1
|
Park JE, Oh JY, Park DH, Lee HS, Yoon S, Kim N, Park SY, Song SW, Kim YH, Hong CK, Kim JH, Kim HS. Mapping tumor habitats in isocitrate dehydrogenase -wild type glioblastoma: Integrating MRI, pathologic, and RNA data from the Ivy Glioblastoma Atlas Project. Neuro Oncol 2025; 27:291-301. [PMID: 39177498 PMCID: PMC11726254 DOI: 10.1093/neuonc/noae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The goal of the study was to spatially validate intratumoral subregions (tumor habitat) using physiologic magnetic resonance imaging (MRI) on the pathology of the isocitrate dehydrogenase (IDH)-wild-type whole-glioblastoma sample. METHODS Data from 20 patients (168 slides) were obtained from the Ivy Glioblastoma Atlas Project. On MRI, tumor habitats were defined using voxel-wise clustering of the apparent diffusion coefficient and cerebral blood volume maps for contrast-enhancing lesions (CEL) and non-enhancing lesions (NEL). On pathology slides, normalized areas of leading-edge, infiltrating tumor (IT), cellular tumor (CT), hypervascular lesion (CThypervascular), and perinecrotic lesion (CTperinecrotic) were obtained. Gross specimen was coregistered on MRI and correlation between pathology-MRI habitats was calculated. RNA sequencing of 67 samples was assessed using 4 Neftel subtypes and further correlated with pathology. RESULTS Six tumor habitats were identified: hypervascular, hypovascular cellular, and hypovascular hypocellular habitats for CEL and NEL. CT was correlated with hypovascular cellular habitat in CEL (r = 0.238, P = .005). IT was correlated with hypovascular cellular habitat in NEL (r = 0.294, P = .017). CThypervascular was correlated with hypervascular habitat in NEL (r = 0.195, P = .023). CTperinecrotic was correlated with imaging necrosis (r = 0.199, P = .005). Astrocyte-like subtypes were correlated with IT (r = 0.256, P < .001), while mesenchymal-like subtypes were correlated with CTperinecrotic area (r = 0.246, P < .001). CONCLUSIONS Pathologically matched tumor subregions were CT with hypovascular cellular habitat in CEL and infiltrative tumor with hypovascular cellular habitat in NEL. Identification of the most aggressive, as well as infiltrative tumor portion, can be achieved using noninvasive MRI tumor habitats.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Joo Young Oh
- Department of Radiation Oncology, Yonsei Cancer Center, Seoul, South Korea
| | - Do Hoon Park
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ho-Su Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Seo Young Park
- Department of Statistics and Data Science, Korea National Open University, Seoul, Korea
| | - Sang Woo Song
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
2
|
Chen ATC, Serante AR, Ayres AS, Tonaki JO, Moreno RA, Shih H, Gattás GS, Lopez RVM, Dos Santos de Jesus GR, de Carvalho IT, Marotta RC, Marta GN, Feher O, Neto HS, Ribeiro ISN, Vasconcelos KGMDC, Figueiredo EG, Weltman E. Prospective Randomized Phase 2 Trial of Hypofractionated Stereotactic Radiation Therapy of 25 Gy in 5 Fractions Compared With 35 Gy in 5 Fractions in the Reirradiation of Recurrent Glioblastoma. Int J Radiat Oncol Biol Phys 2024; 119:1122-1132. [PMID: 38232937 DOI: 10.1016/j.ijrobp.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE The aim of this work was to investigate whether reirradiation of recurrent glioblastoma with hypofractionated stereotactic radiation therapy (HSRT) consisting of 35 Gy in 5 fractions (35 Gy/5 fx) compared with 25 Gy in 5 fractions (25 Gy/5 fx) improves outcomes while maintaining acceptable toxicity. METHODS AND MATERIALS We conducted a prospective randomized phase 2 trial involving patients with recurrent glioblastoma (per the 2007 and 2016 World Health Organization classification). A minimum interval from first radiation therapy of 5 months and gross tumor volume of 150 cc were required. Patients were randomized 1:1 to receive HSRT alone in 25 Gy/5 fx or 35 Gy/5 fx. The primary endpoint was progression-free survival (PFS). We used a randomized phase 2 screening design with a 2-sided α of 0.15 for the primary endpoint. RESULTS From 2011 to 2019, 40 patients were randomized and received HSRT, with 20 patients in each group. The median age was 50 years (range, 27-71); a new resection before HSRT was performed in 75% of patients. The median PFS was 4.9 months in the 25 Gy/5 fx group and 5.2 months in the 35 Gy/5 fx group (P = .23). Six-month PFS was similar at 40% (85% CI, 24%-55%) for both groups. The median overall survival (OS) was 9.2 months in the 25 Gy/5 fx group and 10 months in the 35 Gy/5 fx group (P = .201). Grade ≥3 necrosis was numerically higher in the 35 Gy/5 fx group (3 [16%] vs 1 [5%]), but the difference was not statistically significant (P = .267). In an exploratory analysis, median OS of patients who developed treatment-related necrosis was 14.1 months, and that of patients who did not was 8.7 months (P = .003). CONCLUSIONS HSRT alone with 35 Gy/5 fx was not superior to 25 Gy/5 fx in terms of PFS or OS. Due to a potential increase in the rate of clinically meaningful treatment-related necrosis, we suggest 25 Gy/5 fx as the standard dose in HSRT alone. During follow-up, attention should be given to differentiating tumor progression from potentially manageable complications.
