that induction of HO-1 expression in gastrointestinal tissues and cells plays a critical role in cytoprotection and resolving inflammation as well as tissue injury. In this review, we examine the protective role of HO-1 and its downstream effectors in modulating inflammatory diseases of the upper (esophagus and stomach) and lower (small and large intestine) gastrointestinal tract, the liver, and the pancreas. Cytoprotective, anti-inflammatory, anti-proliferative, antioxidant, and anti-apoptotic activities of HO-1 make it a promising if not ideal therapeutic target for inflammatory diseases of the gastrointestinal system.
Collapse
Affiliation(s)
- Marisol Chang
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Jing Xue
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Vishal Sharma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| |
Collapse
|
23
|
Muchova L, Vanova K, Suk J, Micuda S, Dolezelova E, Fuksa L, Cerny D, Farghali H, Zelenkova M, Lenicek M, Wong RJ, Vreman HJ, Vitek L. Protective effect of heme oxygenase induction in ethinylestradiol-induced cholestasis. J Cell Mol Med 2015; 19:924-33. [PMID: 25683492 PMCID: PMC4420596 DOI: 10.1111/jcmm.12401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/21/2014] [Indexed: 01/20/2023] Open
Abstract
Estrogen-induced cholestasis is characterized by impaired hepatic uptake and biliary bile acids secretion because of changes in hepatocyte transporter expression. The induction of heme oxygenase-1 (HMOX1), the inducible isozyme in heme catabolism, is mediated via the Bach1/Nrf2 pathway, and protects livers from toxic, oxidative and inflammatory insults. However, its role in cholestasis remains unknown. Here, we investigated the effects of HMOX1 induction by heme on ethinylestradiol-induced cholestasis and possible underlying mechanisms. Wistar rats were given ethinylestradiol (5 mg/kg s.c.) for 5 days. HMOX1 was induced by heme (15 μmol/kg i.p.) 24 hrs prior to ethinylestradiol. Serum cholestatic markers, hepatocyte and renal membrane transporter expression, and biliary and urinary bile acids excretion were quantified. Ethinylestradiol significantly increased cholestatic markers (P ≤ 0.01), decreased biliary bile acid excretion (39%, P = 0.01), down-regulated hepatocyte transporters (Ntcp/Oatp1b2/Oatp1a4/Mrp2, P ≤ 0.05), and up-regulated Mrp3 (348%, P ≤ 0.05). Heme pre-treatment normalized cholestatic markers, increased biliary bile acid excretion (167%, P ≤ 0.05) and up-regulated hepatocyte transporter expression. Moreover, heme induced Mrp3 expression in control (319%, P ≤ 0.05) and ethinylestradiol-treated rats (512%, P ≤ 0.05). In primary rat hepatocytes, Nrf2 silencing completely abolished heme-induced Mrp3 expression. Additionally, heme significantly increased urinary bile acid clearance via up-regulation (Mrp2/Mrp4) or down-regulation (Mrp3) of renal transporters (P ≤ 0.05). We conclude that HMOX1 induction by heme increases hepatocyte transporter expression, subsequently stimulating bile flow in cholestasis. Also, heme stimulates hepatic Mrp3 expression via a Nrf2-dependent mechanism. Bile acids transported by Mrp3 to the plasma are highly cleared into the urine, resulting in normal plasma bile acid levels. Thus, HMOX1 induction may be a potential therapeutic strategy for the treatment of ethinylestradiol-induced cholestasis.
Collapse
Affiliation(s)
- Lucie Muchova
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang L, Zhang Y, Zhong W, Di C, Lin X, Xia Z. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance. J Biol Chem 2014; 289:26847-26858. [PMID: 25112868 DOI: 10.1074/jbc.m114.590554] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD.
Collapse
Affiliation(s)
- Liya Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China and
| | - Yanjie Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China and
| | - Wenwei Zhong
- Department of Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Caixia Di
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China and
| | - Xiaoliang Lin
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China and
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China and.
| |
Collapse
|
25
|
Babu D, Motterlini R, Lefebvre RA. CO and CO-releasing molecules (CO-RMs) in acute gastrointestinal inflammation. Br J Pharmacol 2014; 172:1557-73. [PMID: 24641722 DOI: 10.1111/bph.12632] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 12/13/2022] Open
Abstract
Carbon monoxide (CO) is enzymatically generated in mammalian cells alongside the liberation of iron and the production of biliverdin and bilirubin. This occurs during the degradation of haem by haem oxygenase (HO) enzymes, a class of ubiquitous proteins consisting of constitutive and inducible isoforms. The constitutive HO2 is present in the gastrointestinal tract in neurons and interstitial cells of Cajal and CO released from these cells might contribute to intestinal inhibitory neurotransmission and/or to the control of intestinal smooth muscle cell membrane potential. On the other hand, increased expression of the inducible HO1 is now recognized as a beneficial response to oxidative stress and inflammation. Among the products of haem metabolism, CO appears to contribute primarily to the antioxidant and anti-inflammatory effects of the HO1 pathway explaining the studies conducted to exploit CO as a possible therapeutic agent. This article reviews the effects and, as far as known today, the mechanism(s) of action of CO administered either as CO gas or via CO-releasing molecules in acute gastrointestinal inflammation. We provide here a comprehensive overview on the effect of CO in experimental in vivo models of post-operative ileus, intestinal injury during sepsis and necrotizing enterocolitis. In addition, we will analyse the in vitro data obtained so far on the effect of CO on intestinal epithelial cell lines exposed to cytokines, considering the important role of the intestinal mucosa in the pathology of gastrointestinal inflammation.
