1
|
Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci 2023; 24:ijms24076321. [PMID: 37047292 PMCID: PMC10094105 DOI: 10.3390/ijms24076321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Andrzejewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Agata Adamczyk
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| |
Collapse
|
2
|
Verma A, Kommaddi RP, Gnanabharathi B, Hirsch EC, Ravindranath V. Genes critical for development and differentiation of dopaminergic neurons are downregulated in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:495-512. [PMID: 36820885 DOI: 10.1007/s00702-023-02604-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
We performed transcriptome analysis using RNA sequencing on substantia nigra pars compacta (SNpc) from mice after acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment and from Parkinson's disease (PD) patients. Acute and chronic exposure to MPTP resulted in decreased expression of genes involved in sodium channel regulation. However, upregulation of pro-inflammatory pathways was seen after single dose but not after chronic MPTP treatment. Dopamine biosynthesis and synaptic vesicle recycling pathways were downregulated in PD patients and after chronic MPTP treatment in mice. Genes essential for midbrain development and determination of dopaminergic phenotype such as, LMX1B, FOXA1, RSPO2, KLHL1, EBF3, PITX3, RGS4, ALDH1A1, RET, FOXA2, EN1, DLK1, GFRA1, LMX1A, NR4A2, GAP43, SNCA, PBX1, and GRB10 were downregulated in human PD and overexpression of GFP tagged LMX1B rescued MPP+ induced death in SH-SY5Y neurons. Downregulation of gene ensemble involved in development and differentiation of dopaminergic neurons indicate their potential involvement in pathogenesis and progression of human PD.
Collapse
Affiliation(s)
- Aditi Verma
- Centre for Neuroscience, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Reddy Peera Kommaddi
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | | | - Etienne C Hirsch
- Sorbonne Université, Institut du Cerveau - ICM, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
| | - Vijayalakshmi Ravindranath
- Centre for Neuroscience, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India. .,Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
3
|
Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol 2022; 215:102289. [DOI: 10.1016/j.pneurobio.2022.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
4
|
Roles of Transcription Factors in the Development and Reprogramming of the Dopaminergic Neurons. Int J Mol Sci 2022; 23:ijms23020845. [PMID: 35055043 PMCID: PMC8775916 DOI: 10.3390/ijms23020845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
The meso-diencephalic dopaminergic (mdDA) neurons regulate various critical processes in the mammalian nervous system, including voluntary movement and a wide range of behaviors such as mood, reward, addiction, and stress. mdDA neuronal loss is linked with one of the most prominent human movement neurological disorders, Parkinson’s disease (PD). How these cells die and regenerate are two of the most hotly debated PD research topics. As for the latter, it has been long known that a series of transcription factors (TFs) involves the development of mdDA neurons, specifying cell types and controlling developmental patterns. In vitro and in vivo, TFs regulate the expression of tyrosine hydroxylase, a dopamine transporter, vesicular monoamine transporter 2, and L-aromatic amino acid decarboxylase, all of which are critical for dopamine synthesis and transport in dopaminergic neurons (DA neurons). In this review, we encapsulate the molecular mechanism of TFs underlying embryonic growth and maturation of mdDA neurons and update achievements on dopaminergic cell therapy dependent on knowledge of TFs in mdDA neuronal development. We believe that a deeper understanding of the extrinsic and intrinsic factors that influence DA neurons’ fate and development in the midbrain could lead to a better strategy for PD cell therapy.
Collapse
|
5
|
Beiki R, Khaghani M, Esmaeili F, Dehghanian F. Synergistic Effects of Combined Nurr1 Overexpression and Natural Inducers on the More Efficient Production of Dopaminergic Neuron-Like Cells From Stem Cells. Front Cell Neurosci 2022; 15:803272. [PMID: 35087379 PMCID: PMC8787052 DOI: 10.3389/fncel.2021.803272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022] Open
Abstract
The development of dopaminergic (DA) neurons is a very complex process, and a combination of extrinsic and intrinsic factors involves their differentiation. Transcription factor, Nurr1 plays an essential role in the differentiation and maintenance of midbrain DA neurons. Nurr1-based therapies may restore DA function in Parkinson's disease (PD) by replacing damaged cells with differentiated cells derived from stem cells. Providing tissue-specific microenvironments such as brain extract can effectively induce dopaminergic gene expression in stem cells. The present study aimed to investigate the combined effects of Nurr1 gene overexpression and a neonatal rat brain extract (NRBE) induction on dopaminergic differentiation of P19 stem cells. In order to neural differentiation induction, stably Nurr1-transfected cells were treated with 100 μg/ml of NRBE. The differentiation potential of the cells was then evaluated during a period of 1–3 weeks via various methods. The initial evaluation of the cells by direct observation under a light microscope and cresyl violet specific staining, confirmed neuron-like morphology in the differentiated cells. In addition, different molecular and cellular techniques, including real-time PCR, immunofluorescence, and flow cytometry, demonstrated that the treated cells expressed pan-neuronal and dopaminergic markers. In all experimental groups, neuronal phenotype with dopaminergic neuron-like cells characteristics mainly appeared in the second week of the differentiation protocol. Overall, the results of the present study revealed for the first time the synergistic effects of Nurr1 gene overexpression and possible soluble factors that existed in NRBE on the differentiation of P19 stem cells into dopaminergic neuron-like cells.
Collapse
|
6
|
Ryu S, Jeon H, Koo S, Kim S. Korean Red Ginseng Enhances Neurogenesis in the Subventricular Zone of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Treated Mice. Front Aging Neurosci 2018; 10:355. [PMID: 30459594 PMCID: PMC6232267 DOI: 10.3389/fnagi.2018.00355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/18/2018] [Indexed: 11/22/2022] Open
Abstract
Regulation of adult neurogenesis plays an important role in therapeutic strategies for various neurodegenerative diseases. Recent studies have suggested that the enhancement of adult neurogenesis can be helpful in the treatment of Parkinson’s disease (PD). In this study, we investigated whether Korean red ginseng (KRG) can enhance neurogenesis in the subventricular zone (SVZ) of a PD mouse model. To accomplish this, male 8-week-old C57BL/6 mice were injected with vehicle or 20 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) four times at 2 h intervals. After the final injection, they were administered water or 100 mg/kg of KRG extract and injected intraperitoneally with 50 mg/kg of 5’-bromo-2’-deoxyuridine-monophosphate (BrdU) once a day for 14 consecutive days. After the last pole test, dopaminergic neuronal survival in the striatum and the substantia nigra (SN), cell proliferation in the SVZ and mRNA expression of neurotrophic factors and dopamine receptors in the striatum were evaluated. KRG administration suppressed dopaminergic neuronal death induced by MPTP in the striatum as well as the SN, augmented the number of BrdU- and BrdU/doublecortin (Dcx)-positive cells in the SVZ and enhanced the expression of proliferation cell nuclear antigen, brain derived neurotrophic factor (BDNF), glial cell derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF), ciliary neurotrophic factor (CNTF), dopamine receptor D3 (DRD3) and D5 mRNAs. These results suggest that KRG administration augments neurogenesis in the SVZ of the PD mouse model.
