1
|
Schwehr BJ, Hartnell D, Ellison G, Hindes MT, Milford B, Dallerba E, Hickey SM, Pfeffer FM, Brooks DA, Massi M, Hackett MJ. Fluorescent probes for neuroscience: imaging ex vivo brain tissue sections. Analyst 2024; 149:4536-4552. [PMID: 39171617 DOI: 10.1039/d4an00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Neurobiological research relies heavily on imaging techniques, such as fluorescence microscopy, to understand neurological function and disease processes. However, the number and variety of fluorescent probes available for ex vivo tissue section imaging limits the advance of research in the field. In this review, we outline the current range of fluorescent probes that are available to researchers for ex vivo brain section imaging, including their physical and chemical characteristics, staining targets, and examples of discoveries for which they have been used. This review is organised into sections based on the biological target of the probe, including subcellular organelles, chemical species (e.g., labile metal ions), and pathological phenomenon (e.g., degenerating cells, aggregated proteins). We hope to inspire further development in this field, given the considerable benefits to be gained by the greater availability of suitably sensitive probes that have specificity for important brain tissue targets.
Collapse
Affiliation(s)
- Bradley J Schwehr
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - David Hartnell
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| | - Gaewyn Ellison
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| | - Madison T Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Breah Milford
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Elena Dallerba
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Doug A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Massimiliano Massi
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Mark J Hackett
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| |
Collapse
|
2
|
Yu Z, Huang L, Xia Y, Cheng S, Yang C, Chen C, Zou Z, Wang X, Tian X, Jiang X, Zhou L. Analysis of m6A modification regulators in the substantia nigra and striatum of MPTP-induced Parkinson’s disease mice. Neurosci Lett 2022; 791:136907. [DOI: 10.1016/j.neulet.2022.136907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
3
|
Chang EES, Ho PWL, Liu HF, Pang SYY, Leung CT, Malki Y, Choi ZYK, Ramsden DB, Ho SL. LRRK2 mutant knock-in mouse models: therapeutic relevance in Parkinson's disease. Transl Neurodegener 2022; 11:10. [PMID: 35152914 PMCID: PMC8842874 DOI: 10.1186/s40035-022-00285-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are one of the most frequent genetic causes of both familial and sporadic Parkinson's disease (PD). Mounting evidence has demonstrated pathological similarities between LRRK2-associated PD (LRRK2-PD) and sporadic PD, suggesting that LRRK2 is a potential disease modulator and a therapeutic target in PD. LRRK2 mutant knock-in (KI) mouse models display subtle alterations in pathological aspects that mirror early-stage PD, including increased susceptibility of nigrostriatal neurotransmission, development of motor and non-motor symptoms, mitochondrial and autophagy-lysosomal defects and synucleinopathies. This review provides a rationale for the use of LRRK2 KI mice to investigate the LRRK2-mediated pathogenesis of PD and implications from current findings from different LRRK2 KI mouse models, and ultimately discusses the therapeutic potentials against LRRK2-associated pathologies in PD.
Collapse
Affiliation(s)
- Eunice Eun Seo Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| | - Hui-Fang Liu
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chi-Ting Leung
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yasine Malki
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Zoe Yuen-Kiu Choi
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|
4
|
Skiteva O, Yao N, Sitzia G, Chergui K. LRRK2‐G2019S mice display alterations in glutamatergic synaptic transmission in midbrain dopamine neurons. J Neurochem 2022; 161:158-172. [PMID: 35152441 PMCID: PMC9305867 DOI: 10.1111/jnc.15588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
The progressive degeneration of dopamine (DA) neurons in the substantia nigra compacta (SNc) leads to the emergence of motor symptoms in patients with Parkinson's disease (PD). To propose neuroprotective therapies able to slow or halt the progression of the disease, it is necessary to identify cellular alterations that occur before DA neurons degenerate and before the onset of the motor symptoms that characterize PD. Using electrophysiological, histochemical, and biochemical approaches, we have examined if glutamatergic synaptic transmission in DA neurons in the SNc and in the adjacent ventral tegmental area (VTA) was altered in middle‐aged (10–12 months old) mice with the hG2019S point mutation (G2019S) in the leucine‐rich repeat kinase 2 (LRRK2) gene. G2019S mice showed increased locomotion and exploratory behavior compared with wildtype (WT) littermates, and intact DA neuron integrity. The intrinsic membrane properties and action potential characteristics of DA neurons recorded in brain slices were similar in WT and G2019S mice. Initial glutamate release probability onto SNc‐DA neurons, but not VTA‐DA neurons, was reduced in G2019S mice. We also found reduced protein amounts of the presynaptic marker of glutamatergic terminals, VGLUT1, and of the GluA1 and GluN1 subunits of AMPA and NMDA receptors, respectively, in the ventral midbrain of G2019S mice. These results identify alterations in glutamatergic synaptic transmission in DA neurons of the SNc and VTA before the onset of motor impairments in the LRRK2‐G2019S mouse model of PD.
Collapse
Affiliation(s)
- Olga Skiteva
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| | - Ning Yao
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| | - Giacomo Sitzia
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
- Current address: Laboratory for Integrative Neuroscience National Institute on Alcohol Abuse and Alcoholism US Rockville USA
| | - Karima Chergui
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| |
Collapse
|
5
|
Serratos IN, Hernández-Pérez E, Campos C, Aschner M, Santamaría A. An Update on the Critical Role of α-Synuclein in Parkinson's Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Mol Neurobiol 2021; 59:620-642. [PMID: 34750787 DOI: 10.1007/s12035-021-02596-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson's disease (PD) and other synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms affecting the structural and functional stability of α-Syn - such as endoplasmic reticulum stress, Golgi complex fragmentation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of extracellular toxic aggregates - contribute all to the pathogenic progression of PD and synucleinopathies. In this review, we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal cell death in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Elizabeth Hernández-Pérez
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Carolina Campos
- Departamento de Ciencias de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, SSA, 14269, Mexico City, Mexico.
| |
Collapse
|
6
|
Ren H, Zhai W, Lu X, Wang G. The Cross-Links of Endoplasmic Reticulum Stress, Autophagy, and Neurodegeneration in Parkinson's Disease. Front Aging Neurosci 2021; 13:691881. [PMID: 34168552 PMCID: PMC8218021 DOI: 10.3389/fnagi.2021.691881] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, and it is characterized by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), as well as the presence of intracellular inclusions with α-synuclein as the main component in surviving DA neurons. Emerging evidence suggests that the imbalance of proteostasis is a key pathogenic factor for PD. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and autophagy, two major pathways for maintaining proteostasis, play important roles in PD pathology and are considered as attractive therapeutic targets for PD treatment. However, although ER stress/UPR and autophagy appear to be independent cellular processes, they are closely related to each other. In this review, we focused on the roles and molecular cross-links between ER stress/UPR and autophagy in PD pathology. We systematically reviewed and summarized the most recent advances in regulation of ER stress/UPR and autophagy, and their cross-linking mechanisms. We also reviewed and discussed the mechanisms of the coexisting ER stress/UPR activation and dysregulated autophagy in the lesion regions of PD patients, and the underlying roles and molecular crosslinks between ER stress/UPR activation and the dysregulated autophagy in DA neurodegeneration induced by PD-associated genetic factors and PD-related neurotoxins. Finally, we indicate that the combined regulation of ER stress/UPR and autophagy would be a more effective treatment for PD rather than regulating one of these conditions alone.
Collapse
Affiliation(s)
- Haigang Ren
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wanqing Zhai
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Xiaojun Lu
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Guanghui Wang
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
7
|
da Costa CA, Manaa WE, Duplan E, Checler F. The Endoplasmic Reticulum Stress/Unfolded Protein Response and Their Contributions to Parkinson's Disease Physiopathology. Cells 2020; 9:cells9112495. [PMID: 33212954 PMCID: PMC7698446 DOI: 10.3390/cells9112495] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a multifactorial age-related movement disorder in which defects of both mitochondria and the endoplasmic reticulum (ER) have been reported. The unfolded protein response (UPR) has emerged as a key cellular dysfunction associated with the etiology of the disease. The UPR involves a coordinated response initiated in the endoplasmic reticulum that grants the correct folding of proteins. This review gives insights on the ER and its functioning; the UPR signaling cascades; and the link between ER stress, UPR activation, and physiopathology of PD. Thus, post-mortem studies and data obtained by either in vitro and in vivo pharmacological approaches or by genetic modulation of PD causative genes are described. Further, we discuss the relevance and impact of the UPR to sporadic and genetic PD pathology.