Collapse
Affiliation(s)
- D Babu
- Heymans Institute of Pharmacology, Ghent University, Gent, Belgium
| | | | | |
Collapse
|
26
|
Lu X, Chen-Roetling J, Regan RF. Systemic hemin therapy attenuates blood-brain barrier disruption after intracerebral hemorrhage. Neurobiol Dis 2014; 70:245-51. [PMID: 24952361 DOI: 10.1016/j.nbd.2014.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/28/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022] Open
Abstract
Injury to the blood-brain barrier (BBB) is a key feature of intracerebral hemorrhage (ICH) and may contribute to perihematomal cell injury. Pretreatment with the heme oxygenase (HO)-1 inducer hemin improves barrier function and neurological outcome in experimental models of traumatic and ischemic CNS injury. Since hemin is already in clinical use to treat acute porphyrias, this translational study was designed to test its effect on BBB function when initiated after ICH in two mouse models. At a dose similar to those used in most preconditioning studies (26mg/kg i.p.), post-hemorrhage treatment with hemin reduced parenchymal extravasation of Evans blue by about three-quarters in both the blood injection and collagenase ICH models. Similar efficacy was observed when treatment was begun at 1 or 3h. At the lower dose that is currently in clinical use (4mg/kg beginning at 3h), hemin also improved barrier function in both models, as assessed by both Evans blue and FITC-dextran leakage; however, it was somewhat less potent, reducing Evans blue leakage by about half. This dose was nevertheless sufficient to attenuate striatal cell loss and accelerate neurological recovery. Consistent with prior observations, striatal HO-1 expression was increased by hemin, and was localized to perivascular cells. These results suggest that hemin may be an effective therapy for ICH with a clinically relevant time window. Further study of the repurposing of this old drug seems warranted.
Collapse
Affiliation(s)
- Xiangping Lu
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, United States
| | - Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, United States
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, United States.
| |
Collapse
|
27
|
Higashimura Y, Naito Y, Takagi T, Tanimura Y, Mizushima K, Harusato A, Fukui A, Yoriki H, Handa O, Ohnogi H, Yoshikawa T. Preventive effect of agaro-oligosaccharides on non-steroidal anti-inflammatory drug-induced small intestinal injury in mice. J Gastroenterol Hepatol 2014; 29:310-7. [PMID: 23980531 DOI: 10.1111/jgh.12373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Non-steroidal anti-inflammatory drugs (NSAIDs), which are commonly used in clinical medicine, cause erosion, ulcers, and bleeding in the gastrointestinal tract. No effective agent for the prevention and treatment of small intestinal injury by NSAIDs has been established. This study investigates the effects of agaro-oligosaccharides (AGOs) on NSAID-induced small intestinal injury in mice. METHODS Mice were treated with indomethacin, an NSAID, to induce intestinal injury. The respective degrees of mucosal injury of mice that received AGO and control mice were compared. Heme oxygenase-1 (HO-1) expression using quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry were measured. The expression of keratinocyte chemoattractant (KC) was measured using qRT-PCR and enzyme-linked immunosorbent assay. RESULTS AGO administration induced HO-1 expression in mouse small intestinal mucosa. Induction was observed mainly in F4/80 positive macrophages. The increased ulcers score, myeloperoxidase activity, and KC expression by indomethacin were inhibited by AGO administration. Conversely, HO inhibitor cancelled AGO-mediated prevention of intestinal injury. In mouse peritoneal macrophages, AGOs enhanced HO-1 expression and suppressed lipopolysaccharide-induced KC expression. Furthermore, AGOs enhanced the expressions of alternatively activated macrophage markers arginase-1, mannose receptor-1, and chitinase 3-like 3. CONCLUSIONS Results suggest that oral administration of AGOs prevents NSAID-induced intestinal injury.