Collapse
Affiliation(s)
- Sun Ryu
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Hyongjun Jeon
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Sungtae Koo
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea.,Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Seungtae Kim
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea.,Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| |
Collapse
|
7
|
Yue P, Miao W, Gao L, Zhao X, Teng J. Ultrasound-Triggered Effects of the Microbubbles Coupled to GDNF Plasmid-Loaded PEGylated Liposomes in a Rat Model of Parkinson's Disease. Front Neurosci 2018; 12:222. [PMID: 29686604 PMCID: PMC5900787 DOI: 10.3389/fnins.2018.00222] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Background: The purpose of this study was to investigate ultrasound-triggered effects of PEGylated liposomes-coupled microbubbles mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF) plasmid (PLs-GDNF-MBs) on behavioral deficits and neuron loss in a rat model of Parkinson's disease (PD). Methods: The unloaded PLs-MBs were characterized for particle size, concentration and zeta potential. PD rat model was established by a unilateral 6-hydroxydopamine (6-OHDA) lesion. Rotational, climbing pole, and suspension tests were used to evaluate behavioral deficits. The immunohistochemical staining of tyrosine hydroxylase (TH) and dopamine transporter (DAT) was used to assess the neuron loss. The expression levels of GDNF and nuclear receptor-related factor 1 (Nurr1) were determined by western blot and qRT-PCR analysis. Results: The particle size of PLs-MBs was gradually increased, while the concentration and absolute zeta potential were gradually decreased in a time-dependent manner after injection. 6-OHDA elevated amphetamine-induced rotations and decreased the TH and DAT immunoreactivity compared to sham group. However, these effects were blocked by the PLs-GDNF-MBs. In addition, the mRNA and protein expression levels of GDNF and Nurr1 were increased after PLs-GDNF-MBs treatment. Conclusions: The delivery of PLs-GDNF-MBs into the brains using MRI-guided focused ultrasound alleviates the behavioral deficits and neuron loss in the rat model of PD.
Collapse
Affiliation(s)
- Peijian Yue
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Miao
- Department of Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Gao
- Department of Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Yue P, Gao L, Wang X, Ding X, Teng J. Ultrasound‐triggered effects of the microbubbles coupled to GDNF‐ and Nurr1‐loaded PEGylated liposomes in a rat model of Parkinson's disease. J Cell Biochem 2018; 119:4581-4591. [DOI: 10.1002/jcb.26608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Peijian Yue
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Gao
- Department of Neurological Intensive Care UnitThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xuejing Wang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xuebing Ding
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Junfang Teng
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
9
|
Torra A, Parent A, Cuadros T, Rodríguez-Galván B, Ruiz-Bronchal E, Ballabio A, Bortolozzi A, Vila M, Bové J. Overexpression of TFEB Drives a Pleiotropic Neurotrophic Effect and Prevents Parkinson's Disease-Related Neurodegeneration. Mol Ther 2018; 26:1552-1567. [PMID: 29628303 DOI: 10.1016/j.ymthe.2018.02.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
The possible implication of transcription factor EB (TFEB) as a therapeutic target in Parkinson's disease has gained momentum since it was discovered that TFEB controls lysosomal biogenesis and autophagy and that its activation might counteract lysosomal impairment and protein aggregation. However, the majority of putative direct targets of TFEB described to date is linked to a range of biological processes that are not related to the lysosomal-autophagic system. Here, we assessed the effect of overexpressing TFEB with an adeno-associated viral vector in mouse substantia nigra dopaminergic neurons. We demonstrate that TFEB overexpression drives a previously unknown bona fide neurotrophic effect, giving rise to cell growth, higher tyrosine hydroxylase levels, and increased dopamine release in the striatum. TFEB overexpression induces the activation of the mitogen-activated protein kinase 1/3 (MAPK1/3) and AKT pro-survival pathways, phosphorylation of mTORC1 effectors 4E-binding protein 1 (4E-BP1) and S6 kinase B1 (S6K1), and increased protein synthesis. We show that TFEB overexpression prevents dopaminergic cell loss and counteracts atrophy and the associated protein synthesis decline in the MPTP mouse model of Parkinson's disease. Our results suggest that increasing TFEB activity might prevent neuronal death and restore neuronal function in Parkinson's disease and other neurodegenerative diseases through different mechanisms.
Collapse
Affiliation(s)
- Albert Torra
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Beatriz Rodríguez-Galván
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Esther Ruiz-Bronchal
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Center for Networked Biomedical Research on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Analía Bortolozzi
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Center for Networked Biomedical Research on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain.
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
10
|
Axelsen TM, Woldbye DP. Gene Therapy for Parkinson's Disease, An Update. JOURNAL OF PARKINSON'S DISEASE 2018; 8:195-215. [PMID: 29710735 PMCID: PMC6027861 DOI: 10.3233/jpd-181331] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/19/2022]
Abstract
The current mainstay treatment of Parkinson's disease (PD) consists of dopamine replacement therapy which, in addition to causing several side effects, does not delay disease progression. The field of gene therapy offers a potential means to improve current therapy. The present review gives an update of the present status of gene therapy for PD. Both non-disease and disease modifying transgenes have been tested for PD gene therapy in animal and human studies. Non-disease modifying treatments targeting dopamine or GABA synthesis have been successful and promising at improving PD symptomatology in randomized clinical studies, but substantial testing remains before these can be implemented in the standard clinical treatment repertoire. As for disease modifying targets that theoretically offer the possibility of slowing the progression of disease, several neurotrophic factors show encouraging results in preclinical models (e.g., neurturin, GDNF, BDNF, CDNF, VEGF-A). However, so far, clinical trials have only tested neurturin, and, unfortunately, no trial has been able to meet its primary endpoint. Future clinical trials with neurotrophic factors clearly deserve to be conducted, considering the still enticing goal of actually slowing the disease process of PD. As alternative types of gene therapy, opto- and chemogenetics might also find future use in PD treatment and novel genome-editing technology could also potentially be applied as individualized gene therapy for genetic types of PD.
