1
|
Maternal Inflammation Exaggerates Offspring Susceptibility to Cerebral Ischemia–Reperfusion Injury via the COX-2/PGD2/DP2 Pathway Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1571705. [PMID: 35437456 PMCID: PMC9013311 DOI: 10.1155/2022/1571705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022]
Abstract
The pathogenesis of cerebral ischemia–reperfusion (I/R) injury is complex and does not exhibit an effective strategy. Maternal inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We aimed to investigate the effect of maternal inflammation on offspring susceptibility to cerebral I/R injury and the mechanisms by which it exerts its effects. Pregnant SD rats were intraperitoneally injected with LPS (300 μg/kg/day) at gestational days 11, 14, and 18. Pups were subjected to MCAO/R on postnatal day 60. Primary neurons were obtained from postnatal day 0 SD rats and subjected to OGD/R. Neurological deficits, brain injury, neuronal viability, neuronal damage, and neuronal apoptosis were assessed. Oxidative stress and inflammation were evaluated, and the expression levels of COX-2/PGD2/DP pathway-related proteins and apoptotic proteins were detected. Maternal LPS exposure significantly increased the levels of oxidative stress and inflammation, significantly activated the COX-2/PGD2/DP2 pathway, and increased proapoptotic protein expression. However, maternal LPS exposure significantly decreased the antiapoptotic protein expression, which subsequently increased neurological deficits and cerebral I/R injury in offspring rats. The corresponding results were observed in primary neurons. Moreover, these effects of maternal LPS exposure were reversed by a COX-2 inhibitor and DP1 agonist but exacerbated by a DP2 agonist. In conclusion, maternal inflammatory exposure may increase offspring susceptibility to cerebral I/R injury. Moreover, the underlying mechanism might be related to the activation of the COX-2/PGD2/DP2 pathway. These findings provide a theoretical foundation for the development of therapeutic drugs for cerebral I/R injury.
Collapse
|
2
|
Magalhaes MS, Potter HG, Ahlback A, Gentek R. Developmental programming of macrophages by early life adversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:213-259. [PMID: 35636928 DOI: 10.1016/bs.ircmb.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages are central elements of all organs, where they have a multitude of physiological and pathological functions. The first macrophages are produced during fetal development, and most adult organs retain populations of fetal-derived macrophages that self-maintain without major input of hematopoietic stem cell-derived monocytes. Their developmental origins make macrophages highly susceptible to environmental perturbations experienced in early life, in particular the fetal period. It is now well recognized that such adverse developmental conditions contribute to a wide range of diseases later in life. This chapter explores the notion that macrophages are key targets of environmental adversities during development, and mediators of their long-term impact on health and disease. We first briefly summarize our current understanding of macrophage ontogeny and their biology in tissues and consider potential mechanisms by which environmental stressors may mediate fetal programming. We then review evidence for programming of macrophages by adversities ranging from maternal immune activation and diet to environmental pollutants and toxins, which have disease relevance for different organ systems. Throughout this chapter, we contemplate appropriate experimental strategies to study macrophage programming. We conclude by discussing how our current knowledge of macrophage programming could be conceptualized, and finally highlight open questions in the field and approaches to address them.
Collapse
Affiliation(s)
- Marlene S Magalhaes
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry G Potter
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Ahlback
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Temporal Characterization of Microglia-Associated Pro- and Anti-Inflammatory Genes in a Neonatal Inflammation-Sensitized Hypoxic-Ischemic Brain Injury Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2479626. [PMID: 35281473 PMCID: PMC8906938 DOI: 10.1155/2022/2479626] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) mainly affects preterm and term newborns, leading to a high risk of brain damage. Coexisting infection/inflammation and birth asphyxia are key factors associated with intracerebral increase of proinflammatory cytokines linked to HIE. Microglia are key mediators of inflammation during perinatal brain injury, characterized by their phenotypic plasticity, which may facilitate their participation in both the progression and resolution of injury-induced inflammation. The purpose of this study was to investigate the temporal expression of genes associated with pro- and anti-inflammatory cytokines as well as the nucleotide-binding domain, leucine-rich repeat protein (NLRP-3) inflammasome from microglia cells. For this purpose, we used our established neonatal rat model of inflammation-sensitized hypoxic-ischemic (HI) brain injury in seven-day-old rats. We assessed gene expression profiles of 11 cytokines and for NLRP-3 using real-time PCR from sorted CD11b/c microglia of brain samples at different time points (3.5 h after LPS injection and 0, 5, 24, 48, and 72 hours post HI) following different treatments: vehicle, E. coli lipopolysaccharide (LPS), vehicle/HI, and LPS/HI. Our results showed that microglia are early key mediators of the inflammatory response and exacerbate the inflammatory response following HI, polarizing into a predominant proinflammatory M1 phenotype in the early hours post HI. The brains only exposed to HI showed a delay in the expression of proinflammatory cytokines. We also demonstrated that NLRP-3 plays a role in the inflammatory resolution with a high expression after HI insult. The combination of both, a preinfection/inflammation condition and hypoxia-ischemia, resulted in a higher proinflammatory cytokine storm, highlighting the significant contribution of acute inflammation sensitizing prior to a hypoxic insult on the severity of perinatal brain damage.
Collapse
|
4
|
Gao Y, Fan Y, Yang Z, Ma Q, Zhao B, He X, Gao F, Qian L, Wang W, Chen C, Chen Y, Gao C, Ma X, Zhu F. Systems biological assessment of altered cytokine responses to bacteria and fungi reveals impaired immune functionality in schizophrenia. Mol Psychiatry 2022; 27:1205-1216. [PMID: 34728799 DOI: 10.1038/s41380-021-01362-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/24/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Evidence suggests that complex interactions between the immune system and brain have important etiological and therapeutic implications in schizophrenia. However, the detailed cellular and molecular basis of immune dysfunction in schizophrenia remains poorly characterized. To better understand the immune changes and molecular pathways, we systemically compared the cytokine responses of peripheral blood mononuclear cells (PBMCs) derived from patients with schizophrenia and controls against bacterial, fungal, and purified microbial ligands, and identified aberrant cytokine response patterns to various pathogens, as well as reduced cytokine production after stimulation with muramyl dipeptide (MDP) in schizophrenia. Subsequently, we performed single-cell RNA sequencing on unstimulated and stimulated PBMCs from patients and controls and revealed widespread suppression of antiviral and inflammatory programs as well as impaired chemokine/cytokine-receptor interaction networks in various immune cell subpopulations of schizophrenic patients after MDP stimulation. Moreover, serum MDP levels were elevated in these patients and correlated with the course of the disease, suggesting increased bacterial translocation along with disease progression. In vitro assays revealed that MDP pretreatment altered the functional response of normal PBMCs to its re-stimulation, which partially recapitulated the impaired immune function in schizophrenia. In conclusion, we delineated the molecular and cellular landscape of impaired immune function in schizophrenia, and proposed a mutual interplay between innate immune impairment, reduced pathogen clearance, increased MDP translocation along schizophrenia development, and blunted innate immune response. These findings provide new insights into the pathogenic mechanisms that drive systemic immune activation, neuroinflammation, and brain abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yajuan Fan
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zai Yang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Qingyan Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Binbin Zhao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xiaoyan He
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Fengjie Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Li Qian
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Ce Chen
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yunchun Chen
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Chengge Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
5
|
Prieto-Villalobos J, Alvear TF, Liberona A, Lucero CM, Martínez-Araya CJ, Balmazabal J, Inostroza CA, Ramírez G, Gómez GI, Orellana JA. Astroglial Hemichannels and Pannexons: The Hidden Link between Maternal Inflammation and Neurological Disorders. Int J Mol Sci 2021; 22:ijms22179503. [PMID: 34502412 PMCID: PMC8430734 DOI: 10.3390/ijms22179503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal inflammation during pregnancy causes later-in-life alterations of the offspring’s brain structure and function. These abnormalities increase the risk of developing several psychiatric and neurological disorders, including schizophrenia, intellectual disability, bipolar disorder, autism spectrum disorder, microcephaly, and cerebral palsy. Here, we discuss how astrocytes might contribute to postnatal brain dysfunction following maternal inflammation, focusing on the signaling mediated by two families of plasma membrane channels: hemi-channels and pannexons. [Ca2+]i imbalance linked to the opening of astrocytic hemichannels and pannexons could disturb essential functions that sustain astrocytic survival and astrocyte-to-neuron support, including energy and redox homeostasis, uptake of K+ and glutamate, and the delivery of neurotrophic factors and energy-rich metabolites. Both phenomena could make neurons more susceptible to the harmful effect of prenatal inflammation and the experience of a second immune challenge during adulthood. On the other hand, maternal inflammation could cause excitotoxicity by producing the release of high amounts of gliotransmitters via astrocytic hemichannels/pannexons, eliciting further neuronal damage. Understanding how hemichannels and pannexons participate in maternal inflammation-induced brain abnormalities could be critical for developing pharmacological therapies against neurological disorders observed in the offspring.