Collapse
Affiliation(s)
- Yasuki Higashimura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan; Department of Food Factor Science, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Zhang Y, Zhang L, Wu J, Di C, Xia Z. Heme oxygenase-1 exerts a protective role in ovalbumin-induced neutrophilic airway inflammation by inhibiting Th17 cell-mediated immune response. J Biol Chem 2013; 288:34612-26. [PMID: 24097973 DOI: 10.1074/jbc.m113.494369] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allergic asthma is conventionally considered as a Th2 immune response characterized by eosinophilic inflammation. Recent investigations revealed that Th17 cells play an important role in the pathogenesis of non-eosinophilic asthma (NEA), resulting in steroid-resistant neutrophilic airway inflammation. Heme oxygenase-1 (HO-1) has anti-inflammation, anti-oxidation, and anti-apoptosis functions. However, its role in NEA is still unclear. Here, we explore the role of HO-1 in a mouse model of NEA. HO-1 inducer hemin or HO-1 inhibitor tin protoporphyrin IX was injected intraperitoneally into ovalbumin-challenged DO11.10 mice. Small interfering RNA (siRNA) was delivered into mice to knock down HO-1 expression. The results show that induction of HO-1 by hemin attenuated airway inflammation and decreased neutrophil infiltration in bronchial alveolar lavage fluid and was accompanied by a lower proportion of Th17 cells in mediastinal lymph nodes and spleen. More importantly, induction of HO-1 down-regulated Th17-related transcription factor retinoic acid-related orphan receptor γt (RORγt) expression and decreased IL-17A levels, all of which correlated with a decrease in phosphorylated STAT3 (p-STAT3) level and inhibition of Th17 cell differentiation. Consistently, the above events could be reversed by tin protoporphyrin IX. Also, HO-1 siRNA transfection abolished the effect of hemin induced HO-1 in vivo. Meanwhile, the hemin treatment promoted the level of Foxp3 expression and enhanced the proportion of regulatory T cells (Tregs). Collectively, our findings indicate that HO-1 exhibits anti-inflammatory activity in the mouse model of NEA via inhibition of the p-STAT3-RORγt pathway, regulating kinetics of RORγt and Foxp3 expression, thus providing a possible novel therapeutic target in asthmatic patients.
Collapse
Affiliation(s)
- Yanjie Zhang
- From the Department of Pediatrics, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
30
|
Higashimura Y, Naito Y, Takagi T, Mizushima K, Hirai Y, Harusato A, Ohnogi H, Yamaji R, Inui H, Nakano Y, Yoshikawa T. Oligosaccharides from agar inhibit murine intestinal inflammation through the induction of heme oxygenase-1 expression. J Gastroenterol 2013. [PMID: 23188093 DOI: 10.1007/s00535-012-0719-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Agarose is hydrolyzed easily to yield oligosaccharides, designated as agaro-oligosaccharides (AGOs). Recently, it has been demonstrated that AGOs induce heme oxygenase-1 (HO-1) expression in macrophages and that they might lead to anti-inflammatory property. Nevertheless, the molecular mechanism of AGO-mediated HO-1 induction remains unknown, as does AGOs' ability to elicit anti-inflammatory activity in vivo. This study was undertaken to uncover the mechanism of AGO-mediated HO-1 induction and to investigate the therapeutic effect of AGOs on intestinal inflammation. METHODS Mice were treated with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to induce colitis. The respective degrees of mucosal injury of mice that had received AGO and control mice were compared. We investigated HO-1 expression using Western blotting, quantitative real-time PCR (qRT-PCR), and immunohistochemistry. The expression of tumor necrosis factor-α (TNF-α) was measured using qRT-PCR and enzyme-linked immunosorbent assay. RESULTS AGO administration induced HO-1 expression in colonic mucosa. The induction was observed mainly in F4/80 positive macrophages. Increased colonic damage and myeloperoxidase activity after TNBS treatment were inhibited by AGO administration. TNBS treatment induced TNF-α expression, and AGO administration suppressed induction. However, HO inhibitor canceled AGO-mediated amelioration of colitis. In RAW264 cells, AGOs enhanced HO-1 expression time-dependently and concentration-dependently and suppressed lipopolysaccharide-induced TNF-α expression. Furthermore, agarotetraose-mediated HO-1 induction required NF-E2-related factor 2 function and phosphorylation of c-jun N-terminal kinase. CONCLUSIONS We infer that AGO administration inhibits TNBS-induced colitis in mice through HO-1 induction in macrophages. Consequently, oral administration of AGOs might be an important therapeutic strategy for inflammatory bowel disease.