Collapse
Affiliation(s)
- Tobias M. Axelsen
- Department of Neurology, Herlev University Hospital, Herlev, Denmark
| | - David P.D. Woldbye
- Department of Neuroscience, Panum Institute, Mærsk Tower, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
11
|
Chen J, Kang XY, Tang CX, Gao DS. Impact of Pitx3 gene knockdown on glial cell line-derived neurotrophic factor transcriptional activity in dopaminergic neurons. Neural Regen Res 2017; 12:1347-1351. [PMID: 28966651 PMCID: PMC5607831 DOI: 10.4103/1673-5374.213557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Pitx3 is strongly associated with the phenotype, differentiation, and survival of dopaminergic neurons. The relationship between Pitx3 and glial cell line-derived neurotrophic factor (GDNF) in dopaminergic neurons remains poorly understood. The present investigation sought to construct and screen a lentivirus expression plasmid carrying a rat Pitx3 short hairpin (sh)RNA and to assess the impact of Pitx3 gene knockdown on GDNF transcriptional activity in MES23.5 dopaminergic neurons. Three pairs of interference sequences were designed and separately ligated into GV102 expression vectors. These recombinant plasmids were transfected into MES23.5 cells and western blot assays were performed to detect Pitx3 protein expression. Finally, the most effective Pitx3 shRNA and a dual-luciferase reporter gene plasmid carrying the GDNF promoter region (GDNF-luciferase) were cotransfected into MES23.5 cells. Sequencing showed that the synthesized sequences were identical to the three Pitx3 interference sequences. Inverted fluorescence microscopy revealed that the lentivirus expression plasmids carrying Pitx3-shRNA had 40–50% transfection efficiency. Western blot assay confirmed that the corresponding Pitx3 of the third knockdown sequence had the lowest expression level. Dual-luciferase reporter gene results showed that the GDNF transcriptional activity in dopaminergic cells cotransfected with both plasmids was decreased compared with those transfected with GDNF-luciferase alone. Together, the results showed that the designed Pitx3-shRNA interference sequence decreased Pitx3 protein expression, which decreased GDNF transcriptional activity.
Collapse
Affiliation(s)
- Jing Chen
- Experiment Teaching Center of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiao-Yu Kang
- Teaching and Research Section of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chuan-Xi Tang
- Teaching and Research Section of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dian-Shuai Gao
- Teaching and Research Section of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Cortés D, Carballo-Molina OA, Castellanos-Montiel MJ, Velasco I. The Non-Survival Effects of Glial Cell Line-Derived Neurotrophic Factor on Neural Cells. Front Mol Neurosci 2017; 10:258. [PMID: 28878618 PMCID: PMC5572274 DOI: 10.3389/fnmol.2017.00258] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 01/23/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was first characterized as a survival-promoting molecule for dopaminergic neurons (DANs). Afterwards, other cells were also discovered to respond to GDNF not only as a survival factor but also as a protein supporting other cellular functions, such as proliferation, differentiation, maturation, neurite outgrowth and other phenomena that have been less studied than survival and are now more extendedly described here in this review article. During development, GDNF favors the commitment of neural precursors towards dopaminergic, motor, enteric and adrenal neurons; in addition, it enhances the axonal growth of some of these neurons. GDNF also induces the acquisition of a dopaminergic phenotype by increasing the expression of Tyrosine Hydroxylase (TH), Nurr1 and other proteins that confer this identity and promote further dendritic and electrical maturation. In motor neurons (MNs), GDNF not only promotes proliferation and maturation but also participates in regenerating damaged axons and modulates the neuromuscular junction (NMJ) at both presynaptic and postsynaptic levels. Moreover, GDNF modulates the rate of neuroblastoma (NB) and glioblastoma cancer cell proliferation. Additionally, the presence or absence of GDNF has been correlated with conditions such as depression, pain, muscular soreness, etc. Although, the precise role of GDNF is unknown, it extends beyond a survival effect. The understanding of the complete range of properties of this trophic molecule will allow us to investigate its broad mechanisms of action to accelerate and/or improve therapies for the aforementioned pathological conditions.
Collapse
Affiliation(s)
- Daniel Cortés
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Oscar A. Carballo-Molina
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - María José Castellanos-Montiel
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| |
Collapse
|
13
|
Hurtado F, Cardenas MAN, Cardenas F, León LA. La Enfermedad de Parkinson: Etiología, Tratamientos y Factores Preventivos. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.epet] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
La enfermedad de Parkinson (EP) es la patología neurodegenerativa motora con mayor incidencia a nivel mundial. Esta afecta a aproximadamente 2-3% de la población mayor a 60 años de edad y sus causas aún no han sido bien determinadas. Actualmente no existe cura para esta patología; sin embargo, es posible contar con diferentes tratamientos que permiten aliviar algunos de sus síntomas y enlentecer su curso. Estos tratamientos tienen como premisa contrarrestar los efectos ocasionados por la pérdida de la función dopaminérgica de la sustancia nigra (SN) sobre estructuras como el núcleo subtálamico (NST) o globo pálido interno (GPi) ya sea por medio de tratamientos farmacológicos, estimulación cerebral profunda (ECP) o con el implante celular. Existen también investigaciones que están dirigiendo su interés al desarrollo de fármacos con potencial terapéutico, que presenten alta especificidad a receptores colinérgicos de nicotina (nAChRs) y antagonistas de receptores de adenosina, específicamente del subtipo A2A. Estos últimos, juegan un papel importante en el control de liberación dopaminérgica y en los procesos de neuroprotección. En esta revisión se pretende ofrecer una panorámica actual sobre algunos de los factores de riesgo asociados a EP, algunos de los tratamientos actuales más utilizados y acerca del rol de sustancias potencialmente útiles en la prevención de esta enfermedad.
