1
|
Schmitt V, Baeumler P, Schänzer A, Irnich D, Schoser B, Montagnese F. Characterization of the neuropathic pain component contributing to myalgia in patients with myotonic dystrophy type 1 and 2. Front Neurol 2024; 15:1414140. [PMID: 39193143 PMCID: PMC11347447 DOI: 10.3389/fneur.2024.1414140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Chronic muscle pain is common in myotonic dystrophies (DM). Little is known about its pathophysiology. We aimed to investigate the characteristics of the neuropathic pain component contributing contributes to the pathogenesis of chronic pain in DM. Methods Twenty-one DM1 and 32 DM2 patients completed pain questionnaires (Brief pain inventory-BPI, PAIN-DETECT, pain disability index-PDI) and underwent neurological examination, nerve conduction studies (NCS), quantitative sensory testing (QST, dorsum of the right hand and right thigh) and skin biopsy to determine the intraepidermal nerve fiber density (IENFD, distal and proximal site of lower extremity). NCS and QST results at the thigh were compared to 27 healthy controls and IENFD and QST at the dorsum of the hand to published reference values. Results The sensory profile of DM2 patients was characterized by a loss in thermal and mechanical detection, while DM1 patients showed reduced mechanical and heat pain thresholds and higher mechanical pain sensitivity. Both DM groups showed pressure hyperalgesia. IENFD was reduced in 63% of DM1 patients and 50% of DM2. The slightly higher pain interference and disability found in DM2 was rather due to age difference than disease. Conclusion Similar pain mechanisms likely occur in both DM1 and DM2, even though a tendency toward more pain sensitivity was observed in DM1 and more sensory loss in DM2. Both QST and reduced IENFD highlight the presence of peripheral nerve damage in DM. This must be considered for the best pain management strategies.
Collapse
Affiliation(s)
- Viviane Schmitt
- Friedrich-Baur-Institut, Department of Neurology, Ludwig Maximilian University (LMU), Munich, Germany
| | - Petra Baeumler
- Multidisciplinary Pain Centre, Department of Anesthesiology, LMU University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| | - Dominik Irnich
- Multidisciplinary Pain Centre, Department of Anesthesiology, LMU University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institut, Department of Neurology, Ludwig Maximilian University (LMU), Munich, Germany
| | - Federica Montagnese
- Friedrich-Baur-Institut, Department of Neurology, Ludwig Maximilian University (LMU), Munich, Germany
| |
Collapse
|
2
|
Solbakken G, Løseth S, Frich JC, Dietrichs E, Ørstavik K. Small and large fiber neuropathy in adults with myotonic dystrophy type 1. Front Neurol 2024; 15:1375218. [PMID: 38504800 PMCID: PMC10949405 DOI: 10.3389/fneur.2024.1375218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disorder that affects multiple organs. In this study, we investigated symptoms of pain and presence of small and large fiber neuropathy in the juvenile and adult form of DM1. Method Twenty genetically verified DM1 patients were included. Pain was assessed, and neurological examination and investigations of the peripheral nervous system by quantification of small nerve fibers in skin biopsy, quantitative sensory testing and nerve conduction studies were performed. Results from skin biopsies were compared to healthy controls. Result Seventeen patients reported chronic pain. Large and/or small fiber abnormalities were present in 50% of the patients. The intraepidermal nerve fiber density was significantly lower in the whole group of patients compared to healthy controls. Conclusion Small-fiber neuropathy might be an important cause of pain in DM1.