Collapse
Affiliation(s)
- Juan Prieto-Villalobos
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Tanhia F. Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Andrés Liberona
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Claudia M. Lucero
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.M.L.); (G.I.G.)
| | - Claudio J. Martínez-Araya
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Javiera Balmazabal
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Carla A. Inostroza
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Gigliola Ramírez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Gonzalo I. Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.M.L.); (G.I.G.)
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
- Correspondence: ; Tel.: +56-23548105
| |
Collapse
|
6
|
Shao R, Sun D, Hu Y, Cui D. White matter injury in the neonatal hypoxic-ischemic brain and potential therapies targeting microglia. J Neurosci Res 2021; 99:991-1008. [PMID: 33416205 DOI: 10.1002/jnr.24761] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Neonatal hypoxic-ischemic (H-I) injury, which mainly causes neuronal damage and white matter injury (WMI), is among the predominant causes of infant morbidity (cerebral palsy, cognitive and persistent motor disabilities) and mortality. Disruptions to the oxygen and blood supply in the perinatal brain affect the cerebral microenvironment and may affect microglial activation, excitotoxicity, and oxidative stress. Microglia are significantly associated with axonal damage and myelinating oligodendrocytes, which are major pathological components of WMI. However, the effects of H-I injury on microglial functions and underlying transformation mechanisms remain poorly understood. The historical perception that these cells are major risk factors for ischemic stroke has been questioned due to our improved understanding of the diversity of microglial phenotypes and their alterable functions, which exacerbate or attenuate injuries in different regions in response to environmental instability. Unfortunately, although therapeutic hypothermia is an efficient treatment, death and disability remain the prognosis for a large proportion of neonates with H-I injury. Hence, novel neuroprotective therapies to treat WMI following H-I injury are urgently needed. Here, we review microglial mechanisms that might occur in the developing brain due to neonatal H-I injury and discuss whether microglia function as a double-edged sword in WMI. Then, we emphasize microglial heterogeneity, notably at the single-cell level, and sex-specific effects on the etiology of neurological diseases. Finally, we discuss current knowledge of strategies aiming to improve microglia modulation and remyelination following neonatal H-I injury. Overall, microglia-targeted therapy might provide novel and valuable insights into the treatment of neonatal H-I insult.
Collapse
Affiliation(s)
- Rongjiao Shao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dawei Sun
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yue Hu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Derong Cui
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
7
|
Abstract
Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.
Collapse
Affiliation(s)
- Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06519, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06519, USA
| |
Collapse
|
8
|
Preterm birth and sustained inflammation: consequences for the neonate. Semin Immunopathol 2020; 42:451-468. [PMID: 32661735 PMCID: PMC7508934 DOI: 10.1007/s00281-020-00803-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022]
Abstract
Almost half of all preterm births are caused or triggered by an inflammatory process at the feto-maternal interface resulting in preterm labor or rupture of membranes with or without chorioamnionitis (“first inflammatory hit”). Preterm babies have highly vulnerable body surfaces and immature organ systems. They are postnatally confronted with a drastically altered antigen exposure including hospital-specific microbes, artificial devices, drugs, nutritional antigens, and hypoxia or hyperoxia (“second inflammatory hit”). This is of particular importance to extremely preterm infants born before 28 weeks, as they have not experienced important “third-trimester” adaptation processes to tolerate maternal and self-antigens. Instead of a balanced adaptation to extrauterine life, the delicate co-regulation between immune defense mechanisms and immunosuppression (tolerance) to allow microbiome establishment is therefore often disturbed. Hence, preterm infants are predisposed to sepsis but also to several injurious conditions that can contribute to the onset or perpetuation of sustained inflammation (SI). This is a continuing challenge to clinicians involved in the care of preterm infants, as SI is regarded as a crucial mediator for mortality and the development of morbidities in preterm infants. This review will outline the (i) role of inflammation for short-term consequences of preterm birth and (ii) the effect of SI on organ development and long-term outcome.
Collapse
|
9
|
Abstract
Cerebral palsy (CP), defined as a group of nonprogressive disorders of movement and posture, is the most common cause of severe neurodisability in children. The prevalence of CP is the same across the globe, affecting approximately 17 million people worldwide. Cerebral Palsy is an umbrella term used to describe the disease due to its inherent heterogeneity. For instance, CP has multiple (1) causes; (2) clinical types; (3) patterns of neuropathology on brain imaging and (4) it's associated with several developmental pathologies such as intellectual disability, autism, epilepsy, and visual impairment. Understanding its physiopathology is crucial to developing protective strategies. Despite its importance, there is still insufficient progress in the areas of CP prediction, early diagnosis, treatment, and prevention. Herein we describe the current risk factors and biomarkers used for the diagnosis and prediction of CP. With the advancement in biomarker discovery, we predict that our understanding of the etiopathophysiology of CP will also increase, lending to more opportunities for developing novel treatments and prognosis.
Collapse
Affiliation(s)
- Zeynep Alpay Savasan
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Beaumont Health System, Royal Oak, MI, United States; Oakland University-William Beaumont School of Medicine, Beaumont Health, Royal Oak, MI, United States.
| | - Sun Kwon Kim
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Beaumont Health System, Royal Oak, MI, United States; Oakland University-William Beaumont School of Medicine, Beaumont Health, Royal Oak, MI, United States
| | - Kyung Joon Oh
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| | - Stewart F Graham
- Oakland University-William Beaumont School of Medicine, Beaumont Health, Royal Oak, MI, United States; Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States
| |
Collapse
|
10
|
McNamara NB, Miron VE. Microglia in developing white matter and perinatal brain injury. Neurosci Lett 2019; 714:134539. [PMID: 31614181 DOI: 10.1016/j.neulet.2019.134539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
Abstract
Perinatal brain injury (PBI) to the developing white matter results in hypomyelination of axons and can cause long-term motor and cognitive deficits e.g. cerebral palsy. There are currently no approved therapies aimed at repairing the white matter following insult, underscoring the need to investigate the mechanisms underlying the pathogenesis of PBI. Microglia have been strongly implicated, but their function and heterogeneity in this context remain poorly understood, posing a barrier to the development of microglia-targeted therapies for white matter repair following PBI. In this review, we discuss the roles of microglia in normal white matter development and in PBI, and potential drug strategies to influence microglial responses in this setting.