Collapse
|
14
|
Combining NT3-overexpressing MSCs and PLGA microcarriers for brain tissue engineering: A potential tool for treatment of Parkinson's disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:934-943. [PMID: 28482609 DOI: 10.1016/j.msec.2017.02.178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/03/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that characterized by destruction of substantia nigrostriatal pathway due to the loss of dopaminergic (DA) neurons. Regardless of substantial efforts for treatment of PD in recent years, an effective therapeutic strategy is still missing. In a multidisciplinary approach, bone marrow derived mesenchymal stem cells (BMSCs) are genetically engineered to overexpress neurotrophin-3 (nt-3 gene) that protect central nervous system tissues and stimulates neuronal-like differentiation of BMSCs. Poly(lactic-co-glycolic acid) (PLGA) microcarriers are designed as an injectable scaffold and synthesized via double emulsion method. The surface of PLGA microcarriers are functionalized by collagen as a bioadhesive agent for improved cell attachment. The results demonstrate effective overexpression of NT-3. The expression of tyrosine hydroxylase (TH) in transfected BMSCs reveal that NT-3 promotes the intracellular signaling pathway of DA neuron differentiation. It is also shown that transfected BMSCs are successfully attached to the surface of microcarriers. The presence of dopamine in peripheral media of cell/microcarrier complex reveals that BMSCs are successfully differentiated into dopaminergic neuron. Our approach that sustains presence of growth factor can be suggested as a novel complementary therapeutic strategy for treatment of Parkinson disease.
Collapse
|
15
|
Goodings L, He J, Wood AJ, Harris WA, Currie PD, Jusuf PR. In vivo expression of Nurr1/Nr4a2a in developing retinal amacrine subtypes in zebrafish Tg(nr4a2a:eGFP) transgenics. J Comp Neurol 2017; 525:1962-1979. [PMID: 28177524 DOI: 10.1002/cne.24185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
The Nuclear receptor subfamily 4 group A member 2 (Nr4a2) is crucial for the formation or maintenance of dopaminergic neurons in the central nervous system including the retina, where dopaminergic amacrine cells contribute to visual function. Little is known about which cells express Nr4a2 at which developmental stage. Furthermore, whether Nr4a2 functions in combination with other genes is poorly understood. Thus, we generated a novel transgenic to visualize Nr4a2 expression in vivo during zebrafish retinogenesis. A 4.1 kb fragment of the nr4a2a promoter was used to drive green fluorescent protein expression in this Tg(nr4a2a:eGFP) line. In situ hybridization showed that transgene expression follows endogenous RNA expression at a cellular level. Temporal expression and lineages were quantified using in vivo time-lapse imaging in embryos. Nr4a2 expressing retinal subtypes were characterized immunohistochemically. Nr4a2a:eGFP labeled multiple neuron subtypes including 24.5% of all amacrine interneurons. Nr4a2a:eGFP labels all tyrosine hydroxylase labeled dopaminergic amacrine cells, and other nondopaminergic GABAergic amacrine populations. Nr4a2a:eGFP is confined to a specific progenitor lineage identified by sequential expression of the bhlh transcription factor Atonal7 (Atoh7) and Pancreas transcription factor 1a (Ptf1a), and labels postmitotic postmigratory amacrine cells. Thus, developmental Nr4a2a expression indicates a role during late differentiation of specific amacrine interneurons. Tg(nr4a2a:eGFP) is an early marker of distinct neurons including dopaminergic amacrine cells. It can be utilized to assess consequences of gene manipulations and understand whether Nr4a2 only carries out its role in the presence of specific coexpressed genes. This will allow Nr4a2 use to be refined for regenerative approaches.
Collapse
Affiliation(s)
- Liana Goodings
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Patricia R Jusuf
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Olanow CW, Bartus RT, Volpicelli-Daley LA, Kordower JH. Trophic factors for Parkinson's disease: To live or let die. Mov Disord 2016; 30:1715-24. [PMID: 26769457 DOI: 10.1002/mds.26426] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Trophic factors show great promise in laboratory studies as potential therapies for PD. However, multiple double-blind, clinical trials have failed to show benefits in comparison to a placebo control. This article will review the scientific rationale for testing trophic factors in PD, the results of the different clinical trials that have been performed to date, and the possible explanations for these failed outcomes. We will also consider future directions and the likelihood that trophic factors will become a viable therapy for patients with PD.
Collapse
Affiliation(s)
- C Warren Olanow
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
17
|
Cheong A, Zhang X, Cheung YY, Tang WY, Chen J, Ye SH, Medvedovic M, Leung YK, Prins GS, Ho SM. DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk. Epigenetics 2016; 11:674-689. [PMID: 27415467 PMCID: PMC5048723 DOI: 10.1080/15592294.2016.1208891] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease.
Collapse
Affiliation(s)
- Ana Cheong
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Xiang Zhang
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Yuk-Yin Cheung
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Wan-Yee Tang
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Jing Chen
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Shu-Hua Ye
- c Department of Urology , College of Medicine, University of Illinois at Chicago , Chicago , IL , USA
| | - Mario Medvedovic
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA.,d Cincinnati Cancer Center , Cincinnati , OH , USA
| | - Yuet-Kin Leung
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA.,d Cincinnati Cancer Center , Cincinnati , OH , USA
| | - Gail S Prins
- c Department of Urology , College of Medicine, University of Illinois at Chicago , Chicago , IL , USA.,e University of Illinois Cancer Center , Chicago , IL , USA
| | - Shuk-Mei Ho
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA.,b Center for Environmental Genetics, University of Cincinnati College of Medicine , Cincinnati , OH , USA.,d Cincinnati Cancer Center , Cincinnati , OH , USA.,f Cincinnati Veteran Affairs Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
18
|
Ding Y, Zhang Z, Ma J, Xia H, Wang Y, Liu Y, Ma Q, Sun T, Liu J. Directed differentiation of postnatal hippocampal neural stem cells generates nuclear receptor related‑1 protein‑ and tyrosine hydroxylase‑expressing cells. Mol Med Rep 2016; 14:1993-9. [PMID: 27432537 PMCID: PMC4991738 DOI: 10.3892/mmr.2016.5489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 05/10/2016] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder. Although the detailed underlying molecular mechanism remains to be elucidated, the major pathological feature of PD is the loss of dopaminergic (DA) neurons of the substantia nigra. The use of donor stem cells to replace DA neurons may be a key breakthrough in the treatment of PD. In the present study, the growth kinetics of hippocampal neural stem cells (Hip-NSCs) isolated from postnatal mice and cultured in vitro were observed, specifically the generation of cells expressing DA neuronal markers nuclear receptor related-1 protein (Nurr1) and tyrosine hydroxylase (TH). It was revealed that Hip-NSCs differentiated primarily into astrocytes when cultured in serum-containing medium. However, in low serum conditions, the number of βIII tubulin-positive neurons increased markedly. The proportion of Nurr1-positive cells and TH-positive neurons, significantly increased with increasing duration of directed differentiation of Hip-NSCs (P=0.0187 and 0.0254, respectively). The results of the present study reveal that Hip-NSCs may be induced to differentiate in vitro into neurons expressing Nurr1 and TH, known to be critical regulators of DA neuronal fate. Additionally, their expression may be necessary to facilitate neuronal maturation in vitro. These data suggest that Hip-NSCs may serve as a source of DA neurons for cell therapy in patients diagnosed with PD.