Collapse
Affiliation(s)
- Yasuki Higashimura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Westernized high-fat diet accelerates weight loss in dextran sulfate sodium-induced colitis in mice, which is further aggravated by supplementation of heme. J Nutr Biochem 2013; 24:1159-65. [DOI: 10.1016/j.jnutbio.2012.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 09/01/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
|
32
|
Schulz S, Wong RJ, Jang KY, Kalish F, Chisholm KM, Zhao H, Vreman HJ, Sylvester KG, Stevenson DK. Heme oxygenase-1 deficiency promotes the development of necrotizing enterocolitis-like intestinal injury in a newborn mouse model. Am J Physiol Gastrointest Liver Physiol 2013; 304:G991-G1001. [PMID: 23578787 PMCID: PMC3680684 DOI: 10.1152/ajpgi.00363.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is typified by mucosal destruction, which subsequently can lead to intestinal necrosis. Prematurity, enteral feeding, and bacterial colonization are the main risk factors and, combined with other stressors, can cause increased intestinal permeability, injury, and an exaggerated inflammatory response. Heme oxygenase-1 (HO-1) mediates intestinal protection due to anti-inflammatory, antioxidative, and antiapoptotic effects of its products carbon monoxide, biliverdin, and bilirubin. This study investigates a possible role of HO-1 in the pathogenesis of NEC using a newborn mouse model. We induced NEC-like intestinal injury in 7-day-old HO-1 heterozygous (HO-1 Het, Hmox1(+/-)) and wild-type (Wt, Hmox1(+/+)) mice by gavage feeding and hypoxic exposures. Control (Con) pups of both genotypes were dam-fed. Intestines of HO-1 Het Con pups appeared predisposed to injury, with higher histological damage scores, more TUNEL-positive cells, and a significant reduction in muscularis externa thickness compared with Wt Con pups. The increase in HO activity after HO-1 induction by the substrate heme or by hypoxic stress was significantly impaired in HO-1 Het pups. After induction of intestinal injury, HO-1 Het pups displayed significantly higher NEC incidence (78 vs. 43%), mortality (83 vs. 54%), and median scores (2.5 vs. 1.5) than Wt NEC pups. PCR array analyses revealed increased expressions of IL-1β, P-selectin, matrix metallopeptidase 2, collagen type XVIII-α1, serpine 1, and others in NEC-induced HO-1 Het ileal and jejunal tissues. We conclude that a partial HO-1 deficiency promotes experimental NEC-like intestinal injury, possibly mediated by exaggerated inflammation and disruption in tissue repair.
Collapse
Affiliation(s)
- Stephanie Schulz
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yoriki H, Naito Y, Takagi T, Mizusima K, Hirai Y, Harusato A, Yamada S, Tsuji T, Kugai M, Fukui A, Higashimura Y, Katada K, Kamada K, Uchiyama K, Handa O, Yagi N, Ichikawa H, Yosikawa T. Hemin ameliorates indomethacin-induced small intestinal injury in mice through the induction of heme oxygenase-1. J Gastroenterol Hepatol 2013; 28:632-8. [PMID: 23216607 DOI: 10.1111/jgh.12074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Although non-steroidal anti-inflammatory drugs can induce intestinal injury, the mechanisms are not fully understood, and treatment has yet to be established. Heme oxygenase-1 (HO-1) has recently gained attention for anti-inflammatory and cytoprotective effects. This study aimed to investigate the effects of hemin, an HO-1 inducer, on indomethacin-induced enteritis in mice. METHODS Enteritis was induced by single subcutaneous administration of indomethacin (10 mg/kg) in male C57BL/6 mice. Hemin (30 mg/kg) was administered by intraperitoneal administration 6 h before indomethacin administration. Mice were randomly divided into four groups: (i) sham + vehicle; (ii) sham + hemin; (iii) indomethacin + vehicle; or (iv) indomethacin + hemin. Enteritis was evaluated by measuring ulcerative lesions. Myeloperoxidase activity was measured as an index of neutrophil accumulation. The mRNA expression of inflammatory cytokines and chemokines, such as tumor necrosis factor-α, monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and keratinocyte chemoattractant, were analyzed by real-time polymerase chain reaction. RESULTS The area of ulcerative lesions, myeloperoxidase activity, and mRNA expression of inflammatory cytokines and chemokines were significantly increased in mice administrated with indomethacin compared with vehicle-treated sham mice. Development of intestinal lesions, increased levels of myeloperoxidase activities, and mRNA expressions of inflammatory cytokines and chemokines were significantly suppressed in mice treated with hemin compared with vehicle-treated mice. Protective effects of hemin were reversed by co-administration of tin protoporphyrin, an HO-1 inhibitor. CONCLUSIONS Induction of HO-1 by hemin inhibits indomethacin-induced intestinal injury through upregulation of HO-1. Pharmacological induction of HO-1 may offer a novel therapeutic strategy to prevent indomethacin-induced small intestinal injury.
Collapse
Affiliation(s)
- Hiroyuki Yoriki
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1. Inflamm Bowel Dis 2013; 19:740-53. [PMID: 23446334 DOI: 10.1097/mib.0b013e3182802968] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. METHODS This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. RESULTS TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. CONCLUSIONS Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.