Collapse
Affiliation(s)
- Niamh B McNamara
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
11
|
Scheidegger S, Held U, Grass B, Latal B, Hagmann C, Brotschi B. Association of perinatal risk factors with neurological outcome in neonates with hypoxic ischemic encephalopathy. J Matern Fetal Neonatal Med 2019; 34:1020-1027. [PMID: 31117854 DOI: 10.1080/14767058.2019.1623196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Neonates exposed to perinatal insults typically present with hypoxic ischemic encephalopathy (HIE). The aim of our study was to analyze the association between known risk factors for HIE and the severity of encephalopathy after birth and neurological outcome in neonates during the first 4 d of life. METHODS Retrospective cohort study including 174 neonates registered between 2011 and 2013 in the National Asphyxia and Cooling Register of Switzerland. RESULTS None of the studied perinatal risk factors is associated with the severity of encephalopathy after birth. Fetal distress during labor (OR, 2.06; 95% CI, 1.02-4.25, p = .049) and neonatal head circumference (HC) above 10th percentile (p10) at birth (OR, 1.33; 95% CI, 1.05-1.69, p = .02) were associated with neurological benefit in the univariate analysis. Fetal distress on maternal admission for delivery was the only risk factor for neurological harm in the univariate (OR, 0.26; 95% CI, 0.12-0.57, p < .01) and the multivariate analysis (OR, 0.15; 95% CI, 0.04-0.67, p = .013). We identified two different patient scenarios: the probability for neurological benefit during the first 4 d of life was only 20% in neonates with the combination of all the following risk factors (gestational age >41 weeks, chorioamnionitis, fetal distress on maternal admission for delivery, fetal distress during labor, sentinel events during labor, HC below 10th percentile), whereas in the absence of these risk factors the probability for neurological benefit increased to 80%. CONCLUSIONS We identified a constellation of risk factors that influence neurological outcome in neonates with HIE during the first 4 d of life. These findings may help clinicians to counsel parents during the early neonatal period. (ClinicalTrials.gov NCT02800018).
Collapse
Affiliation(s)
- S Scheidegger
- Department of Pediatric and Neonatal Intensive Care, University Childrens' Hospital Zurich, Zurich, Switzerland
| | - U Held
- Department of Pediatric and Neonatal Intensive Care, University Childrens' Hospital Zurich, Zurich, Switzerland
| | - B Grass
- Department of Pediatric and Neonatal Intensive Care, University Childrens' Hospital Zurich, Zurich, Switzerland
| | - B Latal
- Department of Pediatric and Neonatal Intensive Care, University Childrens' Hospital Zurich, Zurich, Switzerland
| | - C Hagmann
- Department of Pediatric and Neonatal Intensive Care, University Childrens' Hospital Zurich, Zurich, Switzerland
| | - B Brotschi
- Department of Pediatric and Neonatal Intensive Care, University Childrens' Hospital Zurich, Zurich, Switzerland
| | -
- Department of Pediatric and Neonatal Intensive Care, University Childrens' Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Izvolskaia MS, Sharova VS, Ignatiuk VM, Voronova SN, Zakharova LA. Abolition of prenatal lipopolysaccharide-induced reproductive disorders in rat male offspring by fulvestrant. Andrologia 2018; 51:e13204. [DOI: 10.1111/and.13204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Marina S. Izvolskaia
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| | - Victoria S. Sharova
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| | | | - Svetlana N. Voronova
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| | - Liudmila A. Zakharova
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
13
|
Abstract
Advances in neonatal care have allowed premature infants to survive at earlier gestational ages, but they are often afflicted with neurological delays or deficits. Maternal inflammation has been identified as a major risk factor for premature birth and once born, infants often require supplemental oxygen for survival. Nurr1 (NR4A2) is an orphan nuclear receptor with no known binding site and is essential for the growth of midbrain dopamine neurons. Others have reported that Nurr1 can act as an anti-inflammatory transcription factor in microglia and astrocytes and respond lipopolysaccharide (LPS). We have previously reported decreased numbers of oligodendrocytes and increased numbers of microglia in the mice exposed to both maternal inflammation and neonatal hyperoxia in the perinatal period. These studies tested the hypothesis that the combined exposures to inflammation and hyperoxia would increase Nurr1 expression in microglia in our mouse model and in an immortalized microglia cell line, BV2 cells. Our data indicate that Nurr1 protein expression is increased at postnatal day 0 and postnatal day 28 in whole-brain homogenates from mice exposed to LPS and hyperoxia. Alternatively, Nurr1 message is decreased at postnatal day 60 in isolated microglia, indicating that the increases in whole-brain homogenates may be due to other cell types. In BV2 cells, Nurr1 message in increased by exposure to hyperoxia, but this increase is attenuated in cells exposed to both LPS and hyperoxia. Although Nurr1 regulation is not straightforward, these data indicate that Nurr1 expression is increased in whole-brain homogenates in response to inflammation, but is decreased in isolated primary microglia and BV2 cells in response to similar inflammation. Our data support the hypothesis that Nurr1 expression may play a significant role in regulating inflammation in the brain and understanding the complex regulation of Nurr1 could lead to new therapeutic strategies.
Collapse
|
14
|
Ginsberg Y, Khatib N, Weiss B, Arison S, Ross MG, Weiner Z, Beloosesky R. Magnesium sulfate (MG) prevents maternal inflammation induced offspring cerebral injury evident on MRI but not via IL-1β. Neuroscience 2017; 353:98-105. [PMID: 28412496 DOI: 10.1016/j.neuroscience.2017.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 01/25/2023]
Abstract
OBJECTIVE As maternal treatment with magnesium sulfate (MG) may protect the fetal brain, we sought to assess the inflammation associated neuroprotective potential of MG and its association to interleukin 1β (IL-1β). METHODS Pregnant Sprague-Dawley rats at 18-day gestation received i.p. lipopolysaccharide (LPS) or saline. Dams were randomized to treatment with s.c. saline (control), or MG prior to or following the i.p. injection, resulting in three groups. At the end of the treatment, fetal brain IL-1β was quantified for 18 pregnant rats (six of each group). Another 18 pregnant rats delivered spontaneously and pups were allowed to mature. At postnatal day 25, female offspring were examined by magnetic resonance imaging (MRI) and analyzed using voxel based analysis. Apparent diffusion coefficient (ADC) and T2 relaxation protocols were performed to assess white and gray matter injury. RESULTS Offspring of LPS-treated dams exhibited (1) significantly increased T2 levels, and (2) increased ADC levels in white and gray matter, consistent with diffuse cerebral injury. Offspring of MG-treated LPS dams demonstrated similar T2 and ADC levels as control dams. Fetal brain IL-1β was significantly increased following maternal LPS compared to control (0.125±0.01 vs 0.100±0.01u, p<0.05). No significant decrease in IL-1β level was observed in response to maternal MG. CONCLUSIONS Maternal LPS-induced neonatal brain injury can be prevented by maternal MG. Maternal MG therapy may be effective in human deliveries associated with maternal/fetal inflammation. The absence of a decrease in fetus brain levels of IL-1β following MG treatment implies that the mechanism of MG is not through inhibition of IL-1β production. SIGNIFICANCE STATEMENT Intrauterine fetal exposure to maternal inflammation and pro-inflammatory cytokines is associated with adverse offspring neurological outcomes. Although its precise mechanism is not elucidated, magnesium sulfate (MG) is commonly used as neuroprotection for white matter brain injuries in preterm fetuses. A proposed mechanism involves the ability of MG to reduce pro-inflammatory cytokine levels. In the current study, we used a rat model of LPS-induced maternal inflammation to investigate the short-term effect of MG on fetal brain IL-1β levels, and its long-term neuroprotective effect on the offspring brain by using MRI. We demonstrated that maternal administration of MG can prevent long-term neonatal brain injury but, since no decrease was observed in fetal brain IL-1β levels, the neuro-protective mechanism of MG is not mediated by inhibition of IL-1β production.