Collapse
Affiliation(s)
- Yinxiu Ding
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zixin Zhang
- Department of Radiotherapy, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiangbo Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hechun Xia
- Department of Cerebral Surgery, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yin Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yinming Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Quanrui Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Juan Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
19
|
Dong J, Li S, Mo JL, Cai HB, Le WD. Nurr1-Based Therapies for Parkinson's Disease. CNS Neurosci Ther 2016; 22:351-9. [PMID: 27012974 DOI: 10.1111/cns.12536] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
Previous studies have documented that orphan nuclear receptor Nurr1 (also known as NR4A2) plays important roles in the midbrain dopamine (DA) neuron development, differentiation, and survival. Furthermore, it has been reported that the defects in Nurr1 are associated with Parkinson's disease (PD). Thus, Nurr1 might be a potential therapeutic target for PD. Emerging evidence from in vitro and in vivo studies has recently demonstrated that Nurr1-activating compounds and Nurr1 gene therapy are able not only to enhance DA neurotransmission but also to protect DA neurons from cell injury induced by environmental toxin or microglia-mediated neuroinflammation. Moreover, modulators that interact with Nurr1 or regulate its function, such as retinoid X receptor, cyclic AMP-responsive element-binding protein, glial cell line-derived neurotrophic factor, and Wnt/β-catenin pathway, have the potential to enhance the effects of Nurr1-based therapies in PD. This review highlights the recent progress in preclinical studies of Nurr1-based therapies and discusses the outlook of this emerging therapy as a promising new generation of PD medication.
Collapse
Affiliation(s)
- Jie Dong
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jing-Lin Mo
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huai-Bin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Wei-Dong Le
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Interaction between Oc-1 and Lmx1a promotes ventral midbrain dopamine neural stem cells differentiation into dopamine neurons. Brain Res 2015; 1608:40-50. [PMID: 25747864 DOI: 10.1016/j.brainres.2015.02.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
Recent studies have shown that Onecut (Oc) transcription factors may be involved in the early development of midbrain dopaminergic neurons (mdDA). The expression profile of Oc factors matches that of Lmx1a, an important intrinsic transcription factor in the development of mDA neuron. Moreover, the Wnt1-Lmx1a pathway controls the mdDA differentiation. However, their expression dynamics and molecular mechanisms remain to be determined. To address these issues, we hypothesize that cross-talk between Oc-1 and Lmx1a regulates the mdDA specification and differentiation through the canonical Wnt-β-catenin pathway. We found that Oc-1 and Lmx1a displayed a very similar expression profile from embryonic to adult ventral midbrain (VM) tissues. Oc-1 regulated the proliferation and differentiation of ventral midbrain neural stem cells (vmNSCs). Downregulation of Oc-1 decreased both transcript and protein level of Lmx1a. Oc-1 interacted with lmx1a in vmNSCs in vitro and in VM tissues in vivo. Knockdown of Lmx1a reduced the expression of Oc-1 and Wnt1 in vmNSCs. Inhibiting Wnt1 signaling in vmNSCs provoked similar responses. Our data suggested that Oc-1 interacts with Lmx1a to promote vmNSCs differentiation into dopamine neuron through Wnt1-Lmx1a pathway.
Collapse
|
21
|
d'Anglemont de Tassigny X, Pascual A, López-Barneo J. GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway. Implications for Parkinson's disease. Front Neuroanat 2015; 9:10. [PMID: 25762899 PMCID: PMC4327623 DOI: 10.3389/fnana.2015.00010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/21/2015] [Indexed: 01/09/2023] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of neuronal morphological and neurochemical phenotype and protects DA neurons from toxic damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of these observations to the clinical setting has been hampered so far by side effects associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In addition, double blind and placebo-controlled clinical trials have not reported any clinically relevant effect of GDNF on PD patients. In the past few years, experiments with conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF delivery have been developed. Recently, it has been shown that a small population of scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons is responsible for most of the GDNF produced in the rodent striatum. In addition, cholinergic striatal interneurons appear to be also involved in the modulation of striatal GDNF. In this review, we summarize current knowledge on brain GDNF delivery, homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the therapeutic potential of endogenous GDNF stimulation in PD.
Collapse
Affiliation(s)
- Xavier d'Anglemont de Tassigny
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain ; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla Seville, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Madrid, Spain
| |
Collapse
|
22
|
Sakthiswary R, Raymond AA. Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regen Res 2015; 7:1822-31. [PMID: 25624807 PMCID: PMC4302533 DOI: 10.3969/j.issn.1673-5374.2012.23.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/13/2012] [Indexed: 12/11/2022] Open
Abstract
The lack of curative therapies for neurodegenerative diseases has high economic impact and places huge burden on the society. The contribution of stem cells to cure neurodegenerative diseases has been unraveled and explored extensively over the past few years. Beyond substitution of the lost neurons, stem cells act as immunomodulators and neuroprotectors. A large number of preclinical and a small number of clinical studies have shown beneficial outcomes in this context. In this review, we have summarized the current concepts of stem cell therapy in neurodegenerative diseases and the recent advances in this field, particularly between 2010 and 2012. Further studies should be encouraged to resolve the clinical issues and vague translational findings for maximum optimization of the efficacy of stem cell therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajalingham Sakthiswary
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| | - Azman Ali Raymond
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
|
24
|
Shin ES, Hwang O, Hwang YS, Suh JKF, Chun YI, Jeon SR. Enhanced efficacy of human brain-derived neural stem cells by transplantation of cell aggregates in a rat model of Parkinson's disease. J Korean Neurosurg Soc 2014; 56:383-9. [PMID: 25535514 PMCID: PMC4272995 DOI: 10.3340/jkns.2014.56.5.383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 01/06/2023] Open
Abstract
Objective Neural tissue transplantation has been a promising strategy for the treatment of Parkinson's disease (PD). However, transplantation has the disadvantages of low-cell survival and/or development of dyskinesia. Transplantation of cell aggregates has the potential to overcome these problems, because the cells can extend their axons into the host brain and establish synaptic connections with host neurons. In this present study, aggregates of human brain-derived neural stem cells (HB-NSC) were transplanted into a PD animal model and compared to previous report on transplantation of single-cell suspensions. Methods Rats received an injection of 6-OHDA into the right medial forebrain bundle to generate the PD model and followed by injections of PBS only, or HB-NSC aggregates in PBS into the ipsilateral striatum. Behavioral tests, multitracer (2-deoxy-2-[18F]-fluoro-D-glucose ([18F]-FDG) and [18F]-N-(3-fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl)nortropane ([18F]-FP-CIT) microPET scans, as well as immunohistochemical (IHC) and immunofluorescent (IF) staining were conducted to evaluate the results. Results The stepping test showed significant improvement of contralateral forelimb control in the HB-NSC group from 6-10 weeks compared to the control group (p<0.05). [18F]-FP-CIT microPET at 10 weeks posttransplantation demonstrated a significant increase in uptake in the HB-NSC group compared to pretransplantation (p<0.05). In IHC and IF staining, tyrosine hydroxylase and human β2 microglobulin (a human cell marker) positive cells were visualized at the transplant site. Conclusion These results suggest that the HB-NSC aggregates can survive in the striatum and exert therapeutic effects in a PD model by secreting dopamine.