Collapse
|
35
|
Zelenka J, Muchova L, Zelenkova M, Vanova K, Vreman HJ, Wong RJ, Vitek L. Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie 2012; 94:1821-7. [PMID: 22580386 DOI: 10.1016/j.biochi.2012.04.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/30/2012] [Indexed: 12/22/2022]
Abstract
Antioxidant, anti-inflammatory and anti-atherogenic effects have been associated with elevations of unconjugated bilirubin (UCB) in serum and with the induction of heme oxygenase-1 (HO-1), the rate-limiting enzyme in UCB synthesis. The aim of this study was to investigate the intracellular metabolism and antioxidant properties of UCB in human hepatoblastoma HepG2 cells and tissues of Wistar rats exposed to oxidative stressors and lipopolysaccharide (LPS), respectively. Intracellular UCB concentrations in HepG2 cells correlated with its levels in culture media (p < 0.001) and diminished lipid peroxidation in a dose-dependent manner (p < 0.001). Moreover, induction of HO-1 with sodium arsenite led to 2.4-fold (p = 0.01) accumulation of intracellular UCB over basal level while sodium azide-derived oxidative stress resulted in a 60% drop (p < 0.001). This decrease was ameliorated by UCB elevation in media or by simultaneous induction of HO-1. In addition, hyperbilirubinemia and liver HO-1 induction in LPS-treated rats resulted in a 2-fold accumulation of tissue UCB (p = 0.01) associated with enhanced protection against lipid peroxidation (p = 0.02). In conclusion, hyperbilirubinemia and HO-1 induction associated with inflammation and oxidative stress increase intracellular concentrations of UCB, thus enhancing the protection of cellular lipids against peroxidation. Therefore, the previously reported protective effects of hyperbilirubinemia and HO-1 induction are at least in part due to intracellular accumulation of UCB.
Collapse
Affiliation(s)
- Jaroslav Zelenka
- Institute of Physiology, Academy of Sciences, Dept. 75, Videnska 1083, Prague 142 20, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chiou YS, Ma NJL, Sang S, Ho CT, Wang YJ, Pan MH. Peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) potently suppresses dextran sulfate sodium-induced colitis and colon tumorigenesis in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3441-3451. [PMID: 22409325 DOI: 10.1021/jf300441p] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Previous studies reported that peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) has antiproliferative and anti-inflammatory activities. Here, we evaluated the chemopreventive effects and underlying molecular mechanisms of dietary administration of AcEGCG and EGCG in dextran sulfate sodium (DSS)-induced colitis in mice. The mice were fed a diet supplemented with either AcEGCG or EGCG prior to DSS induction. Our results indicated that AcEGCG administration was more effective than EGCG in preventing the shortening of colon length and the formation of aberrant crypt foci (ACF) and lymphoid nodules (LN) in mouse colon stimulated by DSS. Our study observes that AcEGCG treatment inhibited histone 3 lysine 9 (H3K9) acetylation but did not affect histone acetyltransferase (HAT) activity and acetyl- CREB-binding protein (CBP)/p300 levels. In addition, pretreatment with AcEGCG decreased the proinflammatory mediator levels by down-regulating of PI3K/Akt/NFκB phosphorylation and p65 acetylation. We also found that treatment with AcEGCG increased heme oxygenase-1(HO-1) expression via activation of extracellular signal-regulated protein kinase (ERK)1/2 signaling and acetylation of NF-E2-related factor 2 (Nrf2), thereby abating DSS-induced colitis. Moreover, dietary feeding with AcEGCG markedly reduced colitis-driven colon cancer in mice. Taken together, these results demonstrated for the first time the in vivo chemopreventive efficacy and molecular mechanisms of dietary AcEGCG against inflammatory bowel disease (IBD) and potentially colon cancer associated with colitis. These findings provide insight into the biological actions of AcEGCG and might establish a molecular basis for the development of new cancer chemopreventive agents.
Collapse
Affiliation(s)
- Yi-Shiou Chiou
- Department of Seafood Science, National Kaohsiung Marine University, Nanzih District, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Correa-Costa M, Amano MT, Câmara NOS. Cytoprotection behind heme oxygenase-1 in renal diseases. World J Nephrol 2012; 1:4-11. [PMID: 24175236 PMCID: PMC3782207 DOI: 10.5527/wjn.v1.i1.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 10/27/2011] [Accepted: 12/27/2011] [Indexed: 02/06/2023] Open
Abstract
Renal insults are considered a public health problem and are linked to increased rates of morbidity and mortality worldwide. The heme oxygenase (HO) system consists of evolutionary specialized machinery that degrades free heme and produces carbon monoxide, biliverdin and free iron. In this sense, the inducible isoform HO-1 seems to develop an important role and is widely studied. The reaction involved with the HO-1 molecule provides protection to injured tissue, directly by reducing the toxic heme molecule and indirectly by the release of its byproducts. The up regulation of HO-1 enzyme has largely been described as providing antioxidant, antiapoptotic, anti-inflammatory and immunomodulatory properties. Several works have explored the importance of HO-1 in renal diseases and they have provided consistent evidence that its overexpression has beneficial effects in such injuries. So, in this review we will focus on the role of HO-1 in kidney insults, exploring the protective effects of its up regulation and the enhanced deleterious effects of its inhibition or gene deletion.