Collapse
|
8
|
Mancini A, Mazzocchetti P, Sciaccaluga M, Megaro A, Bellingacci L, Beccano-Kelly DA, Di Filippo M, Tozzi A, Calabresi P. From Synaptic Dysfunction to Neuroprotective Strategies in Genetic Parkinson's Disease: Lessons From LRRK2. Front Cell Neurosci 2020; 14:158. [PMID: 32848606 PMCID: PMC7399363 DOI: 10.3389/fncel.2020.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) is thought to rely on a complex interaction between the patient’s genetic background and a variety of largely unknown environmental factors. In this scenario, the investigation of the genetic bases underlying familial PD could unveil key molecular pathways to be targeted by new disease-modifying therapies, still currently unavailable. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are responsible for the majority of inherited familial PD cases and can also be found in sporadic PD, but the pathophysiological functions of LRRK2 have not yet been fully elucidated. Here, we will review the evidence obtained in transgenic LRRK2 experimental models, characterized by altered striatal synaptic transmission, mitochondrial dysfunction, and α-synuclein aggregation. Interestingly, the processes triggered by mutant LRRK2 might represent early pathological phenomena in the pathogenesis of PD, anticipating the typical neurodegenerative features characterizing the late phases of the disease. A comprehensive view of LRRK2 neuronal pathophysiology will support the possible clinical application of pharmacological compounds targeting this protein, with potential therapeutic implications for patients suffering from both familial and sporadic PD.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Petra Mazzocchetti
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alfredo Megaro
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Dayne A Beccano-Kelly
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Alessandro Tozzi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Neuroscience Department, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
9
|
Sanyal A, Novis HS, Gasser E, Lin S, LaVoie MJ. LRRK2 Kinase Inhibition Rescues Deficits in Lysosome Function Due to Heterozygous GBA1 Expression in Human iPSC-Derived Neurons. Front Neurosci 2020; 14:442. [PMID: 32499675 PMCID: PMC7243441 DOI: 10.3389/fnins.2020.00442] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
A growing number of genes associated with Parkinson's disease are implicated in the regulation of lysosome function, including LRRK2, whose missense mutations are perhaps the most common monogenic cause of this neurodegenerative disease. These mutations are collectively thought to introduce a pathologic increase in LRRK2 kinase activity, which is currently a major target for therapeutic intervention. Heterozygous carriers of many missense mutations in the GBA1 gene have dramatically increased risk of Parkinson's disease. A critical question has recently emerged regarding the potential interplay between the proteins encoded by these two disease-linked genes. Our group has recently demonstrated that knockin mutation of a Parkinson's-linked GBA1 variant induces severe lysosomal and cytokine abnormalities in murine astrocytes and that these deficits were normalized via inhibition of wild-type LRRK2 kinase activity in these cells. Another group independently found that LRRK2 inhibition increases glucocerebrosidase activity in wild-type human iPSC-derived neurons, as well as those whose activity is disrupted by GBA1 or LRRK2 mutation. Fundamental questions remain in terms of the lysosomal abnormalities and the effects of LRRK2 kinase inhibition in human neurons deficient in glucocerebrosidase activity. Here, we further elucidate the physiological crosstalk between LRRK2 signaling and glucocerebrosidase activity in human iPSC-derived neurons. Our studies show that the allelic loss of GBA1 manifests broad defects in lysosomal morphology and function. Furthermore, our data show an increase in both the accumulation and secretion of oligomeric α-synuclein protein in these GBA1-heterozygous-null neurons, compared to isogenic controls. Consistent with recent findings in murine astrocytes, we observed that multiple indices of lysosomal dysfunction in GBA1-deficient human neurons were normalized by LRRK2 kinase inhibition, while some defects were preserved. Our findings demonstrate a selective but functional intersection between glucocerebrosidase dysfunction and LRRK2 signaling in the cell and may have implications in the pathogenesis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | | | - Matthew J. LaVoie
- Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Mou Z, Yuan YH, Zhang Z, Song LK, Chen NH. Endoplasmic reticulum stress, an important factor in the development of Parkinson’s disease. Toxicol Lett 2020; 324:20-29. [DOI: 10.1016/j.toxlet.2020.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
|
11
|
Kuwahara T, Iwatsubo T. The Emerging Functions of LRRK2 and Rab GTPases in the Endolysosomal System. Front Neurosci 2020; 14:227. [PMID: 32256311 PMCID: PMC7095371 DOI: 10.3389/fnins.2020.00227] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
The leucine-rich repeat kinase 2 (LRRK2), the most common causative gene for autosomal-dominant familial Parkinson’s disease, encodes a large protein kinase harboring multiple characteristic domains. LRRK2 phosphorylates a set of Rab GTPases in cells, which is enhanced by the Parkinson-associated LRRK2 mutations. Accumulating evidence suggests that LRRK2 regulates intracellular vesicle trafficking and organelle maintenance including Golgi, endosomes and lysosomes. Furthermore, genetic knockout or inhibition of LRRK2 cause lysosomal abnormalities in rodents and primates, and cells from Parkinson’s patients with LRRK2 mutations also exhibit altered lysosome morphology. Cell biological studies on LRRK2 in a diverse cellular context further strengthen the potential connection between LRRK2 and regulation of the endolysosomal system, part of which is mediated by Rab phosphorylation by LRRK2. We will focus on the latest advances on the role of LRRK2 and Rab in relation to the endolysosomal system, and discuss the possible link to the pathomechanism of Parkinson’s disease.
Collapse
Affiliation(s)
- Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Arbez N, He X, Huang Y, Ren M, Liang Y, Nucifora FC, Wang X, Pei Z, Tessarolo L, Smith WW, Ross CA. G2019S-LRRK2 mutation enhances MPTP-linked Parkinsonism in mice. Hum Mol Genet 2020; 29:580-590. [PMID: 31813996 PMCID: PMC7068031 DOI: 10.1093/hmg/ddz271] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/03/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with a heterogeneous etiology that involves genetic and environmental factors or exogenous. Current LRRK2 PD animal models only partly reproduce the characteristics of the disease with very subtle dopaminergic neuron degeneration. We developed a new model of PD that combines a sub-toxic MPTP insult to the G2019S-LRRK2 mutation. Our newly generated mice, overexpressing mutant G2019S-LRRK2 protein in the brain, displayed a mild, age-dependent progressive motor impairment, but no reduction of lifespan. Cortical neurons from G2019S-LRRK2 mice showed an increased vulnerability to stress insults, compared with neurons overexpressing wild-type WT-LRRK2, or non-transgenic (nTg) neurons. The exposure of LRRK2 transgenic mice to a sub-toxic dose of MPTP resulted in severe motor impairment, selective loss of dopamine neurons and increased astrocyte activation, whereas nTg mice with MPTP exposure showed no deficits. Interestingly, mice overexpressing WT-LRRK2 showed a significant impairment that was milder than for the mutant G2019S-LRRK2 mice. L-DOPA treatments could partially improve the movement impairments but did not protect the dopamine neuron loss. In contrast, treatments with an LRRK2 kinase inhibitor significantly reduced the dopaminergic neuron degeneration in this interaction model. Our studies provide a novel LRRK2 gene-MPTP interaction PD mouse model, and a useful tool for future studies of PD pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - XiaoFei He
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Yong Huang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Mark Ren
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Yideng Liang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Frederick C Nucifora
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Xiaofang Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Zhong Pei
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Lino Tessarolo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Wanli W Smith
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Baltimore, MD 21287, USA
- Departments of Neurology, Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Calogero AM, Mazzetti S, Pezzoli G, Cappelletti G. Neuronal microtubules and proteins linked to Parkinson's disease: a relevant interaction? Biol Chem 2020; 400:1099-1112. [PMID: 31256059 DOI: 10.1515/hsz-2019-0142] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Abstract
Neuronal microtubules are key determinants of cell morphology, differentiation, migration and polarity, and contribute to intracellular trafficking along axons and dendrites. Microtubules are strictly regulated and alterations in their dynamics can lead to catastrophic effects in the neuron. Indeed, the importance of the microtubule cytoskeleton in many human diseases is emerging. Remarkably, a growing body of evidence indicates that microtubule defects could be linked to Parkinson's disease pathogenesis. Only a few of the causes of the progressive neuronal loss underlying this disorder have been identified. They include gene mutations and toxin exposure, but the trigger leading to neurodegeneration is still unknown. In this scenario, the evidence showing that mutated proteins in Parkinson's disease are involved in the regulation of the microtubule cytoskeleton is intriguing. Here, we focus on α-Synuclein, Parkin and Leucine-rich repeat kinase 2 (LRRK2), the three main proteins linked to the familial forms of the disease. The aim is to dissect their interaction with tubulin and microtubules in both physiological and pathological conditions, in which these proteins are overexpressed, mutated or absent. We highlight the relevance of such an interaction and suggest that these proteins could trigger neurodegeneration via defective regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Alessandra M Calogero
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135 Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135 Milan, Italy.,Parkinson Institute, ASST "G.Pini-CTO", via Bignami 1, I-20133 Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy.,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, via Balzaretti, I-20133 Milan, Italy
| |
Collapse
|
14
|
Rani L, Mondal AC. Emerging concepts of mitochondrial dysfunction in Parkinson’s disease progression: Pathogenic and therapeutic implications. Mitochondrion 2020; 50:25-34. [DOI: 10.1016/j.mito.2019.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/13/2019] [Accepted: 09/18/2019] [Indexed: 01/22/2023]
|
15
|
Berwick DC, Heaton GR, Azeggagh S, Harvey K. LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same. Mol Neurodegener 2019; 14:49. [PMID: 31864390 PMCID: PMC6925518 DOI: 10.1186/s13024-019-0344-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson’s disease, a considerable amount of work has gone into uncovering its basic cellular function. This effort has led to the implication of LRRK2 in a bewildering range of cell biological processes and pathways, and probable roles in a number of seemingly unrelated medical conditions. In this review we summarise current knowledge of the basic biochemistry and cellular function of LRRK2. Topics covered include the identification of phosphorylation substrates of LRRK2 kinase activity, in particular Rab proteins, and advances in understanding the activation of LRRK2 kinase activity via dimerisation and association with membranes, especially via interaction with Rab29. We also discuss biochemical studies that shed light on the complex LRRK2 GTPase activity, evidence of roles for LRRK2 in a range of cell signalling pathways that are likely cell type specific, and studies linking LRRK2 to the cell biology of organelles. The latter includes the involvement of LRRK2 in autophagy, endocytosis, and processes at the trans-Golgi network, the endoplasmic reticulum and also key microtubule-based cellular structures. We further propose a mechanism linking LRRK2 dimerisation, GTPase function and membrane recruitment with LRRK2 kinase activation by Rab29. Together these data paint a picture of a research field that in many ways is moving forward with great momentum, but in other ways has not changed fundamentally. Many key advances have been made, but very often they seem to lead back to the same places.