Collapse
Affiliation(s)
- Andre Tsin Chih Chen
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil.
| | - Alexandre Ruggieri Serante
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Aline Sgnolf Ayres
- Department of Radiology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Juliana Ono Tonaki
- Division of Psychology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Raquel Andrade Moreno
- Department of Radiology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Helen Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Rossana Veronica Mendoza Lopez
- Oncology Translational Research Center, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Gabriela Reis Dos Santos de Jesus
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Icaro Thiago de Carvalho
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Rodrigo Carvalho Marotta
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Gustavo Nader Marta
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Olavo Feher
- Department of Clinical Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Hugo Sterman Neto
- Department of Neurosurgery, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Iuri Santana Neville Ribeiro
- Department of Neurosurgery, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
3
|
Khodadadi H, Salles ÉL, Alptekin A, Mehrabian D, Rutkowski M, Arbab AS, Yeudall WA, Yu JC, Morgan JC, Hess DC, Vaibhav K, Dhandapani KM, Baban B. Inhalant Cannabidiol Inhibits Glioblastoma Progression Through Regulation of Tumor Microenvironment. Cannabis Cannabinoid Res 2023; 8:824-834. [PMID: 34918964 PMCID: PMC10589502 DOI: 10.1089/can.2021.0098] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Glioblastoma (GBM) is the most common invasive brain tumor composed of diverse cell types with poor prognosis. The highly complex tumor microenvironment (TME) and its interaction with tumor cells play important roles in the development, progression, and durability of GBM. Angiogenic and immune factors are two major components of TME of GBM; their interplay is a major determinant of tumor vascularization, immune profile, as well as immune unresponsiveness of GBM. Given the ineffectiveness of current standard therapies (surgery, radiotherapy, and concomitant chemotherapy) in managing patients with GBM, it is necessary to develop new ways of treating these lethal brain tumors. Targeting TME, altering tumor ecosystem may be a viable therapeutic strategy with beneficial effects for patients in their fight against GBM. Materials and Methods: Given the potential therapeutic effects of cannabidiol (CBD) in a wide spectrum of diseases, including malignancies, we tested, for the first time, whether inhalant CBD can inhibit GBM tumor growth using a well-established orthotopic murine model. Optical imaging, histology, immunohistochemistry, and flow cytometry were employed to describe the outcomes such as tumor progression, cancer cell signaling pathways, and the TME. Results: Our findings showed that inhalation of CBD was able to not only limit the tumor growth but also to alter the dynamics of TME by repressing P-selectin, apelin, and interleukin (IL)-8, as well as blocking a key immune checkpoint-indoleamine 2,3-dioxygenase (IDO). In addition, CBD enhanced the cluster of differentiation (CD) 103 expression, indicating improved antigen presentation, promoted CD8 immune responses, and reduced innate Lymphoid Cells within the tumor. Conclusion: Overall, our novel findings support the possible therapeutic role of inhaled CBD as an effective, relatively safe, and easy to administer treatment adjunct for GBM with significant impacts on the cellular and molecular signaling of TME, warranting further research.
Collapse
Affiliation(s)
- Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Daniel Mehrabian
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Martin Rutkowski
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ali S. Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - W. Andrew Yeudall
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John C. Morgan
- Parkinson's Foundation Center of Excellence, Movement Disorders, Program, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kumar Vaibhav
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishnan M. Dhandapani
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
4
|
Li C, Xi S, Chen Y, Guo C, Zhang J, Yang Q, Wang J, Sai K, Zeng J, Wang J, Zhang Z, Ke C, Chen Z. Clinical significance of histopathological features of paired recurrent gliomas: a cohort study from a single cancer center. BMC Cancer 2023; 23:8. [PMID: 36597096 PMCID: PMC9811748 DOI: 10.1186/s12885-022-10484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To explore the histopathological characteristics of paired recurrent gliomas and their clinical significance. METHODS Glioma patients who received both primary surgery and reoperation when recurrence at Sun Yat-sen University Cancer Center from June 2001 to June 2019 were enrolled. Clinical and pathological characteristics were analyzed retrospectively, and histopathology of reoperation specimens was divided into three categories according to tumor cell activity and the degree of necrosis: active group, low-activity group, and necrosis group. RESULTS A total of 89 patients were included in this study. The 2016 WHO grade of the first operation pathology and IDH1 status were related to survival time after the first operation, but there was no significant association with survival time after reoperation. The time interval between primary and reoperation was shorter for primary high-grade glioma and/or IDH1 wild-type tumor patients than for low-grade glioma and/or IDH1 mutant tumor patients (P < 0.001). Histopathological types of recurrent gliomas were analyzed, and 67 cases (75.3%) were classified into the active group, 14 (15.8%) into the low-activity group, and 8 (8.9%) into the necrosis group. The low-activity or necrosis group was associated with a higher radiotherapy dose and shorter operation interval. Further univariate and multivariate Cox survival analyses showed the histopathological patterns of recurrent gliomas to be related to survival time after reoperation. CONCLUSION Primary WHO low grade or IDH1 mutant gliomas appeared survival benefit mainly on later recurrence, but was not a prognostic predictor following recurrence. Histopathological feature of recurrent glioma is related to previous treatment, including radiotherapy dosage and chemotherapy treatment, and is also an important independent prognostic factor for patients after reoperation.