Collapse
Affiliation(s)
- Matheus Correa-Costa
- Matheus Correa-Costa, Mariane Tami Amano, Niels Olsen Saraiva Câmara, Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, 05508-000, São Paulo, Brazil
| | | | | |
Collapse
|
38
|
Pareek TK, Belkadi A, Kesavapany S, Zaremba A, Loh SL, Bai L, Cohen ML, Meyer C, Liby KT, Miller RH, Sporn MB, Letterio JJ. Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis. Sci Rep 2011; 1:201. [PMID: 22355716 PMCID: PMC3242013 DOI: 10.1038/srep00201] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/18/2011] [Indexed: 01/03/2023] Open
Abstract
Inflammatory cytokines and endogenous anti-oxidants are variables affecting disease progression in multiple sclerosis (MS). Here we demonstrate the dual capacity of triterpenoids to simultaneously repress production of IL-17 and other pro-inflammatory mediators while exerting neuroprotective effects directly through Nrf2-dependent induction of anti-oxidant genes. Derivatives of the natural triterpene oleanolic acid, namely CDDO-trifluoroethyl-amide (CDDO-TFEA), completely suppressed disease in a murine model of MS, experimental autoimmune encephalomyelitis (EAE), by inhibiting Th1 and Th17 mRNA and cytokine production. Encephalitogenic T cells recovered from treated mice were hypo-responsive to myelin antigen and failed to adoptively transfer the disease. Microarray analyses showed significant suppression of pro-inflammatory transcripts with concomitant induction of anti-inflammatory genes including Ptgds and Hsd11b1. Finally, triterpenoids induced oligodendrocyte maturation in vitro and enhanced myelin repair in an LPC-induced non-inflammatory model of demyelination in vivo. These results demonstrate the unique potential of triterpenoid derivatives for the treatment of neuroinflammatory disorders such as MS.
Collapse
Affiliation(s)
- Tej K. Pareek
- Department of Pediatrics/Division of Pediatric Hematology-Oncology, University Hospitals Case Medical Center and The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
| | - Abdelmadjid Belkadi
- Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case Western Reserve University, School of Medicine, Ohio 44106, Cleveland
| | - Sashi Kesavapany
- Department of Biochemistry, Neurobiology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597
| | - Anita Zaremba
- Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case Western Reserve University, School of Medicine, Ohio 44106, Cleveland
| | - Sook L. Loh
- Department of Biochemistry, Neurobiology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597
| | - Lianhua Bai
- Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case Western Reserve University, School of Medicine, Ohio 44106, Cleveland
| | - Mark L. Cohen
- Department of Pathology, Case Western Reserve University, OH 44106
| | - Colin Meyer
- Reata Pharmaceuticals Inc., Irving, TX 75063
| | - Karen T. Liby
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Robert H. Miller
- Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case Western Reserve University, School of Medicine, Ohio 44106, Cleveland
| | - Michael B. Sporn
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - John J. Letterio
- Department of Pediatrics/Division of Pediatric Hematology-Oncology, University Hospitals Case Medical Center and The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
39
|
Zhu X, Fan WG, Li DP, Kung H, Lin MCM. Heme oxygenase-1 system and gastrointestinal inflammation: A short review. World J Gastroenterol 2011; 17:4283-8. [PMID: 22090784 PMCID: PMC3214703 DOI: 10.3748/wjg.v17.i38.4283] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/21/2011] [Accepted: 03/28/2011] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) system catalyzes heme to biologically active products: carbon monoxide, biliverdin/bilirubin and free iron. It is involved in maintaining cellular homeostasis and many physiological and pathophysiological processes. A growing body of evidence indicates that HO-1 activation may play an important protective role in acute and chronic inflammation of gastrointestinal tract. This review focuses on the current understanding of the physiological significance of HO-1 induction and its possible roles in the gastrointestinal inflammation studied to date. The ability to upregulate HO-1 by pharmacological means or using gene therapy may offer therapeutic strategies for gastrointestinal inflammation in the future.