Collapse
Affiliation(s)
- Daniel C Berwick
- School of Health, Life and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - George R Heaton
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sonia Azeggagh
- School of Health, Life and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
16
|
Walter J, Bolognin S, Antony PMA, Nickels SL, Poovathingal SK, Salamanca L, Magni S, Perfeito R, Hoel F, Qing X, Jarazo J, Arias-Fuenzalida J, Ignac T, Monzel AS, Gonzalez-Cano L, Pereira de Almeida L, Skupin A, Tronstad KJ, Schwamborn JC. Neural Stem Cells of Parkinson's Disease Patients Exhibit Aberrant Mitochondrial Morphology and Functionality. Stem Cell Reports 2019; 12:878-889. [PMID: 30982740 PMCID: PMC6522948 DOI: 10.1016/j.stemcr.2019.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that Parkinson's disease (PD), besides being an age-associated disorder, might also have a neurodevelopment component. Disruption of mitochondrial homeostasis has been highlighted as a crucial cofactor in its etiology. Here, we show that PD patient-specific human neuroepithelial stem cells (NESCs), carrying the LRRK2-G2019S mutation, recapitulate key mitochondrial defects previously described only in differentiated dopaminergic neurons. By combining high-content imaging approaches, 3D image analysis, and functional mitochondrial readouts we show that LRRK2-G2019S mutation causes aberrations in mitochondrial morphology and functionality compared with isogenic controls. LRRK2-G2019S NESCs display an increased number of mitochondria compared with isogenic control lines. However, these mitochondria are more fragmented and exhibit decreased membrane potential. Functional alterations in LRRK2-G2019S cultures are also accompanied by a reduced mitophagic clearance via lysosomes. These findings support the hypothesis that preceding mitochondrial developmental defects contribute to the manifestation of the PD pathology later in life. Mitochondrial gene expression is altered in NESCs carrying the LRRK2-G2019 mutation LRRK2-G2019S mutation induces alterations in mitochondrial morphology in NESCs Mitophagy is affected in PD-specific NESCs carrying the LRRK2-G2019S mutation Mitochondrial phenotypes in NESC are rescued by genetic correction of LRRK2-G2019S
Collapse
Affiliation(s)
- Jonas Walter
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Paul M A Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Sarah L Nickels
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Life Science Research Unit (LSRU), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Luis Salamanca
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Stefano Magni
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Fredrik Hoel
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Xiaobing Qing
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Jonathan Arias-Fuenzalida
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Tomasz Ignac
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Luis Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Center for Research of Biological Systems, University of California San Diego, La Jolla, CA 92093, USA
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg.
| |
Collapse
|
17
|
GRP78/BIP/HSPA5 as a Therapeutic Target in Models of Parkinson's Disease: A Mini Review. Adv Pharmacol Sci 2019; 2019:2706783. [PMID: 30949202 PMCID: PMC6425347 DOI: 10.1155/2019/2706783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by selective loss of dopamine neurons in the substantia nigra pars compacta of the midbrain. Reports from postmortem studies in the human PD brain, and experimental PD models reveal that endoplasmic reticulum (ER) stress is implicated in the pathogenesis of PD. In times of stress, the unfolded or misfolded proteins overload the folding capacity of the ER to induce a condition generally known as ER stress. During ER stress, cells activate the unfolded protein response (UPR) to handle increasing amounts of abnormal proteins, and recent evidence has demonstrated the activation of the ER chaperone GRP78/BiP (78 kDa glucose-regulated protein/binding immunoglobulin protein), which is important for proper folding of newly synthesized and partly folded proteins to maintain protein homeostasis. Although the activation of this protein is essential for the initiation of the UPR in PD, there are inconsistent reports on its expression in various PD models. Consequently, this review article aims to summarize current knowledge on neuroprotective agents targeting the expression of GRP78/BiP in the regulation of ER stress in experimental PD models.
Collapse
|
18
|
DJ-1 modulates the unfolded protein response and cell death via upregulation of ATF4 following ER stress. Cell Death Dis 2019; 10:135. [PMID: 30755590 PMCID: PMC6372623 DOI: 10.1038/s41419-019-1354-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 11/26/2022]
Abstract
The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress is a feature of many neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease and Parkinson’s disease (PD). Although the vast majority of PD is sporadic, mutations in a number of genes including PARK7 which encodes the protein DJ-1 have been linked to early-onset, familial PD. In this regard, both PD of sporadic and genetic origins exhibit markers of ER stress-induced UPR. However, the relationship between pathogenic mutations in PARK7 and ER stress-induced UPR in PD pathogenesis remains unclear. In most contexts, DJ-1 has been shown to protect against neuronal injury. However, we find that DJ-1 deficiency ameliorates death in the context of acute ER stress in vitro and in vivo. DJ-1 loss decreases protein and transcript levels of ATF4, a transcription factor critical to the ER response and reduces the levels of CHOP and BiP, its downstream effectors. The converse is observed with DJ-1 over-expression. Importantly, we find that over-expression of wild-type and PD-associated mutant form of PARK7L166P, enhances ER stress-induced neuronal death by regulating ATF4 transcription and translation. Our results demonstrate a previously unreported role for wild-type and mutant DJ-1 in the regulation of UPR and provides a potential link to PD pathogenesis.
Collapse
|
19
|
Korecka JA, Talbot S, Osborn TM, de Leeuw SM, Levy SA, Ferrari EJ, Moskites A, Atkinson E, Jodelka FM, Hinrich AJ, Hastings ML, Woolf CJ, Hallett PJ, Isacson O. Neurite Collapse and Altered ER Ca 2+ Control in Human Parkinson Disease Patient iPSC-Derived Neurons with LRRK2 G2019S Mutation. Stem Cell Reports 2018; 12:29-41. [PMID: 30595548 PMCID: PMC6335600 DOI: 10.1016/j.stemcr.2018.11.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
The Parkinson disease (PD) genetic LRRK2 gain-of-function mutations may relate to the ER pathological changes seen in PD patients at postmortem. Human induced pluripotent stem cell (iPSC)-derived neurons with the PD pathogenic LRRK2 G2019S mutation exhibited neurite collapse when challenged with the ER Ca2+ influx sarco/ER Ca2+-ATPase inhibitor thapsigargin (THP). Baseline ER Ca2+ levels measured with the ER Ca2+ indicator CEPIA-ER were lower in LRRK2 G2019S human neurons, including in differentiated midbrain dopamine neurons in vitro. After THP challenge, PD patient-derived neurons displayed increased Ca2+ influx and decreased intracellular Ca2+ buffering upon membrane depolarization. These effects were reversed following LRRK2 mutation correction by antisense oligonucleotides and gene editing. Gene expression analysis in LRRK2 G2019S neurons identified modified levels of key store-operated Ca2+ entry regulators, with no alterations in ER Ca2+ efflux. These results demonstrate PD gene mutation LRRK2 G2019S ER calcium-dependent pathogenic effects in human neurons. Parkinson-linked LRRK2 G2019S induces neurite collapse upon ER Ca2+ influx block LRRK2 G2019S mutation alters Ca2+ uptake and buffering upon ER Ca2+ influx block The LRRK2 G2019S mutation decreases basal ER Ca2+ levels in human iPSC neurons The LRRK2 G2019S mutation modifies gene expression of key SOCE regulators
Collapse
Affiliation(s)
- Joanna A Korecka
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA.