Collapse
Affiliation(s)
- Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel.
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Boaz Weiss
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
| | - Shay Arison
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Michael G Ross
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and Los Angeles Biomedical Institute, Torrance, CA, United States
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
15
|
Bear JJ, Wu YW. Maternal Infections During Pregnancy and Cerebral Palsy in the Child. Pediatr Neurol 2016; 57:74-9. [PMID: 26857522 PMCID: PMC4801683 DOI: 10.1016/j.pediatrneurol.2015.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/19/2015] [Accepted: 12/19/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chorioamnionitis is a risk factor for cerebral palsy. The relationship between extra-amniotic infections and cerebral palsy is less well studied. We examined maternal intra-amniotic and extra-amniotic infections and risk of cerebral palsy in the child. METHODS Among a retrospective cohort of 6 million Californian births, 1991-2001, we analyzed administrative maternal and newborn hospital discharge abstracts linked to records of all children receiving services for cerebral palsy at the California Department of Developmental Services. We identified maternal hospital diagnoses of intra-amniotic (chorioamnionitis) and extra-amniotic (other genitourinary and respiratory) infections occurring up to 12 months before delivery. Using multivariable logistic regression, we determined the independent association between maternal infections and cerebral palsy, adjusting for infant sex, maternal age, race, education, socioeconomic status, and obesity. RESULTS About 5.5% of mothers had a hospital discharge diagnosis of at least one of the following: chorioamnionitis (2.0%), other genitourinary (3.1%), and respiratory infection (0.6%). An infection diagnosis was more common in mothers of the 8473 infants with cerebral palsy than in mothers of unaffected children (13.7% vs 5.5%, P < 0.001). All three types of maternal infections (chorioamnionitis, odds ratio [OR] 3.1, 95% confidence interval [CI] 2.9-3.4; other genitourinary infection, OR 1.4, 95% CI 1.3-1.6; and respiratory infection, OR 1.9, 95% CI 1.5-2.2) were associated with cerebral palsy in multivariable analyses. Maternal extra-amniotic infections, whether diagnosed during prenatal or birth hospitalizations, conferred an increased risk of cerebral palsy. CONCLUSIONS Maternal extra-amniotic infections diagnosed in the hospital during pregnancy are associated with a modestly increased risk of cerebral palsy in the child.
Collapse
Affiliation(s)
- Joshua J Bear
- Departments of Neurology and Pediatrics, University of California, San Francisco, UCSF Pediatric Brain Center, San Francisco, California.
| | - Yvonne W Wu
- Departments of Neurology and Pediatrics, University of California, San Francisco, UCSF Pediatric Brain Center, San Francisco, California
| |
Collapse
|
16
|
van Tilborg E, Heijnen CJ, Benders MJ, van Bel F, Fleiss B, Gressens P, Nijboer CH. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog Neurobiol 2015; 136:28-49. [PMID: 26655283 DOI: 10.1016/j.pneurobio.2015.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates.
Collapse
Affiliation(s)
- Erik van Tilborg
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobbi Fleiss
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Evonuk KS, Baker BJ, Doyle RE, Moseley CE, Sestero CM, Johnston BP, De Sarno P, Tang A, Gembitsky I, Hewett SJ, Weaver CT, Raman C, DeSilva TM. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. THE JOURNAL OF IMMUNOLOGY 2015; 195:450-463. [PMID: 26071560 DOI: 10.4049/jimmunol.1401108] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/11/2015] [Indexed: 01/15/2023]
Abstract
T cell infiltration into the CNS is a significant underlying pathogenesis in autoimmune inflammatory demyelinating diseases. Several lines of evidence suggest that glutamate dysregulation in the CNS is an important consequence of immune cell infiltration in neuroinflammatory demyelinating diseases; yet, the causal link between inflammation and glutamate dysregulation is not well understood. A major source of glutamate release during oxidative stress is the system Xc(-) transporter; however, this mechanism has not been tested in animal models of autoimmune inflammatory demyelination. We find that pharmacological and genetic inhibition of system Xc(-) attenuates chronic and relapsing-remitting experimental autoimmune encephalomyelitis (EAE). Remarkably, pharmacological blockade of system Xc(-) 7 d after induction of EAE attenuated T cell infiltration into the CNS, but not T cell activation in the periphery. Mice harboring a Slc7a11 (xCT) mutation that inactivated system Xc(-) were resistant to EAE, corroborating a central role for system Xc(-) in mediating immune cell infiltration. We next examined the role of the system Xc(-) transporter in the CNS after immune cell infiltration. Pharmacological inhibitors of the system Xc(-) transporter administered during the first relapse in a SJL animal model of relapsing-remitting EAE abrogated clinical disease, inflammation, and myelin loss. Primary coculture studies demonstrate that myelin-specific CD4(+) Th1 cells provoke microglia to release glutamate via the system Xc(-) transporter, causing excitotoxic death to mature myelin-producing oligodendrocytes. Taken together, these studies support a novel role for the system Xc(-) transporter in mediating T cell infiltration into the CNS as well as promoting myelin destruction after immune cell infiltration in EAE.
Collapse
Affiliation(s)
- Kirsten S Evonuk
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Brandi J Baker
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Ryan E Doyle
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Carson E Moseley
- Department of Pathology, University of Alabama at Birmingham, AL, 35294
| | - Christine M Sestero
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Biology, Chemistry, and Mathematics, University of Montevallo, Montevallo, AL 35115
| | - Bryce P Johnston
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Patrizia De Sarno
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Andrew Tang
- Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Igor Gembitsky
- Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, 13244
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, AL, 35294
| | - Chander Raman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Tara M DeSilva
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294
| |
Collapse
|
18
|
Fleiss B, Tann CJ, Degos V, Sigaut S, Van Steenwinckel J, Schang AL, Kichev A, Robertson NJ, Mallard C, Hagberg H, Gressens P. Inflammation-induced sensitization of the brain in term infants. Dev Med Child Neurol 2015; 57 Suppl 3:17-28. [PMID: 25800488 DOI: 10.1111/dmcn.12723] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Perinatal insults are a leading cause of infant mortality and amongst survivors are frequently associated with neurocognitive impairment, cerebral palsy (CP), and seizure disorders. The events leading to perinatal brain injury are multifactorial. This review describes how one subinjurious factor affecting the brain sensitizes it to a second injurious factor, causing an exacerbated injurious cascade. We will review the clinical and experimental evidence, including observations of high rates of maternal and fetal infections in term-born infants with neonatal encephalopathy and cerebral palsy. In addition, we will discuss preclinical evidence for the sensitizing effects of inflammation on injuries, such as hypoxia-ischaemia, our current understanding of the mechanisms underpinning the sensitization process, and the possibility for neuroprotection.