Collapse
|
40
|
McCarty MF. Clinical potential of phycocyanobilin for induction of T regulatory cells in the management of inflammatory disorders. Med Hypotheses 2011; 77:1031-3. [PMID: 21917385 DOI: 10.1016/j.mehy.2011.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/09/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
Exposure of human mononuclear cells to phycocyanin in vitro is reported to promote generation of Treg cells. Induction of heme oxygenase-1 (HO-1) in lymphocytes has a similar effect, and it is not likely to be accidental that a key product of HO-1 activity, biliverdin, is homologous to the structure of phycocyanin's chromophore phycocyanobilin (PhyCB). Moreover, Treg induction is observed in mice injected with bilirubin, biliverdin's chief metabolite. These considerations suggest that bilirubin, generated within lymphocytes by HO-1 activation, may play a physiological role in the promotion of Treg immunomodulation. This effect of bilirubin is likely to be independent of NADPH oxidase inhibition, since the NAPDH oxidase activity of macrophages is necessary for Treg induction, possibly because it contributes to HO-1 induction in lymphocytes. In light of numerous reports that oral phycocyanin is beneficial in various rodent models of autoimmune disorders, it is reasonable to suspect that PhyCB-enriched spirulina extracts may have clinical potential for boosting Treg activity in human autoimmune or allergic syndromes, mimicking the physiological role of HO-1 induction in this regard.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, United States.
| |
Collapse
|
41
|
Yukitake H, Kimura H, Suzuki H, Tajima Y, Sato Y, Imaeda T, Kajino M, Takizawa M. BTZO-15, an ARE-activator, ameliorates DSS- and TNBS-induced colitis in rats. PLoS One 2011; 6:e23256. [PMID: 21853095 PMCID: PMC3154330 DOI: 10.1371/journal.pone.0023256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/09/2011] [Indexed: 01/12/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that are primarily represented by ulcerative colitis and Crohn's disease. The etiology of IBD is not well understood; however, oxidative stress is considered a potential etiological and/or triggering factor for IBD. We have recently reported the identification of BTZO-1, an activator of antioxidant response element (ARE)-mediated gene expression, which protects cardiomyocytes from oxidative stress-induced insults. Here we describe the potential of BTZO-15, an active BTZO-1 derivative for ARE-activation with a favorable ADME-Tox profile, for the treatment of IBD. BTZO-15 induced expression of heme oxygenase-1 (HO-1), an ARE-regulated cytoprotective protein, and inhibited NO-induced cell death in IEC-18 cells. Large intestine shortening, rectum weight gain, diarrhea, intestinal bleeding, and an increase in rectal myeloperoxidase (MPO) activity were observed in a dextran sulfate sodium (DSS)-induced colitis rat model. Oral administration of BTZO-15 induced HO-1 expression in the rectum and attenuated DSS-induced changes. Furthermore BTZO-15 reduced the ulcerated area and rectal MPO activity in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rats without affecting rectal TNF-α levels. These results suggest that BTZO-15 is a promising compound for a novel IBD therapeutic drug with ARE activation properties.
Collapse
Affiliation(s)
- Hiroshi Yukitake
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Haruhide Kimura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- * E-mail:
| | - Hirobumi Suzuki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yasukazu Tajima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yoshimi Sato
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Toshihiro Imaeda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masahiro Kajino
- Chemistry, Manufacturing and Controls, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Masayuki Takizawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
42
|
Naito Y, Takagi T, Uchiyama K, Yoshikawa T. Heme oxygenase-1: a novel therapeutic target for gastrointestinal diseases. J Clin Biochem Nutr 2011; 48:126-33. [PMID: 21373265 PMCID: PMC3045685 DOI: 10.3164/jcbn.10-61] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/01/2010] [Indexed: 12/18/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in the catabolism of heme, followed by production of biliverdin, free iron and carbon monoxide (CO). HO-1 is a stress-responsive protein induced by various oxidative agents. Recent studies demonstrate that the expression of HO-1 in response to different inflammatory mediators may contribute to the resolution of inflammation and has protective effects in several organs against oxidative injury. Although the mechanism underlying the anti-inflammatory actions of HO-1 remains poorly defined, both CO and biliverdin/bilirubin have been implicated in this response. In the gastrointestinal tract, HO-1 is shown to be transcriptionally induced in response to oxidative stress, preconditioning and acute inflammation. Recent studies suggest that the induction of HO-1 expression plays a critical protective role in intestinal damage models induced by ischemia-reperfusion, indomethacin, lipopolysaccharide-associated sepsis, trinitrobenzene sulfonic acid, and dextran sulfate sodium, indicating that activation of HO-1 may act as an endogenous defensive mechanism to reduce inflammation and tissue injury in the gastrointestinal tract. In addition, CO derived from HO-1 is shown to be involved in the regulation in gastro-intestinal motility. These in vitro and in vivo data suggest that HO-1 may be a novel therapeutic target in patients with gastrointestinal diseases.