Collapse
Affiliation(s)
- Eun Sil Shin
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Jun-Kyo Francis Suh
- Center for Bionics of Korea Institute of Science and Technology, Seoul, Korea
| | - Young Il Chun
- Department of Neurosurgery, Konkuk University School of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Abstract
PURPOSE To test the diagnostic ability of spectral domain optical coherence tomography for the detection of Parkinson disease using retinal nerve fiber layer and retinal thickness parameters. Retinal pigment epithelium produces levodopa. METHODS Patients with Parkinson disease (n = 111) and healthy subjects (n = 200) were enrolled. The Spectralis optical coherence tomography was used to obtain retinal nerve fiber layer thickness and retinal measurements. Two linear discriminant functions (LDFs) were developed, one using retinal nerve fiber layer parameters and another using retinal thickness. A validating set was used to test the performance of both LDFs. Receiver operating characteristic curves were plotted and compared with the standard parameters provided by optical coherence tomography for both LDFs. Sensitivity and specificity were used to evaluate diagnostic performance. RESULTS The Retinal LDF combines only retinal thickness parameters and provided the best performance: 31.173 + 0.026 × temporal outer - 0.267 × superior outer + 0.159 × nasal outer - 0.197 × inferior outer - 0.060 × superior inner + 0.049 × foveal thickness. The largest areas under the receiver operating characteristic curve were 0.902 for Retinal LDF. The Retinal LDF yielded the highest sensitivity values. CONCLUSION Measurements of retinal thickness differentiate between subjects who are healthy and those with advanced Parkinson disease.
Collapse
|
26
|
Yoon HH, Min J, Shin N, Kim YH, Kim JM, Hwang YS, Suh JKF, Hwang O, Jeon SR. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease? Neural Regen Res 2014; 8:1190-200. [PMID: 25206413 PMCID: PMC4107610 DOI: 10.3969/j.issn.1673-5374.2013.13.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/03/2013] [Indexed: 11/18/2022] Open
Abstract
Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [18F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joongkee Min
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nari Shin
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Hwan Kim
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Jin-Mo Kim
- Center for Bionics of Korea Institute of Science and Technology, Seoul, Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Jun-Kyo Francis Suh
- Center for Bionics of Korea Institute of Science and Technology, Seoul, Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Tan X, Zhang L, Zhu H, Qin J, Tian M, Dong C, Li H, Jin G. Brn4 and TH synergistically promote the differentiation of neural stem cells into dopaminergic neurons. Neurosci Lett 2014; 571:23-8. [DOI: 10.1016/j.neulet.2014.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/09/2014] [Accepted: 04/12/2014] [Indexed: 01/23/2023]
|
28
|
Hammoud SS, Low DHP, Yi C, Carrell DT, Guccione E, Cairns BR. Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 2014; 15:239-53. [PMID: 24835570 DOI: 10.1016/j.stem.2014.04.006] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/24/2014] [Accepted: 04/07/2014] [Indexed: 01/16/2023]
Abstract
Adult germline stem cells (AGSCs) self-renew (Thy1(+) enriched) or commit to gametogenesis (Kit(+) enriched). To better understand how chromatin regulates AGSC biology and gametogenesis, we derived stage-specific high-resolution profiles of DNA methylation, 5hmC, histone modifications/variants, and RNA-seq in AGSCs and during spermatogenesis. First, we define striking signaling and transcriptional differences between AGSC types, involving key self-renewal and proliferation pathways. Second, key pluripotency factors (e.g., Nanog) are silent in AGSCs and bear particular chromatin/DNAme attributes that may "poise" them for reactivation after fertilization. Third, AGSCs display chromatin "poising/bivalency" of enhancers and promoters for embryonic transcription factors. Remarkably, gametogenesis occurs without significant changes in DNAme and instead involves transcription of DNA-methylated promoters bearing high RNAPol2, H3K9ac, H3K4me3, low CG content, and (often) 5hmC. Furthermore, key findings were confirmed in human sperm. Here, we reveal AGSC signaling asymmetries and chromatin/DNAme strategies in AGSCs to poise key transcription factors and to activate DNA-methylated promoters during gametogenesis.
Collapse
Affiliation(s)
- Saher Sue Hammoud
- Howard Hughes Medical Institute, Department of Oncological Sciences, and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Diana H P Low
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology, A(∗)STAR (Agency for Science, Technology and Research), Singapore 119074, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Chongil Yi
- Howard Hughes Medical Institute, Department of Oncological Sciences, and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Douglas T Carrell
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ernesto Guccione
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology, A(∗)STAR (Agency for Science, Technology and Research), Singapore 119074, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences, and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
29
|
Roles for the TGFβ superfamily in the development and survival of midbrain dopaminergic neurons. Mol Neurobiol 2014; 50:559-73. [PMID: 24504901 DOI: 10.1007/s12035-014-8639-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/02/2014] [Indexed: 12/29/2022]
Abstract
The adult midbrain contains 75% of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson's disease. Despite 50 years of investigation, treatment for Parkinson's disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson's disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed.