Collapse
Affiliation(s)
- Cong Li
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China ,grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, 510120 China
| | - Shaoyan Xi
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Yingshen Chen
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Chengcheng Guo
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Ji Zhang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Qunying Yang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Jian Wang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Ke Sai
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Jing Zeng
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Jing Wang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Zhiqiang Zhang
- grid.411866.c0000 0000 8848 7685The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, 510120 China
| | - Chao Ke
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Zhongping Chen
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| |
Collapse
|
5
|
Krane GA, Shockley KR, Malarkey DE, Miller AD, Miller CR, Tokarz DA, Jensen HL, Janardhan KS, Breen M, Mariani CL. Inter-pathologist agreement on diagnosis, classification and grading of canine glioma. Vet Comp Oncol 2022; 20:881-889. [PMID: 35856268 PMCID: PMC9795880 DOI: 10.1111/vco.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/30/2022]
Abstract
Histopathological evaluation of tumours is a subjective process, but studies of inter-pathologist agreement are uncommon in veterinary medicine. The Comparative Brain Tumour Consortium (CBTC) recently published diagnostic criteria for canine gliomas. Our objective was to assess the degree of inter-pathologist agreement on intracranial canine gliomas, utilising the CBTC diagnostic criteria in a cohort of eighty-five samples from dogs with an archival diagnosis of intracranial glioma. Five pathologists independently reviewed H&E and immunohistochemistry sections and provided a diagnosis and grade. Percentage agreement and kappa statistics were calculated to measure inter-pathologist agreement between pairs and amongst the entire group. A consensus diagnosis of glioma subtype and grade was achieved for 71/85 (84%) cases. For these cases, percentage agreement on combined diagnosis (subtype and grade), subtype only and grade only were 66%, 80% and 82%, respectively. Kappa statistics for the same were 0.466, 0.542 and 0.516, respectively. Kappa statistics for oligodendroglioma, astrocytoma and undefined glioma were 0.585, 0.566 and 0.280 and were 0.516 for both low-grade and high-grade tumours. Kappa statistics amongst pairs of pathologists for combined diagnosis varied from 0.352 to 0.839. 8 % of archival oligodendrogliomas and 61% of archival astrocytomas were reclassified as another entity after review. Inter-pathologist agreement utilising CBTC guidelines for canine glioma was moderate overall but varied from fair to almost perfect between pairs of pathologists. Agreement was similar for oligodendrogliomas and astrocytomas but lower for undefined gliomas. These results are similar to pathologist agreement in human glioma studies and with other tumour entities in veterinary medicine.
Collapse
Affiliation(s)
- Gregory A. Krane
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA,Comparative Neuroimmunology and Neuro‐Oncology Laboratory, College of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA,Present address:
ModernaCambridgeMassachusettsUSA
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - David E. Malarkey
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Andrew D. Miller
- Section of Anatomic Pathology, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityIthacaNew YorkUSA
| | - C. Ryan Miller
- Comprehensive Neuroscience Center, O'Neal Comprehensive Cancer Center, Division of Neuropathology, Department of Pathology, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Debra A. Tokarz
- Experimental Pathology LaboratoriesResearch Triangle ParkNorth CarolinaUSA,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA
| | - Heather L. Jensen
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Kyathanahalli S. Janardhan
- Integrated Laboratory SystemsResearch Triangle ParkNorth CarolinaUSA,Present address:
MerckWest PointPennsylvaniaUSA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA
| | - Christopher L. Mariani
- Comparative Neuroimmunology and Neuro‐Oncology Laboratory, College of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
6
|
Cook TA, Jayamanne DT, Wheeler HR, Wong MHF, Parkinson JF, Cook RJ, Kastelan MA, Cove NJ, Brown C, Back MF. Redo craniotomy or bevacizumab for symptomatic steroid-refractory true or pseudoprogression following IMRT for glioblastoma. Neurooncol Pract 2021; 8:601-608. [PMID: 34594572 DOI: 10.1093/nop/npab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background There is minimal evidence to support decision making for symptomatic steroid-refractory pseudoprogression or true progression occurring after intensity-modulated radiation therapy (IMRT) for glioblastoma (GBM). This study audited the survival outcome of patients managed with redo craniotomy (RedoSx) or bevacizumab (BEV) for steroid-refractory mass effect after IMRT for GBM. Methods Patients with GBM managed between 2008 and 2019 with the EORTC-NCIC Protocol were entered into a prospective database. Patients with symptomatic steroid-refractory mass effect within 6 months of IMRT managed with either RedoSx or BEV were identified for analysis. For the primary endpoint of median overall survival (OS) postintervention, outcome was analyzed in regards to potential prognostic factors, and differences between groups were assessed by log-rank analyses. Results Of the 399 patients managed with the EORTC-NCIC Protocol, 78 required an intervention within 6 months of IMRT completion for either true or pseudoprogression (49 with RedoSx and 29 with BEV). Subsequently, 20 of the 43 patients managed with RedoSx when BEV was clinically available, required salvage with BEV within 6 months after RedoSx. Median OS postintervention was 8.7 months (95% CI: 7.84-11.61) for the total group; and 8.7 months (95% CI: 6.8-13.1) for RedoSx and 9.4 months (95% CI: 7.8-13.6) for BEV (P = .38). Subsequent use of BEV in RedoSx patients was not associated with improved survival compared with RedoSx alone (P = .10). Age, time from IMRT, and ECOG performance status were not associated with OS. In the RedoSx patients, immunohistochemical features such as Ki-67% reduction correlated with survival. The presence of pure necrosis and residual tumor cells only had improved survival compared with the presence of gross tumor (P < .001). Conclusions At time of symptomatic steroid-refractory true or pseudoprogression following IMRT for GBM, BEV was equivalent to RedoSx in terms of OS. Pseudoprogression with residual cells at RedoSx was not associated with worse outcome compared to pure necrosis.