Collapse
Affiliation(s)
- Bobbi Fleiss
- Inserm, U1141, Paris, France; University Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; Department of Child Neurology, APHP, Robert Debré Hospital, Paris, France; PremUP, Paris, France; Division of Imaging Sciences, Department of Perinatal Imaging and Health, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wischhof L, Irrsack E, Osorio C, Koch M. Prenatal LPS-exposure--a neurodevelopmental rat model of schizophrenia--differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:17-30. [PMID: 25455585 DOI: 10.1016/j.pnpbp.2014.10.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023]
Abstract
Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. Gender differences can be seen in various features of the illness and sex steroid hormones (e.g. estrogen) have strongly been implicated in the disease pathology. In the present study, we evaluated sex differences in the effects of prenatal exposure to a bacterial endotoxin (lipopolysaccharide, LPS) in rats. Pregnant dams received LPS-injections (100 μg/kg) at gestational day 15 and 16. The offspring was then tested for prepulse inhibition (PPI), locomotor activity, anxiety-like behavior and object recognition memory at various developmental time points. At postnatal day (PD) 33 and 60, prenatally LPS-exposed rats showed locomotor hyperactivity which was similar in male and female offspring. Moreover, prenatal LPS-treatment caused PPI deficits in pubertal (PD45) and adult (PD90) males while PPI impairments were found only at PD45 in prenatally LPS-treated females. Following prenatal LPS-administration, recognition memory for objects was impaired in both sexes with males being more severely affected. Additionally, we assessed prenatal infection-induced alterations of parvalbumin (Parv) expression and myelin fiber density. Male offspring born to LPS-challenged mothers showed decreased myelination in cortical and limbic brain regions as well as reduced numbers of Parv-expressing cells in the medial prefrontal cortex (mPFC), hippocampus and entorhinal cortex. In contrast, LPS-exposed female rats showed only a modest decrease in myelination and Parv immunoreactivity. Collectively, our data indicate that some of the prenatal immune activation effects are sex dependent and further strengthen the importance of taking into account gender differences in animal models of schizophrenia.
Collapse
Affiliation(s)
- Lena Wischhof
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany.
| | - Ellen Irrsack
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Carmen Osorio
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Michael Koch
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| |
Collapse
|
20
|
Sharova VS, Izvolskaia MS, Zakharova LA. Lipopolysaccharide-induced maternal inflammation affects the gonadotropin-releasing hormone neuron development in fetal mice. Neuroimmunomodulation 2015; 22:222-32. [PMID: 25341493 DOI: 10.1159/000365482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/25/2014] [Indexed: 11/19/2022] Open
Abstract
Recent studies provide evidence that prenatal immunological stress may affect the programming of reproductive health and sexual behavior in adult animals. The aim of this study was to investigate the influence of maternal inflammation, induced by an intraperitoneal (i.p.) injection of lipopolysaccharide (LPS, 45 µg/kg) on embryonic day 11.5 (E 11.5), on the development of the gonadotropin-releasing hormone (GnRH) system in mouse fetuses as well as on the proinflammatory cytokine level in pregnant mice and their fetuses. In the fetuses, the GnRH neuron migration from the olfactory pit to the forebrain was estimated on embryonic days 14.5 and 18.5. The levels of the proinflammatory cytokines interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, tumor necrosis factor (TNF)-α and leukemia inhibitory factor (LIF) were measured with the cytometric bead and ELISA array method in the maternal and fetal blood, amniotic fluid and fetal cerebrospinal fluid (CSF). According to our data, activation of the immune system by LPS treatment on embryonic day 11.5 leads to an increased quantity of neurons in the nasal and olfactory bulb areas and a decreased quantity in the forebrain area on embryonic day 14.5. There was a slight decrease in the total number of neurons in the forebrain area on embryonic day 18.5. The levels of proinflammatory cytokines were significantly increased within 3 h after LPS treatment in the maternal and fetal blood, amniotic fluid and fetal CSF. IL-6-receptor immunoreactivity was detected on olfactory/vomeronasal axons. Thus, prenatal immunological stress delays the GnRH neuron migration in the nasal compartment of mouse fetuses, which may be mediated by the regulation of IL-6, MCP-1 and LIF secretion in the maternal-fetal system.
Collapse
Affiliation(s)
- Victoria S Sharova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
21
|
Korzeniewski SJ, Romero R, Cortez J, Pappas A, Schwartz AG, Kim CJ, Kim JS, Kim YM, Yoon BH, Chaiworapongsa T, Hassan SS. A "multi-hit" model of neonatal white matter injury: cumulative contributions of chronic placental inflammation, acute fetal inflammation and postnatal inflammatory events. J Perinat Med 2014; 42:731-43. [PMID: 25205706 PMCID: PMC5987202 DOI: 10.1515/jpm-2014-0250] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We sought to determine whether cumulative evidence of perinatal inflammation was associated with increased risk in a "multi-hit" model of neonatal white matter injury (WMI). METHODS This retrospective cohort study included very preterm (gestational ages at delivery <32 weeks) live-born singleton neonates delivered at Hutzel Women's Hospital, Detroit, MI, from 2006 to 2011. Four pathologists blinded to clinical diagnoses and outcomes performed histological examinations according to standardized protocols. Neurosonography was obtained per routine clinical care. The primary indicator of WMI was ventriculomegaly (VE). Neonatal inflammation-initiating illnesses included bacteremia, surgical necrotizing enterocolitis, other infections, and those requiring mechanical ventilation. RESULTS A total of 425 live-born singleton neonates delivered before the 32nd week of gestation were included. Newborns delivered of pregnancies affected by chronic chorioamnionitis who had histologic evidence of an acute fetal inflammatory response were at increased risk of VE, unlike those without funisitis, relative to referent newborns without either condition, adjusting for gestational age [odds ratio (OR) 4.7; 95% confidence interval (CI) 1.4-15.8 vs. OR 1.3; 95% CI 0.7-2.6]. Similarly, newborns with funisitis who developed neonatal inflammation-initiating illness were at increased risk of VE, unlike those who did not develop such illness, compared to the referent group without either condition [OR 3.6 (95% CI 1.5-8.3) vs. OR 1.7 (95% CI 0.5-5.5)]. The greater the number of these three types of inflammation documented, the higher the risk of VE (P<0.0001). CONCLUSION Chronic placental inflammation, acute fetal inflammation, and neonatal inflammation-initiating illness seem to interact in contributing risk information and/or directly damaging the developing brain of newborns delivered very preterm.
Collapse
|
22
|
Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 2014; 10:643-60. [PMID: 25311587 DOI: 10.1038/nrneurol.2014.187] [Citation(s) in RCA: 607] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.
Collapse
|
23
|
Microglia toxicity in preterm brain injury. Reprod Toxicol 2014; 48:106-12. [PMID: 24768662 PMCID: PMC4155935 DOI: 10.1016/j.reprotox.2014.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/01/2014] [Accepted: 04/14/2014] [Indexed: 01/07/2023]
Abstract
Microglia responses in the preterm human brain in association with injury. Microglia responses in animal models of preterm brain injury. Mechanisms of microglia toxicity from in vitro primary microglia cell culture experiments.
Microglia are the resident phagocytic cells of the central nervous system. During brain development they are also imperative for apoptosis of excessive neurons, synaptic pruning, phagocytosis of debris and maintaining brain homeostasis. Brain damage results in a fast and dynamic microglia reaction, which can influence the extent and distribution of subsequent neuronal dysfunction. As a consequence, microglia responses can promote tissue protection and repair following brain injury, or become detrimental for the tissue integrity and functionality. In this review, we will describe microglia responses in the human developing brain in association with injury, with particular focus on the preterm infant. We also explore microglia responses and mechanisms of microglia toxicity in animal models of preterm white matter injury and in vitro primary microglia cell culture experiments.