Collapse
Affiliation(s)
- Gro Solbakken
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Rheumatology and Rehabilitation, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Sissel Løseth
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Section of Clinical Neurophysiology, University Hospital of North Norway, Tromsø, Norway
| | - Jan C. Frich
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Espen Dietrichs
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
3
|
Costa A, Cruz AC, Martins F, Rebelo S. Protein Phosphorylation Alterations in Myotonic Dystrophy Type 1: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043091. [PMID: 36834509 PMCID: PMC9965115 DOI: 10.3390/ijms24043091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Among the most common muscular dystrophies in adults is Myotonic Dystrophy type 1 (DM1), an autosomal dominant disorder characterized by myotonia, muscle wasting and weakness, and multisystemic dysfunctions. This disorder is caused by an abnormal expansion of the CTG triplet at the DMPK gene that, when transcribed to expanded mRNA, can lead to RNA toxic gain of function, alternative splicing impairments, and dysfunction of different signaling pathways, many regulated by protein phosphorylation. In order to deeply characterize the protein phosphorylation alterations in DM1, a systematic review was conducted through PubMed and Web of Science databases. From a total of 962 articles screened, 41 were included for qualitative analysis, where we retrieved information about total and phosphorylated levels of protein kinases, protein phosphatases, and phosphoproteins in DM1 human samples and animal and cell models. Twenty-nine kinases, 3 phosphatases, and 17 phosphoproteins were reported altered in DM1. Signaling pathways that regulate cell functions such as glucose metabolism, cell cycle, myogenesis, and apoptosis were impaired, as seen by significant alterations to pathways such as AKT/mTOR, MEK/ERK, PKC/CUGBP1, AMPK, and others in DM1 samples. This explains the complexity of DM1 and its different manifestations and symptoms, such as increased insulin resistance and cancer risk. Further studies can be done to complement and explore in detail specific pathways and how their regulation is altered in DM1, to find what key phosphorylation alterations are responsible for these manifestations, and ultimately to find therapeutic targets for future treatments.
Collapse
|
4
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
5
|
Solbakken G, Løseth S, Froholdt A, Eikeland TD, Nærland T, Frich JC, Dietrichs E, Ørstavik K. Pain in adult myotonic dystrophy type 1: relation to function and gender. BMC Neurol 2021; 21:101. [PMID: 33663406 PMCID: PMC7931522 DOI: 10.1186/s12883-021-02124-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background Pain is prevalent in myotonic dystrophy 1 (DM1). This study investigated whether CTG repeat size, disease duration, BMI and motor and psychological function were related to pain in adult patients with DM1, and if there were gender differences regarding intensity and location of pain. Method Cross-sectional design. Pain was investigated in 50 genetically confirmed DM1 patients by combining clinical assessment and self-reports of pain intensity and locations. Pain scoring results were related to CTG size, disease duration, muscle strength, walking capacity measured by 6-min walk test, activity of daily life by Katz ADL Index, respiratory function by Forced Vital Capacity and BMI. In addition, the degree of reported pain was related to Quality of life measured by WHOQOL-BREF; fatigue was measured by Fatigue severity scale; psychological functions were measured by Beck Depression Inventory, Beck Anxiety Inventory, IQ and Autism spectrum Quotient. Results Pain was reported in 84% of the patients and was significantly correlated with CTG size (r = 0.28 p = 0.050), disease duration (r = 0.38 p = 0.007), quality of life (r = − 0.37 p = 0.009), fatigue (r = 0.33 p = 0.02) and forced vital capacity (r = − 0.51, p = 0.005). Significant gender differences, with higher scores for females, were documented. In male subjects the number of pain locations was significantly correlated with quality of life and the autism quotient. In females, pain intensity was significantly correlated with activity, respiratory function and BMI. Conclusions Pain in DM1 was prevalent, with a strong association to lung function and other aspects of the disease. Significant gender differences were present for pain intensity and number of pain locations. How pain was related to other symptoms differed between male and female subjects. Our findings highlight the importance of assessments of pain in DM1 patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02124-9.
Collapse
Affiliation(s)
- Gro Solbakken
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Neurology, Rheumatology and Rehabilitation, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway.