Collapse
Affiliation(s)
- Theresa A Cook
- Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
| | - Dasantha T Jayamanne
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Helen R Wheeler
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew H F Wong
- Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
| | - Jonathon F Parkinson
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,The Brain Cancer Group, Sydney, New South Wales, Australia.,Department of Neurosurgery, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Raymond J Cook
- Department of Neurosurgery, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Marina A Kastelan
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia.,The Brain Cancer Group, Sydney, New South Wales, Australia
| | - Nicola J Cove
- Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
| | - Christopher Brown
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Michael F Back
- Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Genesis Cancer Care, Sydney, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,The Brain Cancer Group, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Zhang M, Dai Z, Zhao X, Wang G, Lai R. Anticarin β Inhibits Human Glioma Progression by Suppressing Cancer Stemness via STAT3. Front Oncol 2021; 11:715673. [PMID: 34408983 PMCID: PMC8366317 DOI: 10.3389/fonc.2021.715673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Glioma is the most common form of malignant brain cancer. It is very difficult to cure malignant glioma because of the presence of glioma stem cells, which are a barrier to cure, have high tumorigenesis, associated with drug resistance, and responsible for relapse by regulating stemness genes. In this study, our results demonstrated that anticarin β, a natural compound from Antiaris toxicaria, can effectively and selectively suppress proliferation and cause apoptosis in glioma cells, which has an IC50 that is 100 times lower than that in mouse normal neural stem cells. Importantly, cell sphere formation assay and real time-quantitative analysis reveal that anticarin β inhibits cancer stemness by modulating related stemness gene expression. Additionally, anticarin β induces DNA damage to regulate the oncogene expression of signal transducer and activator of transcription 3 (STAT3), Akt, mitogen-activated protein kinases (MAPKs), and eventually leading to apoptosis. Furthermore, anticarin β effectively inhibits glioma growth and prolongs the lifts pan of tumor-bearing mice without systemic toxicity in the orthotopic xenograft mice model. These results suggest that anticarin β is a promising candidate inhibitor for malignant glioma.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Xudong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming, China
| |
Collapse
|
8
|
Haider AS, van den Bent M, Wen PY, Vogelbaum MA, Chang S, Canoll PD, Horbinski CM, Huse JT. Toward a standard pathological and molecular characterization of recurrent glioma in adults: a Response Assessment in Neuro-Oncology effort. Neuro Oncol 2021; 22:450-456. [PMID: 31844891 DOI: 10.1093/neuonc/noz233] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regardless of subtype, diffuse gliomas of adulthood are characterized by inexorable progression through treatment. Cancer recurrence in the context of therapy is by no means unique to gliomas. For many tumors residing outside the central nervous system (CNS), tissue-based analyses are routinely employed to document the molecular and cellular features of disease recurrence. Such interventions are inconsistently applied for gliomas, however, and lack rigorous standardization when they are. While many of the reasons underlying these discrepancies reflect pragmatic realities inherent to CNS disease, the suboptimal employment of histological and molecular assessment at recurrence nevertheless represents a missed opportunity to proactively guide patient management and increase knowledge. Herein, we address this quandary by pairing a succinct description of the histological, biological, and molecular characteristics of recurrent glioma with recommendations for how to better standardize and implement quality pathological assessment into patient management. We hope this review will prompt thoughtful revision of standard operating procedures to maximize the utility of glioma re-biopsy.
Collapse
Affiliation(s)
- Ali S Haider
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael A Vogelbaum
- Departments of Neurosurgery and Neuro-Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Peter D Canoll
- Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Craig M Horbinski
- Departments of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jason T Huse
- Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Patrizz A, Dono A, Zhu P, Tandon N, Ballester LY, Esquenazi Y. Tumor recurrence or treatment-related changes following chemoradiation in patients with glioblastoma: does pathology predict outcomes? J Neurooncol 2021; 152:163-172. [PMID: 33481149 DOI: 10.1007/s11060-020-03690-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Despite surgical resection and chemoradiation, all patients with GBM invariably recur. Radiological imaging is limited in differentiating tumor recurrence (TR) from treatment-related changes (TRC); therefore, re-resection is often needed. Few studies have assessed the relationship between re-resection histopathology and overall survival (OS). We performed a large retrospective study to analyze the clinical significance of histopathology following re-resection and its influence on genomic sequencing results. METHODS Clinical, radiographic, and histological information was compiled from 675 patients with GBM (2005-2017). 137-patients met the inclusion criteria. IDH1 p.R132H immunohistochemistry was performed in all patients. Next-generation sequencing interrogating 205 tumor-related genes was performed in 68-patients. Molecular alterations from initial and subsequent resections were compared in a subset of cases. RESULTS There were no differences in OS (17.3-months TRC vs. 21-months TR, p = 0.881) and survival from progression (9.0 vs. 11.7-months, p = 0.778) between patients with TR and TRC on re-resection. TR patients were more likely to receive salvage radiotherapy (26% vs. 0%) and tumor-treating fields (25% vs. 5%,) after the 2nd surgery than the TRC group (p = < 0.045). There was no correlation between mutations and TRC. IDH status was not predictive of TRC. Fifteen-patients had sequencing results from multiple surgeries without evident differences in genomic alterations. CONCLUSIONS Histopathologic findings following chemoradiation do not correlate with clinical outcomes. Such findings should be considered during patient management and clinical trial enrollment. Standardization of tissue sampling and interpretation following reoperation is urgently needed. Future work is required to understand the relationship between the mutation profile following TRC and outcomes.
Collapse
Affiliation(s)
- Anthony Patrizz
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA
| | - Antonio Dono
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Ping Zhu
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA.,Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA
| | - Leomar Y Ballester
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA. .,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA. .,Memorial Hermann Hospital-TMC, Houston, TX, USA. .,Department of Pathology & Laboratory Medicine and Department of Neurosurgery, The University of Texas Health Science Center at Houston - McGovern Medical School, 6431 Fannin Street, MSB 2.136, Houston, TX, 77030, USA.
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA. .,Center for Precision Health, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Memorial Hermann Hospital-TMC, Houston, TX, USA.
| |
Collapse
|
10
|
Riva M, Lopci E, Gay LG, Nibali MC, Rossi M, Sciortino T, Castellano A, Bello L. Advancing Imaging to Enhance Surgery: From Image to Information Guidance. Neurosurg Clin N Am 2021; 32:31-46. [PMID: 33223024 DOI: 10.1016/j.nec.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional magnetic resonance imaging (cMRI) has an established role as a crucial disease parameter in the multidisciplinary management of glioblastoma, guiding diagnosis, treatment planning, assessment, and follow-up. Yet, cMRI cannot provide adequate information regarding tissue heterogeneity and the infiltrative extent beyond the contrast enhancement. Advanced magnetic resonance imaging and PET and newer analytical methods are transforming images into data (radiomics) and providing noninvasive biomarkers of molecular features (radiogenomics), conveying enhanced information for improving decision making in surgery. This review analyzes the shift from image guidance to information guidance that is relevant for the surgical treatment of glioblastoma.