Collapse
|
24
|
Kaminski EL, Falavigna A, Venturin GT, Marinowic D, Bagatini PB, Xavier LL, DaCosta JC. Two intrathecal transplants of bone marrow mononuclear cells produce motor improvement in an acute and severe model of spinal cord injury. COLUNA/COLUMNA 2013. [DOI: 10.1590/s1808-18512013000400001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE: We studied transplants of bone marrow mononuclear cells (BMMC) by lumbar puncture (LP) in a severe model of spinal cord injury (SCI) using clip compression. METHODS: BMMCs or saline solution were transplanted by LP 48 hours and 9 days post injury. Motor function was evaluated by BBB scale, histological analysis by Nissl technique and the verification of cell migration by PCR analysis. RESULTS: The BBB had significantly improved in rats treated with BMMCs by LP compared with controls (p<0.001). The histological analysis did not showed difference in the lesional area between the groups. The PCR analysis was able to found BMMCs in the injury site. CONCLUSIONS: two BMMC transplants by LP improved motor function in a severe model of SCI and BMMC was found in the injury site.
Collapse
Affiliation(s)
| | | | | | - Daniel Marinowic
- Pontifícia Universidade Católica do Rio Grande do Sul, Brasil; Pontifícia Universidade Católica do Rio Grande do Sul, Brasil
| | | | | | | |
Collapse
|
25
|
Perinatal inflammation results in decreased oligodendrocyte numbers in adulthood. Life Sci 2013; 94:164-71. [PMID: 24291255 DOI: 10.1016/j.lfs.2013.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 12/31/2022]
Abstract
AIMS Maternal inflammation is a risk factor for preterm birth, and premature infants are often exposed to supplemental oxygen as a life-sustaining therapy. While more immature neonates are surviving, rates of neurodevelopmental impairment are not improving. We developed a novel mouse model with clinically relevant exposures to test the hypothesis that systemic maternal inflammation with transient neonatal hyperoxia exposure will induce a phenotype similar to diffuse periventricular leukomalacia (PVL) like that observed in premature human infants. MAIN METHODS Timed-pregnant C3H/HeN mice received intraperitoneal injections of lipopolysaccharide (LPS) or saline on embryonic day 16. Newborn pups were placed in room air (RA) or 85% oxygen (O2) for 14 days, followed by 14 days in RA recovery. Oligodendroglial and microglial populations were evaluated at 14 and 28 days. KEY FINDINGS Brain weight to body weight ratios were lower in mice exposed to LPS. Oligodendrocyte numbers were decreased significantly in the cerebral cortex and hippocampus in groups exposed to LPS or LPS/O2 at 14 days, and persisted in the cerebral cortex at 28 days for LPS/O2 mice. At day 14, cleaved caspase 3 was increased and numbers of microglia were elevated in the cerebral cortex and hippocampus of LPS/O2 animals. SIGNIFICANCE These data indicate that combining systemic maternal LPS and neonatal hyperoxic exposure impairs myelination, and suggests that this novel mouse model may represent a subtle, diffuse form of periventricular white matter injury that could provide a clinically relevant platform for further study of perinatal brain injury.
Collapse
|
26
|
Bennet L, Van Den Heuij L, M Dean J, Drury P, Wassink G, Jan Gunn A. Neural plasticity and the Kennard principle: does it work for the preterm brain? Clin Exp Pharmacol Physiol 2013; 40:774-84. [DOI: 10.1111/1440-1681.12135] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Laura Bennet
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Lotte Van Den Heuij
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Justin M Dean
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Paul Drury
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Guido Wassink
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Alistair Jan Gunn
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| |
Collapse
|
27
|
Prenatal immune challenge in rats increases susceptibility to seizure-induced brain injury in adulthood. Brain Res 2013; 1519:78-86. [DOI: 10.1016/j.brainres.2013.04.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 01/22/2023]
|
28
|
Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:20-34. [PMID: 22122877 DOI: 10.1016/j.pnpbp.2011.11.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/18/2011] [Accepted: 11/09/2011] [Indexed: 12/27/2022]
Abstract
There is increasing interest in and evidence for altered immune factors in the etiology and pathophysiology of schizophrenia. Stimulated by various epidemiological findings reporting elevated risk of schizophrenia following prenatal exposure to infection, one line of current research aims to explore the potential contribution of immune-mediated disruption of early brain development in the precipitation of long-term psychotic disease. Since the initial formulation of the "prenatal cytokine hypothesis" more than a decade ago, extensive epidemiological research and remarkable advances in modeling prenatal immune activation effects in animal models have provided strong support for this hypothesis by underscoring the critical role of cytokine-associated inflammatory events, together with downstream pathophysiological processes such as oxidative stress, hypoferremia and zinc deficiency, in mediating the short- and long-term neurodevelopmental effects of prenatal infection. Longitudinal studies in animal models further indicate that infection-induced developmental neuroinflammation may be pathologically relevant beyond the antenatal and neonatal periods, and may contribute to disease progression associated with the gradual development of full-blown schizophrenic disease. According to this scenario, exposure to prenatal immune challenge primes early pre- and postnatal alterations in peripheral and central inflammatory response systems, which in turn may disrupt the normal development and maturation of neuronal systems from juvenile to adult stages of life. Such developmental neuroinflammation may adversely affect processes that are pivotal for normal brain maturation, including myelination, synaptic pruning, and neuronal remodeling, all of which occur to a great extent during postnatal brain maturation. Undoubtedly, our understanding of the role of developmental neuroinflammation in progressive brain changes relevant to schizophrenia is still in infancy. Identification of these mechanisms would be highly warranted because they may represent a valuable target to attenuate or even prevent the emergence of full-blown brain and behavioral pathology, especially in individuals with a history of prenatal complications such as in-utero exposure to infection and/or inflammation.
Collapse
|
29
|
Degos V, Peineau S, Nijboer C, Kaindl AM, Sigaut S, Favrais G, Plaisant F, Teissier N, Gouadon E, Lombet A, Saliba E, Collingridge GL, Maze M, Nicoletti F, Heijnen C, Mantz J, Kavelaars A, Gressens P. G protein-coupled receptor kinase 2 and group I metabotropic glutamate receptors mediate inflammation-induced sensitization to excitotoxic neurodegeneration. Ann Neurol 2013; 73:667-78. [PMID: 23494575 DOI: 10.1002/ana.23868] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 01/03/2013] [Accepted: 02/05/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The concept of inflammation-induced sensitization is emerging in the field of perinatal brain injury, stroke, Alzheimer disease, and multiple sclerosis. However, mechanisms underpinning this process remain unidentified. METHODS We combined in vivo systemic lipopolysaccharide-induced or interleukin (IL)-1β-induced sensitization of neonatal and adult rodent cortical neurons to excitotoxic neurodegeneration with in vitro IL-1β sensitization of human and rodent neurons to excitotoxic neurodegeneration. Within these inflammation-induced sensitization models, we assessed metabotropic glutamate receptors (mGluR) signaling and regulation. RESULTS We demonstrate for the first time that group I mGluRs mediate inflammation-induced sensitization to neuronal excitotoxicity in neonatal and adult neurons across species. Inflammation-induced G protein-coupled receptor kinase 2 (GRK2) downregulation and genetic deletion of GRK2 mimicked the sensitizing effect of inflammation on excitotoxic neurodegeneration. Thus, we identify GRK2 as a potential molecular link between inflammation and mGluR-mediated sensitization. INTERPRETATION Collectively, our findings indicate that inflammation-induced sensitization is universal across species and ages and that group I mGluRs and GRK2 represent new avenues for neuroprotection in perinatal and adult neurological disorders.