| | - Sissel Løseth
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway.,Section of Clinical Neurophysiology, University Hospital of North Norway, Tromsø, Norway
| | - Anne Froholdt
- Department of Neurology, Rheumatology and Rehabilitation, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Torunn D Eikeland
- Department of Neurology, Rheumatology and Rehabilitation, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Terje Nærland
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Jan C Frich
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Espen Dietrichs
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
6
|
Correction of Glycogen Synthase Kinase 3β in Myotonic Dystrophy 1 Reduces the Mutant RNA and Improves Postnatal Survival of DMSXL Mice. Mol Cell Biol 2019; 39:MCB.00155-19. [PMID: 31383751 DOI: 10.1128/mcb.00155-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem neuromuscular disease without cure. One of the possible therapeutic approaches for DM1 is correction of the RNA-binding proteins CUGBP1 and MBNL1, misregulated in DM1. CUGBP1 activity is controlled by glycogen synthase kinase 3β (GSK3β), which is elevated in skeletal muscle of patients with DM1, and inhibitors of GSK3 were suggested as therapeutic molecules to correct CUGBP1 activity in DM1. Here, we describe that correction of GSK3β with a small-molecule inhibitor of GSK3, tideglusib (TG), not only normalizes the GSK3β-CUGBP1 pathway but also reduces the mutant DMPK mRNA in myoblasts from patients with adult DM1 and congenital DM1 (CDM1). Correction of GSK3β in a mouse model of DM1 (HSALR mice) with TG also reduces the levels of CUG-containing RNA, normalizing a number of CUGBP1- and MBNL1-regulated mRNA targets. We also found that the GSK3β-CUGBP1 pathway is abnormal in skeletal muscle and brain of DMSXL mice, expressing more than 1,000 CUG repeats, and that the correction of this pathway with TG increases postnatal survival and improves growth and neuromotor activity of DMSXL mice. These findings show that the inhibitors of GSK3, such as TG, may correct pathology in DM1 and CDM1 via several pathways.
Collapse
|
7
|
Braz SO, Acquaire J, Gourdon G, Gomes-Pereira M. Of Mice and Men: Advances in the Understanding of Neuromuscular Aspects of Myotonic Dystrophy. Front Neurol 2018; 9:519. [PMID: 30050493 PMCID: PMC6050950 DOI: 10.3389/fneur.2018.00519] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Intensive effort has been directed toward the modeling of myotonic dystrophy (DM) in mice, in order to reproduce human disease and to provide useful tools to investigate molecular and cellular pathogenesis and test efficient therapies. Mouse models have contributed to dissect the multifaceted impact of the DM mutation in various tissues, cell types and in a pleiotropy of pathways, through the expression of toxic RNA transcripts. Changes in alternative splicing, transcription, translation, intracellular RNA localization, polyadenylation, miRNA metabolism and phosphorylation of disease intermediates have been described in different tissues. Some of these events have been directly associated with specific disease symptoms in the skeletal muscle and heart of mice, offering the molecular explanation for individual disease phenotypes. In the central nervous system (CNS), however, the situation is more complex. We still do not know how the molecular abnormalities described translate into CNS dysfunction, nor do we know if the correction of individual molecular events will provide significant therapeutic benefits. The variability in model design and phenotypes described so far requires a thorough and critical analysis. In this review we discuss the recent contributions of mouse models to the understanding of neuromuscular aspects of disease, therapy development, and we provide a reflective assessment of our current limitations and pressing questions that remain unanswered.
Collapse
Affiliation(s)
- Sandra O Braz
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Julien Acquaire
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Geneviève Gourdon
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Mário Gomes-Pereira
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
8
|
Jauvin D, Chrétien J, Pandey SK, Martineau L, Revillod L, Bassez G, Lachon A, MacLeod AR, Gourdon G, Wheeler TM, Thornton CA, Bennett CF, Puymirat J. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624222 PMCID: PMC5453865 DOI: 10.1016/j.omtn.2017.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myotonic dystrophy type 1 (DM1), a dominant hereditary muscular dystrophy, is caused by an abnormal expansion of a (CTG)n trinucleotide repeat in the 3′ UTR of the human dystrophia myotonica protein kinase (DMPK) gene. As a consequence, mutant transcripts containing expanded CUG repeats are retained in nuclear foci and alter the function of splicing regulatory factors members of the MBNL and CELF families, resulting in alternative splicing misregulation of specific transcripts in affected DM1 tissues. In the present study, we treated DMSXL mice systemically with a 2′-4′-constrained, ethyl-modified (ISIS 486178) antisense oligonucleotide (ASO) targeted to the 3′ UTR of the DMPK gene, which led to a 70% reduction in CUGexp RNA abundance and foci in different skeletal muscles and a 30% reduction in the heart. Furthermore, treatment with ISIS 486178 ASO improved body weight, muscle strength, and muscle histology, whereas no overt toxicity was detected. This is evidence that the reduction of CUGexp RNA improves muscle strength in DM1, suggesting that muscle weakness in DM1 patients may be improved following elimination of toxic RNAs.