| | - Sebastien Talbot
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Teresia M Osborn
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Sherida M de Leeuw
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Simon A Levy
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Eliza J Ferrari
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Alyssa Moskites
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Elise Atkinson
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Francine M Jodelka
- Center for Genetics Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Anthony J Hinrich
- Center for Genetics Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Michelle L Hastings
- Center for Genetics Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Penelope J Hallett
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA
| | - Ole Isacson
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
20
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of posttranslational modifications of α-synuclein and LRRK2 in Parkinson's disease: Potential contributions of environmental factors. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1992-2000. [PMID: 30481588 PMCID: PMC6534484 DOI: 10.1016/j.bbadis.2018.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD), and the most prevalent movement disorder. PD is characterized by dopaminergic neurodegeneration in the substantia nigra, but its etiology has yet to be established. Among several genetic variants contributing to PD pathogenesis, α-synuclein and leucine-rich repeat kinase (LRRK2) are widely associated with neuropathological phenotypes in familial and sporadic PD. α-Synuclein and LRRK2 found in Lewy bodies, a pathogenic hallmark of PD, are often posttranslationally modified. As posttranslational modifications (PTMs) are key processes in regulating the stability, localization, and function of proteins, PTMs have emerged as important modulators of α-synuclein and LRRK2 pathology. Aberrant PTMs altering phosphorylation, ubiquitination, nitration and truncation of these proteins promote PD pathogenesis, while other PTMs such as sumoylation may be protective. Although the causes of many aberrant PTMs are unknown, environmental risk factors may contribute to their aberrancy. Environmental toxicants such as rotenone and paraquat have been shown to interact with these proteins and promote their abnormal PTMs. Notably, manganese (Mn) exposure leads to a PD-like neurological disorder referred to as manganism-and induces pathogenic PTMs of α-synuclein and LRRK2. In this review, we highlight the role of PTMs of α-synuclein and LRRK2 in PD pathogenesis and discuss the impact of environmental risk factors on their aberrancy.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, United States of America
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, United States of America
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA 02215, United States of America
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, United States of America.
| |
Collapse
|
21
|
Ammal Kaidery N, Thomas B. Current perspective of mitochondrial biology in Parkinson's disease. Neurochem Int 2018; 117:91-113. [PMID: 29550604 DOI: 10.1016/j.neuint.2018.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative movement disorder characterized by preferential loss of dopaminergic neurons of the substantia nigra pars compacta and the presence of Lewy bodies containing α-synuclein. Although the cause of PD remains elusive, remarkable advances have been made in understanding the possible causative mechanisms of PD pathogenesis. An explosion of discoveries during the past two decades has led to the identification of several autosomal dominant and recessive genes that cause familial forms of PD. The investigations of these familial PD gene products have shed considerable insights into the molecular pathogenesis of the more common sporadic PD. A growing body of evidence suggests that the etiology of PD is multifactorial and involves a complex interplay between genetic and environmental factors. Substantial evidence from human tissues, genetic and toxin-induced animal and cellular models indicates that mitochondrial dysfunction plays a central role in the pathophysiology of PD. Deficits in mitochondrial functions due to bioenergetics defects, alterations in the mitochondrial DNA, generation of reactive oxygen species, aberrant calcium homeostasis, and anomalies in mitochondrial dynamics and quality control are implicated in the underlying mechanisms of neuronal cell death in PD. In this review, we discuss how familial PD-linked genes and environmental factors interface the pathways regulating mitochondrial functions and thereby potentially converge both familial and sporadic PD at the level of mitochondrial integrity. We also provide an overview of the status of therapeutic strategies targeting mitochondrial dysfunction in PD. Unraveling potential pathways that influence mitochondrial homeostasis in PD may hold the key to therapeutic intervention for this debilitating neurodegenerative movement disorder.
Collapse
Affiliation(s)
| | - Bobby Thomas
- Departments of Pharmacology and Toxicology, Augusta, GA 30912, United States; Neurology Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
22
|
Liu W, Zhao Y, Zhang X, Ji J. Simvastatin ameliorates cognitive impairments via inhibition of oxidative stress‑induced apoptosis of hippocampal cells through the ERK/AKT signaling pathway in a rat model of senile dementia. Mol Med Rep 2017; 17:1885-1892. [PMID: 29257256 DOI: 10.3892/mmr.2017.8098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 10/06/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Wenting Liu
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yan Zhao
- Department of Neurology, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266033, P.R. China
| | - Xinyu Zhang
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Jiangang Ji
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Weifang, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
23
|
Maulik M, Mitra S, Bult-Ito A, Taylor BE, Vayndorf EM. Behavioral Phenotyping and Pathological Indicators of Parkinson's Disease in C. elegans Models. Front Genet 2017; 8:77. [PMID: 28659967 PMCID: PMC5468440 DOI: 10.3389/fgene.2017.00077] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with symptoms that progressively worsen with age. Pathologically, PD is characterized by the aggregation of α-synuclein in cells of the substantia nigra in the brain and loss of dopaminergic neurons. This pathology is associated with impaired movement and reduced cognitive function. The etiology of PD can be attributed to a combination of environmental and genetic factors. A popular animal model, the nematode roundworm Caenorhabditis elegans, has been frequently used to study the role of genetic and environmental factors in the molecular pathology and behavioral phenotypes associated with PD. The current review summarizes cellular markers and behavioral phenotypes in transgenic and toxin-induced PD models of C. elegans.
Collapse
Affiliation(s)
- Malabika Maulik
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Swarup Mitra
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska FairbanksFairbanks, AK, United States
| | - Barbara E Taylor
- Department of Biological Sciences, California State University, Long BeachLong Beach, CA, United States
| | - Elena M Vayndorf
- Institute of Arctic Biology, University of Alaska FairbanksFairbanks, AK, United States
| |
Collapse
|
24
|
Gambardella S, Ferese R, Biagioni F, Busceti CL, Campopiano R, Griguoli AMP, Limanaqi F, Novelli G, Storto M, Fornai F. The Monoamine Brainstem Reticular Formation as a Paradigm for Re-Defining Various Phenotypes of Parkinson's Disease Owing Genetic and Anatomical Specificity. Front Cell Neurosci 2017; 11:102. [PMID: 28458632 PMCID: PMC5394114 DOI: 10.3389/fncel.2017.00102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
Abstract
The functional anatomy of the reticular formation (RF) encompasses a constellation of brain regions which are reciprocally connected to sub-serve a variety of functions. Recent evidence indicates that neuronal degeneration within one of these regions spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of various brainstem reticular nuclei in specific Parkinson’s disease (PD) phenotypes, and by retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading to various monoamine reticular nuclei can be associated with occurrence of specific motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal motor control to include a variety of non-motor domains. This concept clearly emerges from the quite specific clinical-anatomical correlation which can be drawn in specific paradigms of PD genotypes. Therefore, this review article focuses on the genetics and neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype paradigms for a differential recruitment of the RF leading to differential occurrence of NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA point mutations and multiplications, where NMS are highly represented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Giuseppe Novelli
- IRCCS NeuromedPozzilli, Italy.,Department of Biomedicine and Prevention, School of Medicine, University of Rome Tor VergataRome, Italy
| | | | - Francesco Fornai
- IRCCS NeuromedPozzilli, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| |
Collapse
|
25
|
Cabral-Miranda F, Hetz C. ER Stress and Neurodegenerative Disease: A Cause or Effect Relationship? Curr Top Microbiol Immunol 2017; 414:131-157. [PMID: 28864830 DOI: 10.1007/82_2017_52] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of protein aggregates has a fundamental role in the patophysiology of distinct neurodegenerative diseases. This phenomenon may have a common origin, where disruption of intracellular mechanisms related to protein homeostasis (here termed proteostasis) control during aging may result in abnormal protein aggregation. The unfolded protein response (UPR) embodies a major element of the proteostasis network triggered by endoplasmic reticulum (ER) stress. Chronic ER stress may operate as possible mechanism of neurodegenerative and synaptic dysfunction, and in addition contribute to the abnormal aggregation of key disease-related proteins. In this article we overview the most recent findings suggesting a causal role of ER stress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Felipe Cabral-Miranda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile. .,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, 94945, USA. .,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Mercado G, Castillo V, Soto P, Sidhu A. ER stress and Parkinson's disease: Pathological inputs that converge into the secretory pathway. Brain Res 2016; 1648:626-632. [DOI: 10.1016/j.brainres.2016.04.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022]
|
27
|
Nucifora FC, Nucifora LG, Ng CH, Arbez N, Guo Y, Roby E, Shani V, Engelender S, Wei D, Wang XF, Li T, Moore DJ, Pletnikova O, Troncoso JC, Sawa A, Dawson TM, Smith W, Lim KL, Ross CA. Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nat Commun 2016; 7:11792. [PMID: 27273569 PMCID: PMC4899630 DOI: 10.1038/ncomms11792] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/28/2016] [Indexed: 12/11/2022] Open
Abstract
A common genetic form of Parkinson's disease (PD) is caused by mutations in LRRK2. We identify WSB1 as a LRRK2 interacting protein. WSB1 ubiquitinates LRRK2 through K27 and K29 linkage chains, leading to LRRK2 aggregation and neuronal protection in primary neurons and a Drosophila model of G2019S LRRK2. Knocking down endogenous WSB1 exacerbates mutant LRRK2 neuronal toxicity in neurons and the Drosophila model, indicating a role for endogenous WSB1 in modulating LRRK2 cell toxicity. WSB1 is in Lewy bodies in human PD post-mortem tissue. These data demonstrate a role for WSB1 in mutant LRRK2 pathogenesis, and suggest involvement in Lewy body pathology in sporadic PD. Our data indicate a role in PD for ubiquitin K27 and K29 linkages, and suggest that ubiquitination may be a signal for aggregation and neuronal protection in PD, which may be relevant for other neurodegenerative disorders. Finally, our study identifies a novel therapeutic target for PD.