Collapse
Affiliation(s)
- Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Festa del Perdono 7, Milan 20122, Italy; IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy.
| | - Egesta Lopci
- Unit of Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Rozzano, Milan 20089, Italy. https://twitter.com/LopciEgesta
| | - Lorenzo G Gay
- IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy; Department of Oncology and Hemato-Oncology, Via Festa del Perdono 7, Milan 20122, Italy
| | - Marco Conti Nibali
- IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy; Department of Oncology and Hemato-Oncology, Via Festa del Perdono 7, Milan 20122, Italy. https://twitter.com/dr_mcn
| | - Marco Rossi
- IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy; Department of Oncology and Hemato-Oncology, Via Festa del Perdono 7, Milan 20122, Italy
| | - Tommaso Sciortino
- IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy; Department of Oncology and Hemato-Oncology, Via Festa del Perdono 7, Milan 20122, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20123, Italy. https://twitter.com/antocastella
| | - Lorenzo Bello
- IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy; Department of Oncology and Hemato-Oncology, Via Festa del Perdono 7, Milan 20122, Italy
| |
Collapse
|
11
|
Le Fèvre C, Lhermitte B, Ahle G, Chambrelant I, Cebula H, Antoni D, Keller A, Schott R, Thiery A, Constans JM, Noël G. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review: Part 1 - Molecular, morphological and clinical features. Crit Rev Oncol Hematol 2020; 157:103188. [PMID: 33307200 DOI: 10.1016/j.critrevonc.2020.103188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023] Open
Abstract
With new therapeutic protocols, more patients treated for glioblastoma have experienced a suspicious radiologic image of progression (pseudoprogression) during follow-up. Pseudoprogression should be differentiated from true progression because the disease management is completely different. In the case of pseudoprogression, the follow-up continues, and the patient is considered stable. In the case of true progression, a treatment adjustment is necessary. Presently, a pseudoprogression diagnosis certainly needs to be pathologically confirmed. Some important efforts in the radiological, histopathological, and genomic fields have been made to differentiate pseudoprogression from true progression, and the assessment of response criteria exists but remains limited. The aim of this paper is to highlight clinical and pathological markers to differentiate pseudoprogression from true progression through a literature review.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Benoît Lhermitte
- Département of Pathology, Hautepierre University Hospital, 1, Avenue Molière, 67200, Strasbourg, France
| | - Guido Ahle
- Departement of Neurology, Hôpitaux Civils de Colmar, 39 Avenue de la Liberté, 68024, Colmar, France
| | - Isabelle Chambrelant
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Hélène Cebula
- Departement of Neurosurgery, Hautepierre University Hospital, 1, Avenue Molière, 67200, Strasbourg, France
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Audrey Keller
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Roland Schott
- Departement of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Alicia Thiery
- Department of Public Health, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Jean-Marc Constans
- Department of Radiology, Amiens-Pïcardie University Hospital, 1 rond point du Professeur Christian Cabrol, 80054 Amiens Cedex 1, France
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France.
| |
Collapse
|
12
|
Hoxworth JM, Eschbacher JM, Gonzales AC, Singleton KW, Leon GD, Smith KA, Stokes AM, Zhou Y, Mazza GL, Porter AB, Mrugala MM, Zimmerman RS, Bendok BR, Patra DP, Krishna C, Boxerman JL, Baxter LC, Swanson KR, Quarles CC, Schmainda KM, Hu LS. Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies. AJNR Am J Neuroradiol 2020; 41:408-415. [PMID: 32165359 DOI: 10.3174/ajnr.a6486] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Perfusion MR imaging measures of relative CBV can distinguish recurrent tumor from posttreatment radiation effects in high-grade gliomas. Currently, relative CBV measurement requires normalization based on user-defined reference tissues. A recently proposed method of relative CBV standardization eliminates the need for user input. This study compares the predictive performance of relative CBV standardization against relative CBV normalization for quantifying recurrent tumor burden in high-grade gliomas relative to posttreatment radiation effects. MATERIALS AND METHODS We recruited 38 previously treated patients with high-grade gliomas (World Health Organization grades III or IV) undergoing surgical re-resection for new contrast-enhancing lesions concerning for recurrent tumor versus posttreatment radiation effects. We recovered 112 image-localized biopsies and quantified the percentage of histologic tumor content versus posttreatment radiation effects for each sample. We measured spatially matched normalized and standardized relative CBV metrics (mean, median) and fractional tumor burden for each biopsy. We compared relative CBV performance to predict tumor content, including the Pearson correlation (r), against histologic tumor content (0%-100%) and the receiver operating characteristic area under the curve for predicting high-versus-low tumor content using binary histologic cutoffs (≥50%; ≥80% tumor). RESULTS Across relative CBV metrics, fractional tumor burden showed the highest correlations with tumor content (0%-100%) for normalized (r = 0.63, P < .001) and standardized (r = 0.66, P < .001) values. With binary cutoffs (ie, ≥50%; ≥80% tumor), predictive accuracies were similar for both standardized and normalized metrics and across relative CBV metrics. Median relative CBV achieved the highest area under the curve (normalized = 0.87, standardized = 0.86) for predicting ≥50% tumor, while fractional tumor burden achieved the highest area under the curve (normalized = 0.77, standardized = 0.80) for predicting ≥80% tumor. CONCLUSIONS Standardization of relative CBV achieves similar performance compared with normalized relative CBV and offers an important step toward workflow optimization and consensus methodology.