Collapse
Affiliation(s)
- Dominic Jauvin
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada
| | - Jessina Chrétien
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada
| | - Sanjay K Pandey
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA; Triangulum Biopharma, San Diego, CA 92121, USA
| | - Laurie Martineau
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada
| | - Lucille Revillod
- INSERM U955, Neuromuscular Reference Center, Henri-Mondor Hospital, Créteil 94000, France
| | - Guillaume Bassez
- INSERM U955, Neuromuscular Reference Center, Henri-Mondor Hospital, Créteil 94000, France
| | - Aline Lachon
- INSERM U781, Imagine Institute, Paris 75015, France
| | | | | | | | | | | | - Jack Puymirat
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada; Department of Neurological Sciences CHU de Québec-Laval University, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada.
| |
Collapse
|
9
|
Leonardis L. Peripheral neuropathy in patients with myotonic dystrophy type 2. Acta Neurol Scand 2017; 135:568-575. [PMID: 27401721 DOI: 10.1111/ane.12635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Myotonic dystrophy type 2 (dystrophia myotonica type 2-DM2) is an autosomal dominant multi-organ disorder. The involvement of the peripheral nervous system was found in 25%-45% of patients with myotonic dystrophy type 1, although limited data are available concerning polyneuropathy in patients with DM2, which was the aim of this study with a thorough presentation of the cases with peripheral neuropathy. MATERIAL AND METHODS Patients with genetically confirmed DM2 underwent motor nerve conduction studies of the median, ulnar, tibial and fibular nerves and sensory nerve conduction studies of the median (second finger), ulnar (fifth finger), radial (forearm) and sural nerves. RESULTS Seventeen adult patients with DM2 participated in the study. Fifty-three percent (9/17) of our patients had abnormality of one or more attributes (latency, amplitude or conduction velocity) in two or more separate nerves. Four types of neuropathies were found: (i) predominantly axonal motor and sensory polyneuropathy, (ii) motor polyneuropathy, (iii) predominantly demyelinating motor and sensory polyneuropathy and (iv) mutilating polyneuropathy with ulcers. The most common forms are axonal motor and sensory polyneuropathy (29%) and motor neuropathy (18% of all examined patients). No correlations were found between the presence of neuropathy and age, CCTG repeats, blood glucose or HbA1C. CONCLUSIONS Peripheral neuropathy is common in patients with DM2 and presents one of the multisystemic manifestations of DM2.
Collapse
Affiliation(s)
- L. Leonardis
- Institute of Clinical Neurophysiology; University Medical Center Ljubljana; Ljubljana Slovenia
| |
Collapse
|
10
|
Banach M, Antczak J, Rola R. Association of peripheral neuropathy with sleep-related breathing disorders in myotonic dystrophies. Neuropsychiatr Dis Treat 2017; 13:133-140. [PMID: 28138246 PMCID: PMC5238763 DOI: 10.2147/ndt.s123908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Myotonic dystrophy (DM) type 1 and type 2 are inherited diseases characterized by myotonia and myopathy. Additional symptoms include, among others, peripheral neuropathy and sleep-related breathing disorders (SRBDs). There is growing evidence for a complex association between DM1 and DM2, which was described in patients with diabetes mellitus and in the general population. In this study, we investigated whether there is an association between peripheral neuropathy and SRBDs also in the population of patients with DM. METHODS The study included 16 patients with DM1 (mean age, 37.9±14.1 years; 20-69 years) and eight patients with DM2 (mean age, 47.6±14.1 years; 20-65 years), who underwent a sensory and motor nerve conduction study (NCS) and diagnostic screening for SRBDs. In both groups, the NCS parameters were correlated with respiratory parameters. RESULTS In both groups, the amplitude of the ulnar sensory nerve action potential (SNAP) correlated with the mean arterial oxygen saturation (SaO2). In addition, in the DM2 group, the median SNAP correlated with the mean SaO2. In the DM1 group, the median SNAP and the distal motor latency (DML) of the ulnar nerve correlated with the apnea-hypopnea index, while the oxygen desaturation index correlated with the DML of the tibial nerve and with conduction velocity in the sural nerve. CONCLUSION Our results indicate a complex association between neuropathy and SRBDs in DM1 and DM2. Axonal degeneration may contribute to nocturnal hypoxemia and vice versa. Neuropathy may contribute to muscle weakness, which in turn may cause respiratory events.