Collapse
Affiliation(s)
- Frederick C. Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Leslie G. Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Chee-Hoe Ng
- Danone Nutricia Research, 30 Biopolis Street, Matrix Building, #05-01B, Singapore 138671, Singapore
| | - Nicolas Arbez
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Yajuan Guo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Elaine Roby
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Vered Shani
- Department of Molecular Pharmacology, Rappaport Institute of Medical Research, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Simone Engelender
- Department of Molecular Pharmacology, Rappaport Institute of Medical Research, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Dong Wei
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Xiao-Fang Wang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Darren J. Moore
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Olga Pletnikova
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21201, USA
| | - Juan C. Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21201, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21201, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21201, USA
| | - Ted M. Dawson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21201, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21201, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21201, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21201, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685, USA
| | - Wanli Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Kah-Leong Lim
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
- Department of Physiology, National University of Singapore, Singapore 117543, Singapore
| | - Christopher A. Ross
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21201, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
28
|
Hernandez DG, Reed X, Singleton AB. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem 2016; 139 Suppl 1:59-74. [PMID: 27090875 DOI: 10.1111/jnc.13593] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/25/2016] [Accepted: 02/09/2016] [Indexed: 12/12/2022]
Abstract
Parkinson's disease is a common, progressive neurodegenerative disorder, affecting 3% of those older than 75 years of age. Clinically, Parkinson's disease (PD) is associated with resting tremor, postural instability, rigidity, bradykinesia, and a good response to levodopa therapy. Over the last 15 years, numerous studies have confirmed that genetic factors contribute to the complex pathogenesis of PD. Highly penetrant mutations producing rare, monogenic forms of the disease have been discovered in singular genes such as SNCA, Parkin, DJ-1, PINK 1, LRRK2, and VPS35. Unique variants with incomplete penetrance in LRRK2 and GBA have been shown to be strong risk factors for PD in certain populations. Additionally, over 20 common variants with small effect sizes are now recognized to modulate the risk for PD. Investigating Mendelian forms of PD has provided precious insight into the pathophysiology that underlies the more common idiopathic form of disease; however, no treatment methodologies have developed. Furthermore, for identified common risk alleles, the functional basis underlying risk principally remains unknown. The challenge over the next decade will be to strengthen the findings delivered through genetic discovery by assessing the direct, biological consequences of risk variants in tandem with additional high-content, integrated datasets. This review discusses monogenic risk factors and mechanisms of Mendelian inheritance of Parkinson disease. Highly penetrant mutations in SNCA, Parkin, DJ-1, PINK 1, LRRK2 and VPS35 produce rare, monogenic forms of the disease, while unique variants within LRRK2 and GBA show incomplete penetrance and are strong risk factors for PD. Additionally, over 20 common variants with small effect sizes modulate disease risk. The challenge over the next decade is to strengthen genetic findings by assessing direct, biological consequences of risk variants in tandem with high-content, integrated datasets. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA.,German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA.
| |
Collapse
|
29
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Abstract
Ischemic heart disease (IHD) is the leading cause of death and disability worldwide. Therefore, novel therapeutic targets for protecting the heart against acute ischemia/reperfusion injury (IRI) are required to attenuate cardiomyocyte death, preserve myocardial function, and prevent the onset of heart failure. In this regard, a specific group of mitochondrial proteins, which have been linked to familial forms of Parkinson's disease (PD), may provide novel therapeutic targets for cardioprotection. In dopaminergic neurons of the substantia nigra, these PD proteins, which include Parkin, PINK1, DJ-1, LRRK2, and α-synuclein, play essential roles in preventing cell death-through maintaining normal mitochondrial function, protecting against oxidative stress, mediating mitophagy, and preventing apoptosis. These rare familial forms of PD may therefore provide important insights into the pathophysiology underlying mitochondrial dysfunction and the development of PD. Interestingly, these PD proteins are also present in the heart, but their role in myocardial health and disease is not clear. In this article, we review the role of these PD proteins in the heart and explore their potential as novel mitochondrial targets for cardioprotection.
Collapse
Affiliation(s)
- Uma A Mukherjee
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK; Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|
31
|
Yang F, Luo J. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity. Biomolecules 2015; 5:2538-53. [PMID: 26473940 PMCID: PMC4693246 DOI: 10.3390/biom5042538] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/02/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity.
Collapse
Affiliation(s)
- Fanmuyi Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY 40536, USA.
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY 40536, USA.
| |
Collapse
|
32
|
Mahdi AA, Rizvi SHM, Parveen A. Role of Endoplasmic Reticulum Stress and Unfolded Protein Responses in Health and Diseases. Indian J Clin Biochem 2015; 31:127-37. [PMID: 27069320 DOI: 10.1007/s12291-015-0502-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/12/2015] [Indexed: 12/24/2022]
Abstract
Endoplasmic reticulum (ER) is the site of protein synthesis, protein folding, maintainance of calcium homeostasis, synthesis of lipids and sterols. Genetic or environmental insults can alter its function generating ER stress. ER senses stress mainly by three stress sensor pathways, namely protein kinase R-like endoplasmic reticulum kinase-eukaryotic translation-initiation factor 2α, inositol-requiring enzyme 1α-X-box-binding protein 1 and activating transcription factor 6-CREBH, which induce unfolded protein responses (UPR) after the recognition of stress. Recent studies have demonstrated that ER stress and UPR signaling are involved in cancer, metabolic disorders, inflammatory diseases, osteoporosis and neurodegenerative diseases. However, the precise knowledge regarding involvement of ER stress in different disease processes is still debatable. Here we discuss the possible role of ER stress in various disorders on the basis of existing literature. An attempt has also been made to highlight the present knowledge of this field which may help to elucidate and conjure basic mechanisms and novel insights into disease processes which could assist in devising better future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, 226003 Uttar Pradesh India
| | | | - Arshiya Parveen
- Department of Biochemistry, King George's Medical University, Lucknow, 226003 Uttar Pradesh India
| |
Collapse
|
33
|
De Rosa P, Marini ES, Gelmetti V, Valente EM. Candidate genes for Parkinson disease: Lessons from pathogenesis. Clin Chim Acta 2015; 449:68-76. [PMID: 26048192 DOI: 10.1016/j.cca.2015.04.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/06/2023]
Abstract
Parkinson disease (PD) is a multifactorial neurodegenerative disease characterized by the progressive loss of specific neuronal populations and accumulation of Lewy bodies in the brain, leading to motor and non-motor symptoms. In a small subset of patients, PD is dominantly or recessively inherited, while a number of susceptibility genetic loci have been identified through genome wide association studies. The discovery of genes mutated in PD and functional studies on their protein products have provided new insights into the molecular events leading to neurodegeneration, suggesting that few interconnected molecular pathways may be deranged in all forms of PD, triggering neuronal loss. Here, we summarize the most relevant findings implicating the main PD-related proteins in biological processes such as mitochondrial dysfunction, misfolded protein damage, alteration of cellular clearance systems, abnormal calcium handling and altered inflammatory response, which represent key targets for neuroprotection.