Collapse
Affiliation(s)
- J M Hoxworth
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| | | | | | - K W Singleton
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - G D Leon
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - K A Smith
- Keller Center for Imaging Innovation (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - A M Stokes
- Keller Center for Imaging Innovation (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - Y Zhou
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| | - G L Mazza
- Department of Health Sciences Research (G.L.M.), Division of Biomedical Statistics and Informatics, Mayo Clinic Scottsdale, Scottsdale, Arizona
| | | | | | | | - B R Bendok
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - D P Patra
- Departments of Neurosurgery (D.P.P.)
| | | | - J L Boxerman
- Department of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
| | - L C Baxter
- Neuropsychology (L.C.B.), Mayo Clinic Hospital, Phoenix, Arizona
| | - K R Swanson
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | | | - K M Schmainda
- Department of Radiology (K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - L S Hu
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| |
Collapse
|
13
|
Hu LS, Hawkins-Daarud A, Wang L, Li J, Swanson KR. Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett 2020; 477:97-106. [PMID: 32112907 DOI: 10.1016/j.canlet.2020.02.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
High-grade glioma (HGG), and particularly Glioblastoma (GBM), can exhibit pronounced intratumoral heterogeneity that confounds clinical diagnosis and management. While conventional contrast-enhanced MRI lacks the capability to resolve this heterogeneity, advanced MRI techniques and PET imaging offer a spectrum of physiologic and biophysical image features to improve the specificity of imaging diagnoses. Published studies have shown how integrating these advanced techniques can help better define histologically distinct targets for surgical and radiation treatment planning, and help evaluate the regional heterogeneity of tumor recurrence and response assessment following standard adjuvant therapy. Application of texture analysis and machine learning (ML) algorithms has also enabled the emerging field of radiogenomics, which can spatially resolve the regional and genetically distinct subpopulations that coexist within a single GBM tumor. This review focuses on the latest advances in neuro-oncologic imaging and their clinical applications for the assessment of intratumoral heterogeneity.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd, Support, Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
| | - Lujia Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
| | - Jing Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd, Support, Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
| |
Collapse
|
14
|
Leao DJ, Craig PG, Godoy LF, Leite CC, Policeni B. Response Assessment in Neuro-Oncology Criteria for Gliomas: Practical Approach Using Conventional and Advanced Techniques. AJNR Am J Neuroradiol 2020; 41:10-20. [PMID: 31857322 PMCID: PMC6975322 DOI: 10.3174/ajnr.a6358] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023]
Abstract
The Response Assessment in Neuro-Oncology criteria were developed as an objective tool for radiologic assessment of treatment response in high-grade gliomas. Imaging plays a critical role in the management of the patient with glioma, from initial diagnosis to posttreatment follow-up, which can be particularly challenging for radiologists. Interpreting findings after surgery, radiation, and chemotherapy requires profound knowledge about the tumor biology, as well as the peculiar changes expected to ensue as a consequence of each treatment technique. In this article, we discuss the imaging findings associated with tumor progression, tumor response, pseudoprogression, and pseudoresponse according to the Response Assessment in Neuro-Oncology criteria for high-grade and lower-grade gliomas. We describe relevant practical issues when evaluating patients with glioma, such as the need for imaging in the first 48 hours, the radiation therapy planning and isodose curves, the significance of T2/FLAIR hyperintense lesions, the impact of the timing for the evaluation after radiation therapy, and the definition of progressive disease on the histologic specimen. We also illustrate the correlation among the findings on conventional MR imaging with advanced techniques, such as perfusion, diffusion-weighted imaging, spectroscopy, and amino acid PET. Because many of the new lesions represent a mixture of tumor cells and tissue with radiation injury, the radiologist aims to identify the predominant component of the lesion and categorize the findings according to Response Assessment in Neuro-Oncology criteria so that the patient can receive the best treatment.
Collapse
Affiliation(s)
- D J Leao
- From the Cancer Hospital of Federal University of Uberlandia (D.J.L.), Uberlandia, Brazil
| | - P G Craig
- Department of Radiology, (P.G.C., B.P.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - L F Godoy
- Department of Diagnostic Radiology (L.F.G.), Hospital Sirio-Libanes, Sao Paulo, Brazil
- Department of Neuroradiology (L.F.G., C.C.L.), Faculdade de Medicina Instituto de Radiologia, Universidade de Sao Paulo Neuroradiology, Sao Paulo, Brazil
| | - C C Leite
- Department of Neuroradiology (L.F.G., C.C.L.), Faculdade de Medicina Instituto de Radiologia, Universidade de Sao Paulo Neuroradiology, Sao Paulo, Brazil
| | - B Policeni
- Department of Radiology, (P.G.C., B.P.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
| |
Collapse
|
15
|
Ampelopsin inhibits human glioma through inducing apoptosis and autophagy dependent on ROS generation and JNK pathway. Biomed Pharmacother 2019; 116:108524. [PMID: 31108349 DOI: 10.1016/j.biopha.2018.12.136] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 12/25/2018] [Accepted: 12/30/2018] [Indexed: 01/29/2023] Open
Abstract
Glioma is the most common form of malignant brain cancer with high mortality rate in human. Therefore, finding effective therapeutic strategy and revealing the underlying molecular mechanism is necessary. Ampelopsin (Amp), an effective component of the traditional Chinese herb of Ampelopsis grossedentata, is reported to have important biological properties, including anti-inflammatory, anti-cancer, and anti-oxidant activity; however, its effects on human glioma are poorly understood. Here, the in vitro and in vivo study was performed to investigate the anti-glioma ability of Ampelopsin. Human glioma cell lines of U251 and A172 were treated with Ampelopsin (0, 25, 50, and 100 uM) for 24 h, followed by various analysis. And human glioma xenograft models were established by injecting U251, accompanied with administration of Ampelopsin at 50 and 100 mg/kg to confirm the anti-cancer role of Ampelopsin. We found that Ampelopsin could suppress the glioma cell proliferation by modulating G1 and S phase arrest. Incubation with Ampelopsin led to the activity of Caspase-8, Caspase-9, Caspase-3 and poly (ADP-ribose) polymerases (PARP), indicating that Ampelopsin induced apoptotic response via both intrinsic and extrinsic signaling pathways. Additionally, autophagy was also observed in Ampelopsin-treated cancer cells, which is evidenced by autophagosome formation and LC3B-II accumulation. Ampelopsin-caused cancer cell death was obviously regained by apoptosis inhibitors. Further, Ampelopsin activated c-Jun N-terminal protein kinase (JNK) expression and enhanced reactive oxygen species (ROS) generation. Suppressing JNK markedly ameliorated Ampelopsin-induced apoptosis and autophagy, and ROS scavenger exhibited similar results. In vivo, Ampelopsin inhibited tumor growth and progression in mouse xenograft models. In conclusion, our findings indicated that Ampelopsin led to G1 and S phase arrest, triggered apoptosis and autophagy through potentiating ROS generation and JNK activation in human glioma cells. Thus, Ampelopsin might be a promising candidate against human glioma.