Collapse
Affiliation(s)
| | | | - Rafał Rola
- First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
11
|
Nojszewska M, Łusakowska A, Szmidt-Salkowska E, Gaweł M, Lipowska M, Sułek A, Krysa W, Rajkiewicz M, Seroka A, Kaczmarek K, Kamińska AM. Peripheral nerve involvement in myotonic dystrophy type 2 - similar or different than in myotonic dystrophy type 1? Neurol Neurochir Pol 2015; 49:164-70. [PMID: 26048604 DOI: 10.1016/j.pjnns.2015.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/28/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Multisystem manifestations of myotonic dystrophies type 1 (DM1) and 2 (DM2) are well known. Peripheral nerve involvement has been reported in DM1 but not in genetically confirmed DM2. The aim of our study was to assess peripheral nerve involvement in DM2 using nerve conduction studies and to compare these results with findings in DM1. METHODS We prospectively studied patients with genetically confirmed DM2 (n=30) and DM1 (n=32). All patients underwent detailed neurological examination and nerve conduction studies. RESULTS Abnormalities in electrophysiological studies were found in 26.67% of patients with DM2 and in 28.13% of patients with DM1 but the criteria of polyneuropathy were fulfilled in only 13.33% of patients with DM2 and 12.5% of patients with DM1. The polyneuropathy was subclinical, and no correlation was found between its presence and patient age or disease duration. CONCLUSIONS Peripheral nerves are quite frequently involved in DM2, but abnormalities meeting the criteria of polyneuropathy are rarely found. The incidence of peripheral nerve involvement is similar in both types of myotonic dystrophy.
Collapse
Affiliation(s)
- Monika Nojszewska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Łusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - Małgorzata Gaweł
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland.
| | - Marta Lipowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Sułek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Wioletta Krysa
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Rajkiewicz
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Andrzej Seroka
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - Anna M Kamińska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Abnormal sodium current properties contribute to cardiac electrical and contractile dysfunction in a mouse model of myotonic dystrophy type 1. Neuromuscul Disord 2014; 25:308-20. [PMID: 25613807 DOI: 10.1016/j.nmd.2014.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 11/21/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common neuromuscular disorder and is associated with cardiac conduction defects. However, the mechanisms of cardiac arrhythmias in DM1 are unknown. We tested the hypothesis that abnormalities in the cardiac sodium current (INa) are involved, and used a transgenic mouse model reproducing the expression of triplet expansion observed in DM1 (DMSXL mouse). The injection of the class-I antiarrhythmic agent flecainide induced prominent conduction abnormalities and significantly lowered the radial tissular velocities and strain rate in DMSXL mice compared to WT. These abnormalities were more pronounced in 8-month-old mice than in 3-month-old mice. Ventricular action potentials recorded by standard glass microelectrode technique exhibited a lower maximum upstroke velocity [dV/dt](max) in DMSXL. This decreased [dV/dt](max) was associated with a 1.7 fold faster inactivation of INa in DMSXL myocytes measured by the whole-cell patch-clamp technique. Finally in the DMSXL mouse, no mutation in the Scn5a gene was detected and neither cardiac fibrosis nor abnormalities of expression of the sodium channel protein were observed. Therefore, alterations in the sodium current markedly contributed to electrical conduction block in DM1. This result should guide pharmaceutical and clinical research toward better therapy for the cardiac arrhythmias associated with DM1.