Collapse
Affiliation(s)
- Priscilla De Rosa
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy
| | - Elettra Sara Marini
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy; Dept. of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Vania Gelmetti
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy
| | - Enza Maria Valente
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy; Section of Neurosciences, Dept. of Medicine and Surgery, University of Salerno, Salerno, Italy.
| |
Collapse
|
34
|
Giráldez-Pérez RM, Antolín-Vallespín M, Muñoz MD, Sánchez-Capelo A. Models of α-synuclein aggregation in Parkinson's disease. Acta Neuropathol Commun 2014; 2:176. [PMID: 25497491 PMCID: PMC4272812 DOI: 10.1186/s40478-014-0176-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is not only characterized by motor disturbances but also, by cognitive, sensory, psychiatric and autonomic dysfunction. It has been proposed that some of these symptoms might be related to the widespread pathology of α-synuclein (α-syn) aggregation in different nuclei of the central and peripheral nervous system. However, the pathogenic formation of α-syn aggregates in different brain areas of PD patients is poorly understood. Most experimental models of PD are valuable to assess specific aspects of its pathogenesis, such as toxin-induced dopaminergic neurodegeneration. However, new models are required that reflect the widespread and progressive formation of α-syn aggregates in different brain areas. Such α-syn aggregation is induced in only a few animal models, for example perikaryon inclusions are found in rats administered rotenone, aggregates with a neuritic morphology develop in mice overexpressing either mutated or wild-type α-syn, and in Smad3 deficient mice, aggregates form extensively in the perikaryon and neurites of specific brain nuclei. In this review we focus on α-syn aggregation in the human disorder, its genetics and the availability of experimental models. Indeed, evidences show that dopamine (DA) metabolism may be related to α-syn and its conformational plasticity, suggesting an interesting link between the two pathological hallmarks of PD: dopaminergic neurodegeneration and Lewy body (LB) formation.
Collapse
Affiliation(s)
- Rosa María Giráldez-Pérez
- />CIBERNED - Ser. Neurobiología – Investigación, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
- />Departamento Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Mónica Antolín-Vallespín
- />CIBERNED - Ser. Neurobiología – Investigación, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
| | - María Dolores Muñoz
- />Unidad de Neurología Experimental, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
| | - Amelia Sánchez-Capelo
- />CIBERNED - Ser. Neurobiología – Investigación, Hospital Universitario Ramón y Cajal – IRYCIS, Ctra. Colmenar Viejo Km 9, 28034 Madrid, Spain
| |
Collapse
|
35
|
Esteves AR, Swerdlow RH, Cardoso SM. LRRK2, a puzzling protein: insights into Parkinson's disease pathogenesis. Exp Neurol 2014; 261:206-16. [PMID: 24907399 DOI: 10.1016/j.expneurol.2014.05.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/26/2014] [Indexed: 01/10/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large, ubiquitous protein of unknown function. Mutations in the gene encoding LRRK2 have been linked to familial and sporadic Parkinson's disease (PD) cases. The LRRK2 protein is a single polypeptide that displays GTPase and kinase activity. Kinase and GTPase domains are involved in different cellular signaling pathways. Despite several experimental studies associating LRRK2 protein with various intracellular membranes and vesicular structures such as endosomal/lysosomal compartments, the mitochondrial outer membrane, lipid rafts, microtubule-associated vesicles, the golgi complex, and the endoplasmic reticulum its broader physiologic function(s) remain unidentified. Additionally, the cellular distribution of LRRK2 may indicate its role in several different pathways, such as the ubiquitin-proteasome system, the autophagic-lysosomal pathway, intracellular trafficking, and mitochondrial dysfunction. This review discusses potential mechanisms through which LRRK2 may mediate neurodegeneration and cause PD.
Collapse
Affiliation(s)
- A Raquel Esteves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sandra M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
36
|
Schapansky J, Nardozzi JD, Felizia F, LaVoie MJ. Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum Mol Genet 2014; 23:4201-14. [PMID: 24682598 DOI: 10.1093/hmg/ddu138] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and idiopathic Parkinson's disease. However, the mechanisms for activating its physiological function are not known, hindering identification of the biological role of endogenous LRRK2. The recent discovery that LRRK2 is highly expressed in cells of the innate immune system and genetic association is a risk factor for autoimmune disorders implies an important role for LRRK2 in pathology outside of the central nervous system. Thus, an examination of endogenous LRRK2 in immune cells could provide insight into the protein's function. Here, we establish that stimulation of specific Toll-like receptors results in a complex biochemical activation of endogenous LRRK2, with early phosphorylation of LRRK2 preceding its dimerization and membrane translocation. Membrane-associated LRRK2 co-localized to autophagosome membranes following either TLR4 stimulation or mTOR inhibition with rapamycin. Silencing of endogenous LRRK2 expression resulted in deficits in the induction of autophagy and clearance of a well-described macroautophagy substrate, demonstrating the critical role of endogenous LRRK2 in regulating autophagy. Inhibition of LRRK2 kinase activity also reduced autophagic degradation and suggested the importance of the kinase domain in the regulation of autophagy. Our results demonstrate a well-orchestrated series of biochemical events involved in the activation of LRRK2 important to its physiological function. With similarities observed across multiple cell types and stimuli, these findings are likely relevant in all cell types that natively express endogenous LRRK2, and provide insights into LRRK2 function and its role in human disease.
Collapse
Affiliation(s)
- Jason Schapansky
- Center for Neurologic Diseases, Harvard Medical School, Boston, MA 02115, USA and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan D Nardozzi
- Center for Neurologic Diseases, Harvard Medical School, Boston, MA 02115, USA and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Matthew J LaVoie
- Center for Neurologic Diseases, Harvard Medical School, Boston, MA 02115, USA and Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
37
|
No association between genetic variants of the LRRK2 gene and schizophrenia in Han Chinese. Neurosci Lett 2014; 566:210-5. [PMID: 24631561 DOI: 10.1016/j.neulet.2014.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/10/2014] [Accepted: 03/04/2014] [Indexed: 12/18/2022]
Abstract
Mitochondrial dysfunction was widely reported in schizophrenia patients in recent studies. Leucine-rich repeat kinase 2 (LRRK2) is a mitochondrial protein, and mutations in the LRRK2 gene can induce mitochondrial dysfunction. LRRK2 mutations have been reported to be the most frequent genetic cause of Parkinson's disease (PD). We were interested in whether LRRK2 variants also play a role in schizophrenia. In this study, we genotyped 12 genetic variants (including 4 tag SNPs and 8 disease-associated variants) in the LRRK2 gene in a total of 2449 samples composed of two independent Han Chinese schizophrenia case-control cohorts (486 schizophrenia patients and 480 healthy controls from Hunan Province; 624 schizophrenia patients and 859 healthy controls from Shanghai). We compared the genotype, allele and haplotype frequencies of those SNPs between cases and controls. Statistical analyses revealed no association between LRRK2 variants/haplotypes and schizophrenia in these two schizophrenia case-control cohorts and the combined samples. Our results indicated that the LRRK2 variants are unlikely to be actively involved in schizophrenia in Han Chinese.
Collapse
|
38
|
Pchelina SN, Emelyanov AK, Usenko TS. Molecular basis of Parkinsons’s disease linked to LRRK2 mutations. Mol Biol 2014. [DOI: 10.1134/s0026893314010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Heman-Ackah SM, Hallegger M, Rao MS, Wood MJA. RISC in PD: the impact of microRNAs in Parkinson's disease cellular and molecular pathogenesis. Front Mol Neurosci 2013; 6:40. [PMID: 24312000 PMCID: PMC3834244 DOI: 10.3389/fnmol.2013.00040] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/31/2013] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized primarily by the selective death of dopaminergic (DA) neurons in the substantia nigra pars compacta of the midbrain. Although several genetic forms of PD have been identified, the precise molecular mechanisms underlying DA neuron loss in PD remain elusive. In recent years, microRNAs (miRNAs) have been recognized as potent post-transcriptional regulators of gene expression with fundamental roles in numerous biological processes. Although their role in PD pathogenesis is still a very active area of investigation, several seminal studies have contributed significantly to our understanding of the roles these small non-coding RNAs play in the disease process. Among these are studies which have demonstrated specific miRNAs that target and down-regulate the expression of PD-related genes as well as those demonstrating a reciprocal relationship in which PD-related genes act to regulate miRNA processing machinery. Concurrently, a wealth of knowledge has become available regarding the molecular mechanisms that unify the underlying etiology of genetic and sporadic PD pathogenesis, including dysregulated protein quality control by the ubiquitin-proteasome system and autophagy pathway, activation of programmed cell death, mitochondrial damage and aberrant DA neurodevelopment and maintenance. Following a discussion of the interactions between PD-related genes and miRNAs, this review highlights those studies which have elucidated the roles of these pathways in PD pathogenesis. We highlight the potential of miRNAs to serve a critical regulatory role in the implicated disease pathways, given their capacity to modulate the expression of entire families of related genes. Although few studies have directly linked miRNA regulation of these pathways to PD, a strong foundation for investigation has been laid and this area holds promise to reveal novel therapeutic targets for PD.