Collapse
|
16
|
Holdhoff M, Ye X, Piotrowski AF, Strowd RE, Seopaul S, Lu Y, Barker NJ, Sivakumar A, Rodriguez FJ, Grossman SA, Burger PC. The consistency of neuropathological diagnoses in patients undergoing surgery for suspected recurrence of glioblastoma. J Neurooncol 2018; 141:347-354. [PMID: 30414096 PMCID: PMC6342857 DOI: 10.1007/s11060-018-03037-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/22/2018] [Indexed: 11/08/2022]
Abstract
Purpose Clinical factors and neuro-imaging in patients with glioblastoma who appear to progress following standard chemoradiation are unable to reliably distinguish tumor progression from pseudo-progression. As a result, surgery is commonly recommended to establish a final diagnosis. However, studies evaluating the pathologists’ agreement on pathologic diagnoses in this setting have not been previously evaluated. Methods A hypothetical clinical history coupled with images of histological sections from 13 patients with glioblastoma who underwent diagnostic surgery for suspected early recurrence were sent to 101 pathologists from 50 NCI-designated Cancer Centers. Pathologists were asked to provide a final diagnosis (active tumor, treatment effect, or unable to classify) and to report on percent active tumor, treatment effect, and degree of cellularity and degree of mitotic activity. Results Forty-eight pathologists (48%) from 30 centers responded. In three cases > 75% of pathologists diagnosed active tumor. In two cases > 75% diagnosed treatment effect. However, in the remaining eight cases the disparity in diagnoses was striking (maximum agreement on final diagnosis ranged from 36 to 68%). Overall, only marginal agreement was observed in the overall assessment of disease status [kappa score 0.228 (95% CI 0.22–0.24)]. Conclusions Confidence in any clinical diagnostic assay requires that very similar results are obtained from identical specimens evaluated by sophisticated clinicians and institutions. The findings of this study illustrate that the diagnostic agreement between different cases of repeat resection for suspected recurrent glioblastoma can be variable. This raises concerns as pathological diagnoses are critical in directing standard and experimental care in this setting. Electronic supplementary material The online version of this article (10.1007/s11060-018-03037-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Xiaobu Ye
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna F Piotrowski
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roy E Strowd
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shannon Seopaul
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yao Lu
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman J Barker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ananyaa Sivakumar
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stuart A Grossman
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C Burger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Clinical, Radiographic, and Pathologic Findings in Patients Undergoing Reoperation Following Radiation Therapy and Temozolomide for Newly Diagnosed Glioblastoma. Am J Clin Oncol 2017; 40:219-222. [PMID: 26491903 DOI: 10.1097/coc.0000000000000136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Patients with glioblastoma (GBM) frequently deteriorate clinically and radiographically after chemoradiation and may require repeat surgical intervention. We attempted to correlate pathologic findings with preoperative clinical characteristics and survival in patients undergoing reoperation for GBM. MATERIALS AND METHODS Patients eligible for this retrospective analysis had pathologically confirmed GBM diagnosed between 2005 and 2010, received standard radiation and temozolomide, and underwent repeat resection within 18 months of diagnosis. RESULTS Thirty-eight patients were identified. Median age was 56 years (range, 30 to 80 y), 55% were male, and 66% had baseline performance status ≥90%. Median survival was 16.3 months (95% confidence interval [CI], 13.3-19.8) from initial surgery. At reoperation, 21% of patients had no pathologically evident tumor. Median time from initial diagnosis to second surgery was similar in patients with and without evident tumor (8.5 vs. 8.8 mo, respectively). Patients without evident tumor tended to have a worse performance status. Median overall survival from second surgery was 7 months (95% CI, 4.2-10.1) and 9.1 months (95% CI, 2.1-25.3) for patients with and without evident tumor, respectively. Multivariate proportional hazards analysis showed a hazard ratio for death of 0.61 (95% CI, 0.25-1.49) for patients without evident tumor after adjusting for Karnofsky performance status and second surgical procedure. CONCLUSIONS GBM patients with and without disease recurrence have similar clinical characteristics at the time of second surgical resection. Pathologic outcomes were not correlated with specific clinical or radiologic characteristics, including the time from diagnosis to reoperation. There was a trend toward improved overall survival among patients without evident tumor at reoperation.