Collapse
|
30
|
Garcia-Martin E, Larrosa JM, Polo V, Satue M, Marques ML, Alarcia R, Seral M, Fuertes I, Otin S, Pablo LE. Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration. Am J Ophthalmol 2014; 157:470-478.e2. [PMID: 24315296 DOI: 10.1016/j.ajo.2013.09.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/28/2013] [Accepted: 09/30/2013] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the thickness of the 10 retinal layers in the paramacular area of Parkinson disease patients using a new segmentation technology of optical coherence tomography (OCT) to examine whether the thickness of specific layers predicts neurodegeneration or Parkinson disease severity. DESIGN Observational prospective study. METHODS Parkinson disease patients (n = 129) and age-matched healthy subjects (n = 129) were enrolled. The Spectralis OCT system was used to automatically segment all retinal layers in a parafoveal scan using the new segmentation application prototype. Mean thickness of each layer was calculated and compared between Parkinson disease patients and healthy subjects, and between Parkinson disease patients with disease durations of less than or at least 10 years. A correlation analysis was performed to evaluate the association between retinal layer thickness, duration of disease, and Parkinson disease severity. Logistic regression analysis was performed to determine the most sensitive layer for predicting axonal atrophy. RESULTS Parkinson disease patients showed statistically significant reduced thickness in the retinal nerve fiber, ganglion cell, inner plexiform, and outer plexiform layers and increased thickness in the inner nuclear layer compared with healthy subjects (P < .05). The inner retinal layers were more affected in Parkinson disease patients with long disease duration. The ganglion cell layer thickness was inversely correlated with disease duration and Parkinson disease severity, and was predictive of axonal damage in Parkinson disease patients. CONCLUSIONS The segmentation application of the Spectralis OCT revealed retinal layer atrophy in Parkinson disease patients, especially in the inner layers of patients with long disease duration. Ganglion cell layer reduction was associated with increased axonal damage.
Collapse
|
31
|
Engraftment of mouse embryonic stem cells differentiated by default leads to neuroprotection, behaviour revival and astrogliosis in parkinsonian rats. PLoS One 2013; 8:e72501. [PMID: 24069147 PMCID: PMC3772067 DOI: 10.1371/journal.pone.0072501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
We report here protection against rotenone-induced behavioural dysfunction, striatal dopamine depletion and nigral neuronal loss, following intra-striatal transplantation of neurons differentiated from murine embryonic stem cells (mES). mES maintained in serum free medium exhibited increase in neuronal, and decrease in stem cell markers by 7th and 10th days as revealed by RT-PCR and immunoblot analyses. Tyrosine hydroxylase, NURR1, PITX3, LMX1b and c-RET mRNA showed a significant higher expression in differentiated cells than in mES. Dopamine level was increased by 3-fold on 10th day as compared to 7 days differentiated cells. Severity of rotenone-induced striatal dopamine loss was attenuated, and amphetamine-induced unilateral rotations were significantly reduced in animals transplanted with 7 days differentiated cells, but not in animals that received undifferentiated ES transplant. However, the ratio of contralateral to ipsilateral swings in elevated body swing test was significantly reduced in both the transplanted groups, as compared to control. Striatal grafts exhibited the presence of tyrosine hydroxylase positive cells, and the percentage of dopaminergic neurons in the substantia nigra was also found to be higher in the ipsilateral side of 7 days and mES grafted animals. Increased expression of CD11b and IBA-1, suggested a significant contribution of these microglia-derived factors in controlling the limited survival of the grafted cells. Astrocytosis in the grafted striatum, and significant increase in the levels of glial cell line derived neurotrophic factor may have contributed to the recovery observed in the hemiparkinsonian rats following transplantation.
Collapse
|
32
|
Luong KVQ, Nguyễn LTH. The beneficial role of thiamine in Parkinson disease. CNS Neurosci Ther 2013; 19:461-8. [PMID: 23462281 PMCID: PMC6493530 DOI: 10.1111/cns.12078] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/26/2013] [Indexed: 12/29/2022] Open
Abstract
Parkinson disease (PD) is the second most common form of neurodegeneration among elderly individuals. PD is clinically characterized by tremors, rigidity, slowness of movement, and postural imbalance. In this paper, we review the evidence for an association between PD and thiamine. Interestingly, a significant association has been demonstrated between PD and low levels of serum thiamine, and thiamine supplements appear to have beneficial clinical effects against PD. Multiple studies have evaluated the connection between thiamine and PD pathology, and candidate pathways involve the transcription factor Sp1, p53, Bcl-2, caspase-3, tyrosine hydroxylase, glycogen synthase kinase-3β, vascular endothelial growth factor, advanced glycation end products, nuclear factor kappa B, mitogen-activated protein kinase, and the reduced form of nicotinamide adenine dinucleotide phosphate. Thus, a review of the literature suggests that thiamine plays a role in PD, although further investigation into the effects of thiamine in PD is needed.
Collapse
Affiliation(s)
- Khanh V Q Luong
- Vietnamese American Medical Research Foundation, Westminster, CA 92683, USA
| | | |
Collapse
|
33
|
Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev Biol 2013; 379:123-38. [PMID: 23603197 DOI: 10.1016/j.ydbio.2013.04.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/27/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022]
Abstract
Dopaminergic (DA) neurons of the ventral midbrain (VM) play vital roles in the regulation of voluntary movement, emotion and reward. They are divided into the A8, A9 and A10 subgroups. The development of the A9 group of DA neurons is an area of intense investigation to aid the generation of these neurons from stem cell sources for cell transplantation approaches to Parkinson's disease (PD). This review discusses the molecular processes that are involved in the identity, specification, maturation, target innervation and survival of VM DA neurons during development. The complex molecular interactions of a number of genetic pathways are outlined, as well as recent advances in the mechanisms that regulate subset identity within the VM DA neuronal pool. A thorough understanding of the cellular and molecular mechanisms involved in the development of VM DA neurons will greatly facilitate the use of cell replacement therapy for the treatment of PD.