Collapse
Affiliation(s)
- Sabrina M Heman-Ackah
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK ; Center for Regenerative Medicine, US National Institutes of Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
40
|
Fournier M, Roux A, Garrigue J, Muriel MP, Blanche P, Lashuel HA, Anderson JP, Barbour R, Huang J, du Montcel ST, Brice A, Corti O. Parkin depletion delays motor decline dose-dependently without overtly affecting neuropathology in α-synuclein transgenic mice. BMC Neurosci 2013; 14:135. [PMID: 24192137 PMCID: PMC4228309 DOI: 10.1186/1471-2202-14-135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations of the gene encoding the major component of Lewy bodies (LB), α-synuclein (α-syn), cause autosomal dominant forms of Parkinson's disease (PD), whereas loss-of-function mutations of the gene encoding the multifunctional E3 ubiquitin-protein ligase Parkin account for autosomal recessive forms of the disease. Parkin overproduction protects against α-syn-dependent neurodegeneration in various in vitro and in vivo models, but it remains unclear whether this process is affected by Parkin deficiency. We addressed this issue, by carrying out more detailed analyses of transgenic mice overproducing the A30P variant of human α-syn (hA30Pα-syn) and with two, one or no parkin knockout alleles. RESULTS Longitudinal behavioral follow-up of these mice indicated that Parkin depletion delayed disease-predictive sensorimotor impairment due to α-syn accumulation, in a dose-dependent fashion. At the end stage of the disease, neuronal deposits containing fibrillar α-syn species phosphorylated at S129 (PS129α-syn) were the predominant neuropathological feature in hA30Pα-syn mice, regardless of their parkin expression. Some of these deposits colocalized with the LB markers ubiquitin and α-syn truncated at D135 (α-synD135), indicating that PS129α-syn is subjected to secondary posttranslational modification (PTM); these features were not significantly affected by parkin dysfunction. CONCLUSIONS These findings suggest that Parkin deficiency acts as a protective modifier in α-syn-dependent neurodegeneration, without overtly affecting the composition and characteristics of α-syn deposits in end-stage disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Olga Corti
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, F-75013 Paris, France.
| |
Collapse
|
41
|
Trabzuni D, Ryten M, Emmett W, Ramasamy A, Lackner KJ, Zeller T, Walker R, Smith C, Lewis PA, Mamais A, de Silva R, Vandrovcova J, Hernandez D, Nalls MA, Sharma M, Garnier S, Lesage S, Simon-Sanchez J, Gasser T, Heutink P, Brice A, Singleton A, Cai H, Schadt E, Wood NW, Bandopadhyay R, Weale ME, Hardy J, Plagnol V. Fine-mapping, gene expression and splicing analysis of the disease associated LRRK2 locus. PLoS One 2013; 8:e70724. [PMID: 23967090 PMCID: PMC3742662 DOI: 10.1371/journal.pone.0070724] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 06/23/2013] [Indexed: 12/04/2022] Open
Abstract
Association studies have identified several signals at the LRRK2 locus for Parkinson's disease (PD), Crohn's disease (CD) and leprosy. However, little is known about the molecular mechanisms mediating these effects. To further characterize this locus, we fine-mapped the risk association in 5,802 PD and 5,556 controls using a dense genotyping array (ImmunoChip). Using samples from 134 post-mortem control adult human brains (UK Human Brain Expression Consortium), where up to ten brain regions were available per individual, we studied the regional variation, splicing and regulation of LRRK2. We found convincing evidence for a common variant PD association located outside of the LRRK2 protein coding region (rs117762348, A>G, P = 2.56×10(-8), case/control MAF 0.083/0.074, odds ratio 0.86 for the minor allele with 95% confidence interval [0.80-0.91]). We show that mRNA expression levels are highest in cortical regions and lowest in cerebellum. We find an exon quantitative trait locus (QTL) in brain samples that localizes to exons 32-33 and investigate the molecular basis of this eQTL using RNA-Seq data in n = 8 brain samples. The genotype underlying this eQTL is in strong linkage disequilibrium with the CD associated non-synonymous SNP rs3761863 (M2397T). We found two additional QTLs in liver and monocyte samples but none of these explained the common variant PD association at rs117762348. Our results characterize the LRRK2 locus, and highlight the importance and difficulties of fine-mapping and integration of multiple datasets to delineate pathogenic variants and thus develop an understanding of disease mechanisms.
Collapse
Affiliation(s)
- Daniah Trabzuni
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Warren Emmett
- University College London Genetics Institute, University College London, London, United Kingdom
| | - Adaikalavan Ramasamy
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany
| | - Tanja Zeller
- University Heart Center Hamburg, Clinic for General and Interventional Cardiology, Hamburg, Germany
| | - Robert Walker
- MRC Sudden Death Brain Bank Project, University of Edinburgh, Department of Neuropathology, Edinburgh, Scotland, United Kingdom
| | - Colin Smith
- MRC Sudden Death Brain Bank Project, University of Edinburgh, Department of Neuropathology, Edinburgh, Scotland, United Kingdom
| | - Patrick A. Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom
| | - Adamantios Mamais
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Reta Lila Weston Institute of Neurological Studies, London, United Kingdom
| | - Rohan de Silva
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Reta Lila Weston Institute of Neurological Studies, London, United Kingdom
| | - Jana Vandrovcova
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Reta Lila Weston Institute of Neurological Studies, London, United Kingdom
| | | | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Manu Sharma
- Division of Neurodegenerative Disorders, Hertie Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany
| | - Sophie Garnier
- Pierre and Marie Curie University, Institut National de la Santé et de la Recherche Médicale UMRS 937, Paris, France
| | - Suzanne Lesage
- CRICM, University Pierre et Marie Curie, Institut National de la Santé et de la Recherche Médicale UMRS 975, CNRS UMR 7225, Hospital Pitié-Salpêtrière, Paris, France
| | - Javier Simon-Sanchez
- Department of Clinical Genetics, Section of Medical Genomics, VU University Medical Centre, Amsterdam, The Netherlands
| | - Thomas Gasser
- Division of Neurodegenerative Disorders, Hertie Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany
| | - Peter Heutink
- Department of Clinical Genetics, Section of Medical Genomics, VU University Medical Centre, Amsterdam, The Netherlands
| | - Alexis Brice
- CRICM, University Pierre et Marie Curie, Institut National de la Santé et de la Recherche Médicale UMRS 975, CNRS UMR 7225, Hospital Pitié-Salpêtrière, Paris, France
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huaibin Cai
- Unit of Transgenesis, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric Schadt
- Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Nicholas W. Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Rina Bandopadhyay
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Reta Lila Weston Institute of Neurological Studies, London, United Kingdom
| | - Michael E. Weale
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Reta Lila Weston Institute of Neurological Studies, London, United Kingdom
| | - Vincent Plagnol
- University College London Genetics Institute, University College London, London, United Kingdom
| |
Collapse
|
42
|
Kett LR, Dauer WT. Leucine-rich repeat kinase 2 for beginners: six key questions. Cold Spring Harb Perspect Med 2013; 2:a009407. [PMID: 22393539 DOI: 10.1101/cshperspect.a009407] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There has been intense interest in leucine-rich repeat kinase 2 (LRRK2) since 2004, when mutations in the LRRK2 gene were discovered to cause dominantly inherited Parkinson's disease (PD). This article will address six basic questions about LRRK2 biology as it relates to PD, with particular emphasis on its discovery, current concepts of its physiological and pathological functions, and the strategies being used to discover how LRRK2 dysfunction causes PD.
Collapse
Affiliation(s)
- Lauren R Kett
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
43
|
Seo YA, Li Y, Wessling-Resnick M. Iron depletion increases manganese uptake and potentiates apoptosis through ER stress. Neurotoxicology 2013; 38:67-73. [PMID: 23764342 DOI: 10.1016/j.neuro.2013.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 02/02/2023]
Abstract
Iron deficiency is a risk factor for manganese (Mn) accumulation. Excess Mn promotes neurotoxicity but the mechanisms involved and whether iron depletion might affect these pathways is unknown. To study Mn intoxication in vivo, iron deficient and control rats were intranasally instilled with 60mg MnCl2/kg over 3 weeks. TUNEL staining of olfactory tissue revealed that Mn exposure induced apoptosis and that iron deficiency potentiated this effect. In vitro studies using the dopaminergic SH-SY5Y cell line confirmed that Mn-induced apoptosis was enhanced by iron depletion using the iron chelator desferrioxamine. Mn has been reported to induce apoptosis through endoplasmic reticulum stress. In SH-SY5Y cells, Mn exposure induced the ER stress genes glucose regulated protein 94 (GRP94) and C/EBP homologous protein (CHOP). Increased phosphorylation of the eukaryotic translation initiation factor 2α (phospho-eIF2α) was also observed. These effects were accompanied by the activation of ER resident enzyme caspase-12, and the downstream apoptotic effector caspase-3 was also activated. All of the Mn-induced responses were enhanced by DFO treatment. Inhibitors of ER stress and caspases significantly blocked Mn-induced apoptosis and its potentiation by DFO, indicating that ER stress and subsequent caspase activation underlie cell death. Taken together, these data reveal that Mn induces neuronal cell death through ER stress and the UPR response pathway and that this apoptotic effect is potentiated by iron deficiency most likely through upregulation of DMT1.