Collapse
|
13
|
Panaite PA, Kuntzer T, Gourdon G, Barakat-Walter I. Respiratory failure in a mouse model of myotonic dystrophy does not correlate with the CTG repeat length. Respir Physiol Neurobiol 2013; 189:22-6. [PMID: 23811192 DOI: 10.1016/j.resp.2013.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 01/03/2023]
Abstract
Myotonic dystrophy (DM1) is a multisystemic disease caused by an expansion of CTG repeats in the region of DMPK, the gene encoding DM protein kinase. The severity of muscle disability in DM1 correlates with the size of CTG expansion. As respiratory failure is one of the main causes of death in DM1, we investigated the correlation between respiratory impairment and size of the (CTG)n repeat in DM1 animal models. Using pressure plethysmography the respiratory function was assessed in control and transgenic mice carrying either 600 (DM600) or >1300 CTG repeats (DMSXL). The statistical analysis of respiratory parameters revealed that both DM1 transgenic mice sub-lines show respiratory impairment compared to control mice. In addition, there is no significant difference in breathing functions between the DM600 and DMSXL mice. In conclusion, these results indicate that respiratory impairment is present in both transgenic mice sub-lines, but the severity of respiratory failure is not related to the size of the (CTG)n expansion.
Collapse
|
14
|
Hernández-Hernández O, Sicot G, Dinca DM, Huguet A, Nicole A, Buée L, Munnich A, Sergeant N, Gourdon G, Gomes-Pereira M. Synaptic protein dysregulation in myotonic dystrophy type 1: Disease neuropathogenesis beyond missplicing. Rare Dis 2013; 1:e25553. [PMID: 25003003 PMCID: PMC3927487 DOI: 10.4161/rdis.25553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/23/2022] Open
Abstract
The toxicity of expanded transcripts in myotonic dystrophy type 1 (DM1) is mainly mediated by the disruption of alternative splicing. However, the detailed disease mechanisms in the central nervous system (CNS) have not been fully elucidated. In our recent study, we demonstrated that the accumulation of mutant transcripts in the CNS of a mouse model of DM1 disturbs splicing in a region-specific manner. We now discuss that the spatial- and temporal-regulated expression of splicing factors may contribute to the region-specific spliceopathy in DM1 brains. In the search for disease mechanisms operating in the CNS, we found that the expression of expanded CUG-containing RNA affects the expression and phosphorylation of synaptic vesicle proteins, possibly contributing to DM1 neurological phenotypes. Although mediated by splicing regulators with a described role in DM1, the misregulation of synaptic proteins was not associated with missplicing of their coding transcripts, supporting the view that DM1 mechanisms in the CNS have also far-reaching implications beyond the disruption of a splicing program.
Collapse
Affiliation(s)
- Oscar Hernández-Hernández
- Inserm U781; Hôpital Necker Enfants Malades; Paris, France ; Laboratorio de Medicina Genómica; Departamento de Genética; Instituto Nacional de Rehabilitación; Calzada México Xochimilco, México
| | - Géraldine Sicot
- Inserm U781; Hôpital Necker Enfants Malades; Paris, France ; Université Paris Descartes-Sorbonne Paris Cité; Institut Imagine; Paris, France
| | - Diana M Dinca
- Inserm U781; Hôpital Necker Enfants Malades; Paris, France ; Université Paris Descartes-Sorbonne Paris Cité; Institut Imagine; Paris, France
| | - Aline Huguet
- Inserm U781; Hôpital Necker Enfants Malades; Paris, France ; Université Paris Descartes-Sorbonne Paris Cité; Institut Imagine; Paris, France
| | - Annie Nicole
- Inserm U781; Hôpital Necker Enfants Malades; Paris, France ; Université Paris Descartes-Sorbonne Paris Cité; Institut Imagine; Paris, France
| | - Luc Buée
- Inserm U837-1; Alzheimer and Tauopathies; Université Lille Nord de France; Centre Jean Pierre Aubert; Lille, France
| | - Arnold Munnich
- Inserm U781; Hôpital Necker Enfants Malades; Paris, France ; Université Paris Descartes-Sorbonne Paris Cité; Institut Imagine; Paris, France
| | - Nicolas Sergeant
- Inserm U837-1; Alzheimer and Tauopathies; Université Lille Nord de France; Centre Jean Pierre Aubert; Lille, France
| | - Geneviève Gourdon
- Inserm U781; Hôpital Necker Enfants Malades; Paris, France ; Université Paris Descartes-Sorbonne Paris Cité; Institut Imagine; Paris, France
| | - Mário Gomes-Pereira
- Inserm U781; Hôpital Necker Enfants Malades; Paris, France ; Université Paris Descartes-Sorbonne Paris Cité; Institut Imagine; Paris, France
| |
Collapse
|
15
|