Collapse
|
30
|
Rousset CI, Kassem J, Aubert A, Planchenault D, Gressens P, Chalon S, Belzung C, Saliba E. Maternal exposure to lipopolysaccharide leads to transient motor dysfunction in neonatal rats. Dev Neurosci 2013; 35:172-81. [PMID: 23445561 DOI: 10.1159/000346579] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
Epidemiological and experimental data implicate maternal infection and inflammation in the etiology of brain white matter injury, which may lead to cerebral palsy in preterm newborns. Our aim was to investigate motor development of the offspring after maternal administration of lipopolysaccharide (LPS). Wistar rats were intraperitoneally injected with Escherichia coli LPS or saline on gestational days 19 and 20. From birth to 3 weeks, pups were tested for neurobehavioral development, neurological signs and reflexes. From 3 to 6 weeks, motor coordination was investigated. At 4 months, animals were tested for locomotion. Brain myelination was assessed by myelin basic protein immunohistochemistry. Days of appearance of several neurological reflexes were significantly delayed, and neonate LPS pups displayed retarded performance in righting, gait and negative geotaxis. At the juvenile stage, LPS animals showed important impairment in coordination. However, although the LPS group performed worse in most tests, they reached vehicle levels by 5 weeks. At 4 months, LPS animals did not show variations in locomotion performances compared to vehicle. No myelination differences have been observed in the brains at adulthood. Maternal LPS administration results in delayed motor development even though these alterations fade to reach control level by 5 weeks. Motor impairments observed at the early stage in this study could be linked to previously reported hypomyelination of the white matter induced by maternal LPS challenge in the neonates. Finally, the normal myelination shown here at adulthood may explain the functional recovery of the animals and suggest either a potential remyelination of the brain or a delayed myelination in LPS pups.
Collapse
|
31
|
Ramanantsoa N, Fleiss B, Bouslama M, Matrot B, Schwendimann L, Cohen-Salmon C, Gressens P, Gallego J. Bench to cribside: the path for developing a neuroprotectant. Transl Stroke Res 2012; 4:258-77. [PMID: 24323277 DOI: 10.1007/s12975-012-0233-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/06/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022]
Abstract
The consequences of perinatal brain injury include immeasurable anguish for families and substantial ongoing costs for care and support of effected children. Factors associated with perinatal brain injury in the preterm infant include inflammation and infection, and with increasing gestational age, a higher proportion is related to hypoxic-ischemic events, such as stroke and placental abruption. Over the past decade, we have acquired new insights in the mechanisms underpinning injury and many new tools to monitor outcome in perinatal brain injury in our experimental models. By embracing these new technologies, we can expedite the screening of novel therapies. This is critical as despite enormous efforts of the research community, hypothermia is the only viable neurotherapeutic, and this procedure is limited to term birth and postcardiac arrest hypoxic-ischemic events. Importantly, experimental and preliminary data in humans also indicate a considerable therapeutic potential for melatonin against perinatal brain injury. However, even if this suggested potential is proven, the complexity of the human condition means we are likely to need additional neuroprotective and regenerative strategies. Thus, within this review, we will outline what we consider the key stages of preclinical testing and development for a neuroprotectant or regenerative neurotherapy for perinatal brain injury. We will also highlight examples of novel small animal physiological and behavioral testing that gives small animal preclinical models greater clinical relevance. We hope these new tools and an integrated bench to cribside strategic plan will facilitate the fulfillment of our overarching goal, improving the long-term brain health and quality of life for infants suffering perinatal brain injury.
Collapse
Affiliation(s)
- Nelina Ramanantsoa
- Inserm U676, Hopital Robert Debre, 48 Blvd Serurier, 75019, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Brehmer F, Bendix I, Prager S, van de Looij Y, Reinboth BS, Zimmermanns J, Schlager GW, Brait D, Sifringer M, Endesfelder S, Sizonenko S, Mallard C, Bührer C, Felderhoff-Mueser U, Gerstner B. Interaction of inflammation and hyperoxia in a rat model of neonatal white matter damage. PLoS One 2012; 7:e49023. [PMID: 23155446 PMCID: PMC3498343 DOI: 10.1371/journal.pone.0049023] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/03/2012] [Indexed: 12/27/2022] Open
Abstract
Intrauterine infection and inflammation are major reasons for preterm birth. The switch from placenta-mediated to lung-mediated oxygen supply during birth is associated with a sudden rise of tissue oxygen tension that amounts to relative hyperoxia in preterm infants. Both infection/inflammation and hyperoxia have been shown to be involved in brain injury of preterm infants. Hypothesizing that they might be additive or synergistic, we investigated the influence of a systemic lipopolysaccharide (LPS) application on hyperoxia-induced white matter damage (WMD) in newborn rats. Three-day-old Wistar rat pups received 0.25 mg/kg LPS i.p. and were subjected to 80% oxygen on P6 for 24 h. The extent of WMD was assessed by immunohistochemistry, western blots, and diffusion tensor (DT) magnetic resonance imaging (MRI). In addition, the effects of LPS and hyperoxia were studied in an in vitro co-culture system of primary rat oligodendrocytes and microglia cells. Both noxious stimuli, hyperoxia, and LPS caused hypomyelination as revealed by western blot, immunohistochemistry, and altered WM microstructure on DT-MRI. Even so, cellular changes resulting in hypomyelination seem to be different. While hyperoxia induces cell death, LPS induces oligodendrocyte maturity arrest without cell death as revealed by TUNEL-staining and immunohistological maturation analysis. In the two-hit scenario cell death is reduced compared with hyperoxia treated animals, nevertheless white matter alterations persist. Concordantly with these in vivo findings we demonstrate that LPS pre-incubation reduced premyelinating-oligodendrocyte susceptibility towards hyperoxia in vitro. This protective effect might be caused by upregulation of interleukin-10 and superoxide dismutase expression after LPS stimulation. Reduced expression of transcription factors controlling oligodendrocyte development and maturation further indicates oligodendrocyte maturity arrest. The knowledge about mechanisms that triggered hypomyelination contributes to a better understanding of WMD in premature born infants.