Collapse
Affiliation(s)
- Young Ah Seo
- Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, MA 02115, United States; Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, United States
| | | | | |
Collapse
|
44
|
FBXO7 Immunoreactivity in α-Synuclein—Containing Inclusions in Parkinson Disease and Multiple System Atrophy. J Neuropathol Exp Neurol 2013; 72:482-8. [DOI: 10.1097/nen.0b013e318293c586] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Mercado G, Valdés P, Hetz C. An ERcentric view of Parkinson's disease. Trends Mol Med 2013; 19:165-75. [DOI: 10.1016/j.molmed.2012.12.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/18/2012] [Accepted: 12/27/2012] [Indexed: 01/28/2023]
|
46
|
Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE. α-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol 2013; 73:155-69. [PMID: 23225525 PMCID: PMC3608838 DOI: 10.1002/ana.23746] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/09/2012] [Accepted: 08/23/2012] [Indexed: 12/21/2022]
Abstract
Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent, suggesting that another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species, with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated, as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications.
Collapse
Affiliation(s)
- Lorraine V Kalia
- Morton and Gloria Shulman Movement Disorders Centre and Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
47
|
Herzig MC, Bidinosti M, Schweizer T, Hafner T, Stemmelen C, Weiss A, Danner S, Vidotto N, Stauffer D, Barske C, Mayer F, Schmid P, Rovelli G, van der Putten PH, Shimshek DR. High LRRK2 levels fail to induce or exacerbate neuronal alpha-synucleinopathy in mouse brain. PLoS One 2012; 7:e36581. [PMID: 22615783 PMCID: PMC3352901 DOI: 10.1371/journal.pone.0036581] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/10/2012] [Indexed: 12/30/2022] Open
Abstract
The G2019S mutation in the multidomain protein leucine-rich repeat kinase 2 (LRRK2) is one of the most frequently identified genetic causes of Parkinson’s disease (PD). Clinically, LRRK2(G2019S) carriers with PD and idiopathic PD patients have a very similar disease with brainstem and cortical Lewy pathology (α-synucleinopathy) as histopathological hallmarks. Some patients have Tau pathology. Enhanced kinase function of the LRRK2(G2019S) mutant protein is a prime suspect mechanism for carriers to develop PD but observations in LRRK2 knock-out, G2019S knock-in and kinase-dead mutant mice suggest that LRRK2 steady-state abundance of the protein also plays a determining role. One critical question concerning the molecular pathogenesis in LRRK2(G2019S) PD patients is whether α-synuclein (aSN) has a contributory role. To this end we generated mice with high expression of either wildtype or G2019S mutant LRRK2 in brainstem and cortical neurons. High levels of these LRRK2 variants left endogenous aSN and Tau levels unaltered and did not exacerbate or otherwise modify α-synucleinopathy in mice that co-expressed high levels of LRRK2 and aSN in brain neurons. On the contrary, in some lines high LRRK2 levels improved motor skills in the presence and absence of aSN-transgene-induced disease. Therefore, in many neurons high LRRK2 levels are well tolerated and not sufficient to drive or exacerbate neuronal α-synucleinopathy.
Collapse
Affiliation(s)
- Martin C. Herzig
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Michael Bidinosti
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tatjana Schweizer
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Thomas Hafner
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Christine Stemmelen
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Andreas Weiss
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Simone Danner
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Nella Vidotto
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Daniela Stauffer
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Carmen Barske
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Franziska Mayer
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Peter Schmid
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Giorgio Rovelli
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - P. Herman van der Putten
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Derya R. Shimshek
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Ujiie S, Hatano T, Kubo SI, Imai S, Sato S, Uchihara T, Yagishita S, Hasegawa K, Kowa H, Sakai F, Hattori N. LRRK2 I2020T mutation is associated with tau pathology. Parkinsonism Relat Disord 2012; 18:819-23. [PMID: 22525366 DOI: 10.1016/j.parkreldis.2012.03.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/08/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal-dominant familial Parkinson's disease (FPD). The variable pathological features of LRRK2-linked FPD include Lewy bodies, degeneration of anterior horn cells associated with axonal spheroids, neurofibrillary tangles (NFTs) and TAR DNA-binding protein of 43 kDa (TDP-43) positive inclusion bodies. Furthermore, abnormal hyperphosphorylation of microtubule associated protein tau, in part generated by catalysis of protein kinases, has been reported to be involved in progressive neurodegeneration in a number of diseases, including FPD. Thus, we examined six patients carrying the LRRK2 I2020T mutation, a pathogenic mutation associated with PARK8, and found abnormal tau phosphorylation depositions in the brainstem. Additionally, we found LRRK2 I2020T enhanced tau phosphorylation in cultured cells co-expressing LRRK2-I2020T and 3 or 4-repeated tau. This is the first report describing the relationship between hyperphosphorylation of tau and LRRK2 I2020T.
Collapse
Affiliation(s)
- Sachiko Ujiie
- Department of Neurology, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu G, Aliaga L, Cai H. α-synuclein, LRRK2 and their interplay in Parkinson's disease. FUTURE NEUROLOGY 2012; 7:145-153. [PMID: 22563296 DOI: 10.2217/fnl.12.2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Of the various genetic factors contributing to the pathogenesis of Parkinson's disease (PD), only mutations in α-synuclein (α-syn) and LRRK2 genes cause clinical and neuropathological phenotypes closely resembling the sporadic cases. Therefore, studying the pathophysiological functions of these two PD-related genes is particularly informative in understanding the underlying molecular pathogenic mechanism of the disease. PD-related missense and multiplication mutations in α-syn may cause both early- and late-onset PD, whereas various PD-related LRRK2 missense mutations may contribute to the more common late-onset PD. While intensive studies have been carried out to elucidate the pathogenic properties of PD-related mutant α-syn and LRRK2, our knowledge of their normal functions and their potential genetic interplay remains rudimental. In this review, we summarize the progress made regarding the pathophysiological functions of α-syn, LRRK2 and their interaction in PD, based on the available literature and our unpublished observations.
Collapse
Affiliation(s)
- Guoxiang Liu
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
50
|
Sharma S, Bandopadhyay R, Lashley T, Renton AEM, Kingsbury AE, Kumaran R, Kallis C, Vilariño-Güell C, O'Sullivan SS, Lees AJ, Revesz T, Wood NW, Holton JL. LRRK2 expression in idiopathic and G2019S positive Parkinson's disease subjects: a morphological and quantitative study. Neuropathol Appl Neurobiol 2012; 37:777-90. [PMID: 21696411 DOI: 10.1111/j.1365-2990.2011.01187.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Mutations in the gene encoding leucine-rich repeat kinase-2 (LRRK2) have been established as a common genetic cause of Parkinson's disease (PD). The distribution of LRRK2 mRNA and protein in the human brain has previously been described, although it has not been reported in PD cases with the common LRRK2 G2019S mutation. METHODS To further elucidate the role of LRRK2 in PD, we determined the localization of LRRK2 mRNA and protein in post-mortem brain tissue from control, idiopathic PD (IPD) and G2019S positive PD cases. RESULTS Widespread neuronal expression of LRRK2 mRNA and protein was recorded and no difference was observed in the morphological localization of LRRK2 mRNA or protein between control, IPD and G2019S positive PD cases. Using quantitative real-time polymerase chain reaction, we demonstrated that there is no regional variation in LRRK2 mRNA in normal human brain, but we have identified differential expression of LRRK2 mRNA with significant reductions recorded in limbic and neocortical regions of IPD cases compared with controls. Semi-quantitative analysis of LRRK2 immunohistochemical staining demonstrated regional variation in staining intensity, with weak LRRK2 immunoreactivity consistently recorded in the striatum and substantia nigra. No clear differences were identified in LRRK2 immunoreactivity between control, IPD and G2019S positive PD cases. LRRK2 protein was identified in a small proportion of Lewy bodies. CONCLUSIONS Our data suggest that widespread dysregulation of LRRK2 mRNA expression may contribute to the pathogenesis of IPD.
Collapse
Affiliation(s)
- S Sharma
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, UCL, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|