Huguet A, Medja F, Nicole A, Vignaud A, Guiraud-Dogan C, Ferry A, Decostre V, Hogrel JY, Metzger F, Hoeflich A, Baraibar M, Gomes-Pereira M, Puymirat J, Bassez G, Furling D, Munnich A, Gourdon G. Molecular, physiological, and motor performance defects in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus. PLoS Genet 2012; 8:e1003043. [PMID: 23209425 PMCID: PMC3510028 DOI: 10.1371/journal.pgen.1003043] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an unstable CTG repeat expansion in the 3′UTR of the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form nuclear foci and affect splicing regulation of various RNA transcripts. Furthermore, bidirectional transcription over the DMPK gene and non-conventional RNA translation of repeated transcripts have been described in DM1. It is clear now that this disease may involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro–RNA metabolism. We previously generated transgenic mice with 45-kb of the DM1 locus and >300 CTG repeats (DM300 mice). After successive breeding and a high level of CTG repeat instability, we obtained transgenic mice carrying >1,000 CTG (DMSXL mice). Here we described for the first time the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. Interestingly, we also demonstrate that DMPK antisense transcripts are expressed in various DMSXL and human tissues, and that both sense and antisense transcripts accumulate in independent nuclear foci that do not co-localize together. Molecular features of DM1-associated RNA toxicity in DMSXL mice (such as foci accumulation and mild missplicing), were associated with high mortality, growth retardation, and muscle defects (abnormal histopathology, reduced muscle strength, and lower motor performances). We have found that lower levels of IGFBP-3 may contribute to DMSXL growth retardation, while increased proteasome activity may affect muscle function. These data demonstrate that the human DM1 locus carrying very large expansions induced a variety of molecular and physiological defects in transgenic mice, reflecting DM1 to a certain extent. As a result, DMSXL mice provide an animal tool to decipher various aspects of the disease mechanisms. In addition, these mice can be used to test the preclinical impact of systemic therapeutic strategies on molecular and physiological phenotypes. Myotonic dystrophy type 1 (DM1) is caused by the abnormal expansion of a CTG repeat located in the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form toxic nuclear foci that affect other RNAs. DM1 involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro–RNA metabolism. We previously generated transgenic mice carrying the human DM1 locus and very large expansions >1,000 CTG (DMSXL mice). Here we described for the first time, the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. We also demonstrate that DMPK antisense transcripts are expressed in various tissues from DMSXL mice and human. Both sense and antisense transcripts form nuclear foci. DMSXL mice showed molecular DM1 features such as foci and mild splicing defects as well as muscles defects, reduced muscle strength, and lower motor performances. These mice recapitulate some molecular features of DM1 leading to physiological abnormalities. DMSXL are not only a tool to decipher various mechanisms involved in DM1 but also to test the preclinical impact of systemic therapeutic strategies.
Collapse
Affiliation(s)
- Aline Huguet
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Fadia Medja
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Annie Nicole
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Alban Vignaud
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
- Généthon, Evry, France
| | - Céline Guiraud-Dogan
- Inserm U955, Département de Neurosciences, Faculté de Médecine, Université Paris XII, Créteil, France
| | - Arnaud Ferry
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Valérie Decostre
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Hogrel
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Friedrich Metzger
- F. Hoffmann-La Roche, CNS Pharma Research and Development, Basel, Switzerland
| | - Andreas Hoeflich
- Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martin Baraibar
- UPMC Univ Paris 06, UM 76, Institut de Myologie and Inserm, U974 and CNRS, UMR7215, Paris, France
| | - Mário Gomes-Pereira
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Jack Puymirat
- Human Genetics Research Unit, Laval University, Québec City, Québec, Canada
| | - Guillaume Bassez
- Inserm U955, Département de Neurosciences, Faculté de Médecine, Université Paris XII, Créteil, France
| | - Denis Furling
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Arnold Munnich
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Geneviève Gourdon
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Panaite PA, Kuntzer T, Gourdon G, Lobrinus JA, Barakat-Walter I. Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy. Dis Model Mech 2012. [PMID: 23180777 PMCID: PMC3634646 DOI: 10.1242/dmm.010512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Collapse
|