Collapse
Affiliation(s)
- Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | |
Collapse
|
43
|
Takagi T, Naito Y, Uchiyama K, Yoshikawa T. The role of heme oxygenase and carbon monoxide in inflammatory bowel disease. Redox Rep 2011; 15:193-201. [PMID: 21062534 DOI: 10.1179/174329210x12650506623889] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease, is a chronic and recurrent inflammatory disorder of the intestinal tract. Since the precise pathogenesis of IBD remains unclear, it is important to investigate the pathogenesis of IBD and to evaluate new anti-inflammatory strategies. Recent evidence suggests that heme oxygenase-1 (HO-1) plays a critical protective role during the development of intestinal inflammation. In fact, it has been demonstrated that the activation of HO-1 may act as an endogenous defensive mechanism to reduce inflammation and tissue injury in various animal intestinal injury models induced by ischemia-reperfusion, indomethacin, lipopolysaccharide-associated sepsis, trinitrobenzene sulfonic acid or dextran sulfate sodium. In addition, carbon monoxide (CO) derived from HO-1 has been shown to be involved in the regulation of intestinal inflammation. Furthermore, administration of a low concentration of exogenous CO has a protective effect against intestinal inflammation. These data suggest that HO-1 and CO may be novel therapeutic molecules for patients with gastrointestinal inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 and CO in intestinal inflammation.
Collapse
Affiliation(s)
- Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
44
|
Ahanger AA, Prawez S, Leo MDM, Kathirvel K, Kumar D, Tandan SK, Malik JK. Pro-healing potential of hemin: an inducer of heme oxygenase-1. Eur J Pharmacol 2010; 645:165-70. [PMID: 20638379 DOI: 10.1016/j.ejphar.2010.06.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 06/01/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Hemin induces heme oxygenase (HO), an enzyme which degrades heme in a rate-limiting manner and has an important role in cellular protection against oxidative stress and apoptosis. This HO inducer may be of potential therapeutic value in wound healing and inflammation. To identify the beneficial activity of HO vis a vis wound healing, hemin was used as inducer of HO in rats using a full-thickness cutaneous wound model. Hemin treatment increased cellular proliferation and collagen synthesis as evidenced by increase in wound contraction and hydroxyproline and glucosamine contents. mRNA expression of cytokines endorsed fast healing as was indicated by inhibition of pro-inflammatory cytokines such as ICAM-1 and TNF-alpha and up-regulation of anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Azad A Ahanger
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar (UP), Pin 243 122, India
| | | | | | | | | | | | | |
Collapse
|
45
|
Lakhan SE, Kirchgessner A. Neuroinflammation in inflammatory bowel disease. J Neuroinflammation 2010; 7:37. [PMID: 20615234 PMCID: PMC2909178 DOI: 10.1186/1742-2094-7-37] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/08/2010] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease is a chronic intestinal inflammatory condition, the pathology of which is incompletely understood. Gut inflammation causes significant changes in neurally controlled gut functions including cramping, abdominal pain, fecal urgency, and explosive diarrhea. These symptoms are caused, at least in part, by prolonged hyperexcitability of enteric neurons that can occur following the resolution of colitis. Mast, enterochromaffin and other immune cells are increased in the colonic mucosa in inflammatory bowel disease and signal the presence of inflammation to the enteric nervous system. Inflammatory mediators include 5-hydroxytryptamine and cytokines, as well as reactive oxygen species and the production of oxidative stress. This review will discuss the effects of inflammation on enteric neural activity and potential therapeutic strategies that target neuroinflammation in the enteric nervous system.
Collapse
Affiliation(s)
- Shaheen E Lakhan
- Global Neuroscience Initiative Foundation, Los Angeles, CA, USA.
| | | |
Collapse
|
46
|
Vijayan V, Mueller S, Baumgart-Vogt E, Immenschuh S. Heme oxygenase-1 as a therapeutic target in inflammatory disorders of the gastrointestinal tract. World J Gastroenterol 2010; 16:3112-9. [PMID: 20593496 PMCID: PMC2896748 DOI: 10.3748/wjg.v16.i25.3112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO)-1 is the inducible isoform of the first and rate-limiting enzyme of heme degradation. HO-1 not only protects against oxidative stress and apoptosis, but has received a great deal of attention in recent years because of its potent anti-inflammatory functions. Studies with HO-1 knockout animal models have led to major advances in the understanding of how HO-1 might regulate inflammatory immune responses, although little is known on the underlying mechanisms. Due to its beneficial effects the targeted induction of this enzyme is considered to have major therapeutic potential for the treatment of inflammatory disorders. This review discusses current knowledge on the mechanisms that mediate anti-inflammatory protection by HO-1. More specifically, the article deals with the role of HO-1 in the pathophysiology of viral hepatitis, inflammatory bowel disease, and pancreatitis. The effects of specific HO-1 modulation as a potential therapeutic strategy in experimental cell culture and animal models of these gastrointestinal disorders are summarized. In conclusion, targeted regulation of HO-1 holds major promise for future clinical interventions in inflammatory diseases of the gastrointestinal tract.
Collapse
|