Collapse
|
34
|
Song L, Liu P, Han C, Liu Y, Zou W, Piao H, Wang Y, Liu J. A novel approach to facilitate dopaminergic neuron generation from stem-cells: The combination of genetic modification and signaling factors within a three-dimensional perfusion microbioreactor. Med Hypotheses 2013; 80:407-10. [DOI: 10.1016/j.mehy.2012.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/04/2012] [Accepted: 12/29/2012] [Indexed: 12/12/2022]
|
35
|
Pruett BS, Salvatore MF. Nigral GFRα1 infusion in aged rats increases locomotor activity, nigral tyrosine hydroxylase, and dopamine content in synchronicity. Mol Neurobiol 2013; 47:988-99. [PMID: 23321789 DOI: 10.1007/s12035-013-8397-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/03/2013] [Indexed: 02/05/2023]
Abstract
Delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) increases locomotor activity in rodent models of aging and Parkinson's disease in conjunction with increased dopamine (DA) tissue content in substantia nigra (SN). Striatal GDNF infusion also increases expression of GDNF's cognate receptor, GFRα1, and tyrosine hydroxylase (TH) ser31 phosphorylation in the SN of aged rats long after elevated GDNF is no longer detectable. In aging, expression of soluble GFRα1 in the SN decreases in association with decreased TH expression, TH ser31 phosphorylation, DA tissue content, and locomotor activity. Thus, we hypothesized that, in aged rats, replenishing soluble GFRα1 in SN could reverse these deficits and increase locomotor activity. We determined that the quantity of soluble GFRα1 in young adult rat SN is ~3.6 ng. To replenish age-related loss, which is ~30 %, we infused 1 ng soluble GFRα1 bilaterally into SN of aged male rats and observed increased locomotor activity compared to vehicle-infused rats up to 4 days following infusion, with maximal effects on day 3. Five days after infusion, however, neither locomotor activity nor nigrostriatal neurochemical measures were significantly different between groups. In a separate cohort of male rats, nigral, but not striatal, DA, TH, and TH ser31 phosphorylation were increased 3 days following unilateral infusion of 1 ng soluble GFRα1into SN. Therefore, in aged male rats, the transient increase in locomotor activity induced by replenishing age-related loss of soluble GFRα1is temporally matched with increased nigral dopaminergic function. Thus, expression of soluble GFRα1 in SN may be a key component in locomotor activity regulation through its influence over TH regulation and DA biosynthesis.
Collapse
Affiliation(s)
- Brandon S Pruett
- Department of Pharmacology, Louisiana State University Health Sciences Center, School of Medicine, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130, USA
| | | |
Collapse
|
36
|
Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Bjorklund A. -Synuclein-Induced Down-Regulation of Nurr1 Disrupts GDNF Signaling in Nigral Dopamine Neurons. Sci Transl Med 2012; 4:163ra156. [DOI: 10.1126/scitranslmed.3004676] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Oliveira SLB, Pillat MM, Cheffer A, Lameu C, Schwindt TT, Ulrich H. Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A 2012; 83:76-89. [PMID: 23044513 DOI: 10.1002/cyto.a.22161] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 07/23/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022]
Abstract
The identification and isolation of multipotent neural stem and progenitor cells in the brain, giving rise to neurons, astrocytes, and oligodendrocytes initiated many studies in order to understand basic mechanisms of endogenous neurogenesis and repair mechanisms of the nervous system and to develop novel therapeutic strategies for cellular regeneration therapies in brain disease. A previous review (Trujillo et al., Cytometry A 2009;75:38-53) focused on the importance of extrinsic factors, especially neurotransmitters, for directing migration and neurogenesis in the developing and adult brain. Here, we extend our review discussing the effects of the principal growth and neurotrophic factors as well as their intracellular signal transduction on neurogenesis, fate determination and neuroprotective mechanisms. Many of these mechanisms have been elucidated by in vitro studies for which neural stem cells were isolated, grown as neurospheres, induced to neural differentiation under desired experimental conditions, and analyzed for embryonic, progenitor, and neural marker expression by flow and imaging cytometry techniques. The better understanding of neural stem cells proliferation and differentiation is crucial for any therapeutic intervention aiming at neural stem cell transplantation and recruitment of endogenous repair mechanisms.
Collapse
Affiliation(s)
- Sophia L B Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
vinh quôc Luong K, Thi Hoàng Nguyên L. Vitamin D and Parkinson's disease. J Neurosci Res 2012; 90:2227-36. [DOI: 10.1002/jnr.23115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 06/21/2012] [Indexed: 01/11/2023]
|
39
|
Wang M, Lu C, Roisen F. Adult human olfactory epithelial-derived progenitors: a potential autologous source for cell-based treatment for Parkinson's disease. Stem Cells Transl Med 2012; 1:492-502. [PMID: 23197853 PMCID: PMC3659713 DOI: 10.5966/sctm.2012-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/04/2012] [Indexed: 11/16/2022] Open
Abstract
Human adult olfactory epithelial-derived neural progenitors (hONPs) can differentiate along several neural lineages in response to morphogenic signals in vitro. A previous study optimized the transfection paradigm for the differentiation of hONPs to dopaminergic neurons. This study engrafted cells modified by the most efficient transfection paradigm for dopaminergic neural restriction and pretransfected controls into a unilateral neurotoxin, 6-hydroxydopamine-induced parkinsonian rat model. Approximately 35% of the animals engrafted with hONPs had improved behavioral recovery as demonstrated by the amphetamine-induced rotation test, as well as a corner preference and cylinder paw preference, over a period of 24 weeks. The pre- and post-transfected groups produced equivalent responses, indicating that the toxic host environment supported hONP dopaminergic differentiation in situ. Human fibroblasts used as a cellular control did not diminish the parkinsonian rotational deficits at any point during the study. Increased numbers of tyrosine hydroxylase (TH)-positive cells were detected in the engrafted brains compared with the fibroblast-implanted and medium-only controls. Engrafted TH-positive hONPs were detected for a minimum of 6 months in vivo; they were multipolar, had long processes, and migrated beyond their initial injection sites. Higher dopamine levels were detected in the striatum of behaviorally improved animals than in equivalent regions of their nonrecovered counterparts. Throughout these experiments, no evidence of tumorigenicity was observed. These results support our hypothesis that human adult olfactory epithelial-derived progenitors represent a unique autologous cell type with promising potential for future use in a cell-based therapy for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Meng Wang
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Chengliang Lu
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Fred Roisen
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
40
|
Meta-analysis of association between PITX3 gene polymorphism and Parkinson's disease. J Neurol Sci 2012; 317:80-6. [DOI: 10.1016/j.jns.2012.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 01/14/2012] [Accepted: 02/23/2012] [Indexed: 11/17/2022]
|