Collapse
Affiliation(s)
- Felix Brehmer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int 2011; 2:107. [PMID: 21886880 PMCID: PMC3157093 DOI: 10.4103/2152-7806.83391] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022] Open
Abstract
Some individuals suffering from mild traumatic brain injuries, especially repetitive mild concussions, are thought to develop a slowly progressive encephalopathy characterized by a number of the neuropathological elements shared with various neurodegenerative diseases. A central pathological mechanism explaining the development of progressive neurodegeneration in this subset of individuals has not been elucidated. Yet, a large number of studies indicate that a process called immunoexcitotoxicity may be playing a central role in many neurodegenerative diseases including chronic traumatic encephalopathy (CTE). The term immunoexcitotoxicity was first coined by the lead author to explain the evolving pathological and neurodevelopmental changes in autism and the Gulf War Syndrome, but it can be applied to a number of neurodegenerative disorders. The interaction between immune receptors within the central nervous system (CNS) and excitatory glutamate receptors trigger a series of events, such as extensive reactive oxygen species/reactive nitrogen species generation, accumulation of lipid peroxidation products, and prostaglandin activation, which then leads to dendritic retraction, synaptic injury, damage to microtubules, and mitochondrial suppression. In this paper, we discuss the mechanism of immunoexcitotoxicity and its link to each of the pathophysiological and neurochemical events previously described with CTE, with special emphasis on the observed accumulation of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, LLC Visiting Professor of Biology, Belhaven University, Jackson, MS 315 Rolling Meadows Rd, Ridgeland, MS 39157, USA
| | | |
Collapse
|
34
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. Reprint of "The developing oligodendrocyte: key cellular target in brain injury in the premature infant". Int J Dev Neurosci 2011; 29:565-82. [PMID: 21802506 DOI: 10.1016/j.ijdevneu.2011.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
35
|
Meyer U, Feldon J, Dammann O. Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatr Res 2011; 69:26R-33R. [PMID: 21289540 PMCID: PMC3086802 DOI: 10.1203/pdr.0b013e318212c196] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prenatal exposure to infection and subsequent inflammatory responses have been implicated in the etiology of schizophrenia and autism. In this review, we summarize current evidence from human and animal studies supporting the hypothesis that the pathogenesis of these two disorders is linked via exposure to inflammation at early stages of development. Moreover, we propose a hypothetical model in which inflammatory mechanisms may account for multiple shared and disorder-specific pathological characteristics of both entities. In essence, our model suggests that acute neuroinflammation during early fetal development may be relevant for the induction of psychopathological and neuropathological features shared by schizophrenia and autism, whereas postacute latent and persistent inflammation may contribute to schizophrenia- and autism-specific phenotypes, respectively.
Collapse
Affiliation(s)
- Urs Meyer
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland.
| | | | | |
Collapse
|
36
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 2011; 29:423-40. [PMID: 21382469 DOI: 10.1016/j.ijdevneu.2011.02.012] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/10/2011] [Accepted: 02/27/2011] [Indexed: 01/16/2023] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
37
|
Boksa P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 2010; 24:881-97. [PMID: 20230889 DOI: 10.1016/j.bbi.2010.03.005] [Citation(s) in RCA: 462] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/31/2022] Open
Abstract
Epidemiological studies with human populations indicate associations between maternal infection during pregnancy and increased risk in offspring for central nervous system (CNS) disorders including schizophrenia, autism and cerebral palsy. Since 2000, a large number of studies have used rodent models of systemic prenatal infection or prenatal immune activation to characterize changes in brain function and behavior caused by the prenatal insult. This review provides a comprehensive summary of these findings, and examines consistencies and trends across studies in an effort to provide a perspective on our current state of understanding from this body of work. Results from these animal modeling studies clearly indicate that prenatal immune activation can cause both acute and lasting changes in behavior and CNS structure and function in offspring. Across laboratories, studies vary with respect to the type, dose and timing of immunogen administration during gestation, species used, postnatal age examined and specific outcome measure quantified. This makes comparison across studies and assessment of replicability difficult. With regard to mechanisms, evidence for roles for several acute mediators of effects of prenatal immune activation has emerged, including circulating interleukin-6, increased placental cytokines and oxidative stress in the fetal brain. However, information required to describe the complete mechanistic pathway responsible for acute effects of prenatal immune activation on fetal brain is lacking, and no studies have yet addressed the issue of how acute prenatal exposure to an immunogen is transduced into a long-term CNS change in the postnatal animal. Directions for further research are discussed.
Collapse
Affiliation(s)
- Patricia Boksa
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Verdun, Quebec, Canada.
| |
Collapse
|
38
|
Adén U, Favrais G, Plaisant F, Winerdal M, Felderhoff-Mueser U, Lampa J, Lelièvre V, Gressens P. Systemic inflammation sensitizes the neonatal brain to excitotoxicity through a pro-/anti-inflammatory imbalance: key role of TNFalpha pathway and protection by etanercept. Brain Behav Immun 2010; 24:747-58. [PMID: 19861157 DOI: 10.1016/j.bbi.2009.10.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022] Open
Abstract
Systemic inflammation sensitizes the perinatal brain to an ischemic/excitotoxic insult but the mechanisms are poorly understood. We hypothesized that the mechanisms involve an imbalance between pro- and anti-inflammatory factors. A well characterized mouse model where a systemic injection of IL-1beta during the first five postnatal days (inflammatory insult) is combined with an intracerebral injection of the glutamatergic analogue ibotenate (excitotoxic insult) at postnatal day 5 was used. Following the inflammatory insult alone, there was a transient induction of IL-1beta and TNFalpha, compared with controls measured by quantitative PCR, ELISA, and Western blot. Following the combined inflammatory and excitotoxic insult, there was an induction of IL-1beta, TNFalpha, and IL-6 but not of IL-10 and TNFR1, indicating an altered pro-/anti-inflammatory balance after IL-1beta sensitized lesion. We then tested the hypothesis that the TNFalpha pathway plays a key role in the sensitization and insult using TNFalpha blockade (etanercept) and TNFalpha(-/-) mice. Etanercept given before the insult did not affect brain damage, but genetic deletion of TNFalpha or TNFalpha blockade by etanercept given after the combined inflammatory and excitotoxic insult reduced brain damage by 50%. We suggest this protective effect was centrally mediated, since systemic TNFalpha administration in the presence of an intact blood-brain barrier did not aggravate the damage and etanercept almost abolished cerebral TNFalpha production. In summary, sensitization was, at least partly, mediated by an imbalance between pro- and anti-inflammatory cytokines. Cerebral TNFalpha played a key role in mediating brain damage after the combined inflammatory and excitatory insult.
Collapse
|
39
|
Abstract
Disorders of the placental circulation, including the release of deleterious mediators to the fetus, are important risk factors for central nervous system complications. These disorders result in discrete patterns of placental injury detectable by a thorough placental pathologic examination. Consideration of the location, severity, multiplicity, and timing of these lesions is critical to a full understanding of their significance. Less than 10% of placentas from term infants that later develop cerebral palsy lack any evidence of placental abnormalities potentially related to adverse outcome.
Collapse
Affiliation(s)
- Raymond W Redline
- Department of Pathology, Case Western Reserve University School of Medicine, OH 44106, USA.
| |
Collapse
|
40
|
Abstract
Injury to the premature brain is a major contributor to infant mortality and morbidity, often leading to mental retardation and sensory-motor impairment. The disease process is believed to be caused, sustained, and aggravated by multiple perinatal factors that team up in a multi-hit fashion. Clinical, epidemiological, and experimental studies have revealed that key factors such as inflammation, excitotoxicity, and oxidative stress contribute considerably to white- and gray-matter injury in premature infants, whose brains are particularly susceptible to damage. Depending on the timing, lesions of the immature brain may influence developmental events in their natural sequence and redirect subsequent development. We review current concepts on molecular mechanisms underlying injury to the premature brain.
Collapse
Affiliation(s)
- Angela M. Kaindl
- Université Paris 7, Faculté de Medecine Denis Diderot, Paris, France, PremUP, Paris, France, Inserm, U676, Paris, France
| | - Geraldine Favrais
- Université Paris 7, Faculté de Medecine Denis Diderot, Paris, France, PremUP, Paris, France, Inserm, U676, Paris, France
| | - Pierre Gressens
- Université Paris 7, Faculté de Medecine Denis Diderot, Paris, France, , PremUP, Paris, France, AP HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France, Inserm, U676, Paris, France
| |
Collapse
|