Collapse
|
18
|
Hojjati M, Badve C, Garg V, Tatsuoka C, Rogers L, Sloan A, Faulhaber P, Ros PR, Wolansky LJ. Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from Tumor Recurrence in Glioblastomas. J Neuroimaging 2017; 28:118-125. [PMID: 28718993 PMCID: PMC5811794 DOI: 10.1111/jon.12460] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE To compare the utility of quantitative PET/MRI, dynamic susceptibility contrast (DSC) perfusion MRI (pMRI), and PET/CT in differentiating radiation necrosis (RN) from tumor recurrence (TR) in patients with treated glioblastoma multiforme (GBM). METHODS The study included 24 patients with GBM treated with surgery, radiotherapy, and temozolomide who presented with progression on imaging follow‐up. All patients underwent PET/MRI and pMRI during a single examination. Additionally, 19 of 24 patients underwent PET/CT on the same day. Diagnosis was established by pathology in 17 of 24 and by clinical/radiologic consensus in 7 of 24. For the quantitative PET/MRI and PET/CT analysis, a region of interest (ROI) was drawn around each lesion and within the contralateral white matter. Lesion to contralateral white matter ratios for relative maximum, mean, and median were calculated. For pMRI, lesion ROI was drawn on the cerebral blood volume (CBV) maps and histogram metrics were calculated. Diagnostic performance for each metric was assessed using receiver operating characteristic curve analysis and area under curve (AUC) was calculated. RESULTS In 24 patients, 28 lesions were identified. For PET/MRI, relative mean ≥ 1.31 resulted in AUC of .94 with both sensitivity and negative predictive values (NPVs) of 100%. For pMRI, CBV max ≥3.32 yielded an AUC of .94 with both sensitivity and NPV measuring 100%. The joint model utilizing r‐mean (PET/MRI) and CBV mode (pMRI) resulted in AUC of 1.0. CONCLUSION Our study demonstrates that quantitative PET/MRI parameters in combination with DSC pMRI provide the best diagnostic utility in distinguishing RN from TR in treated GBMs.
Collapse
Affiliation(s)
- Mojgan Hojjati
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Chaitra Badve
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Vasant Garg
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Curtis Tatsuoka
- Department of Neurology (Epidemiology), Case Western Reserve University, Cleveland, OH
| | - Lisa Rogers
- Department of Neurology, Neuro-oncology Program, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Andrew Sloan
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Peter Faulhaber
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Pablo R Ros
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Leo J Wolansky
- Department of Diagnostic Imaging, University of Connecticut School of Medicine, Farmington, CT
| |
Collapse
|
19
|
Vietheer JM, Rieger J, Wagner M, Senft C, Tichy J, Foerch C. Serum concentrations of glial fibrillary acidic protein (GFAP) do not indicate tumor recurrence in patients with glioblastoma. J Neurooncol 2017; 135:193-199. [PMID: 28717884 DOI: 10.1007/s11060-017-2565-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023]
Abstract
Recent studies identified serum concentrations of the astroglial protein glial fibrillary acidic protein (GFAP) to be indicative of glioblastoma (GBM) in patients with newly diagnosed space occupying cerebral mass lesions. Until now, no data is available whether GFAP serum concentrations decrease after first therapy and whether GFAP may be used as a predictor of survival and an indicator of tumor recurrence. In this prospective study, we included 44 patients with a single space occupying cerebral mass lesion suspicious for GBM. GBM was histopathologically proven in 33 cases. After initial therapy, patients were followed up until tumor recurrence (defined according to the RANO criteria) or death (maximum observation period 78 weeks). Blood was sampled on a regular basis, and GFAP serum levels were determined using an immunofluorescence assay. Prior to any intervention, 14 of the 33 GBM patients had elevated GFAP serum concentrations (median 0.25 µg/L, interquartile range 0.13-0.53), whereas only one out of 11 patients having other tumor entities revealed a slightly increased GFAP serum level (0.06 µg/L). Following surgery (i.e., biopsy, full or partial resection), all initially GFAP positive GBM patients showed decreased serum concentrations. During the follow-up period, we found a minimal GFAP increase in one patient only (0.04 µg/L; week 52), although 23 out of 31 available GBM patients developed tumor progression or died. No difference was found regarding the survival rate and the time to tumor recurrence between initially GFAP positive and GFAP negative GBM patients. In GBM patients, initially elevated GFAP serum concentrations decrease after the first diagnostic or therapeutic intervention. GFAP was not predictive for tumor recurrence.
Collapse
Affiliation(s)
- Julia-Mareen Vietheer
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Johannes Rieger
- Department of Neuro-Oncology, Goethe University, Frankfurt am Main, Germany.,Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Christian Senft
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Julia Tichy
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany. .,Department of Neuro-Oncology, Goethe University, Frankfurt am Main, Germany.
| | - Christian Foerch
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Kaya B, Goceri E, Becker A, Elder B, Puduvalli V, Winter J, Gurcan M, Otero JJ. Automated fluorescent miscroscopic image analysis of PTBP1 expression in glioma. PLoS One 2017; 12:e0170991. [PMID: 28282372 PMCID: PMC5345755 DOI: 10.1371/journal.pone.0170991] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/13/2017] [Indexed: 11/18/2022] Open
Abstract
Multiplexed immunofluorescent testing has not entered into diagnostic neuropathology due to the presence of several technical barriers, amongst which includes autofluorescence. This study presents the implementation of a methodology capable of overcoming the visual challenges of fluorescent microscopy for diagnostic neuropathology by using automated digital image analysis, with long term goal of providing unbiased quantitative analyses of multiplexed biomarkers for solid tissue neuropathology. In this study, we validated PTBP1, a putative biomarker for glioma, and tested the extent to which immunofluorescent microscopy combined with automated and unbiased image analysis would permit the utility of PTBP1 as a biomarker to distinguish diagnostically challenging surgical biopsies. As a paradigm, we utilized second resections from patients diagnosed either with reactive brain changes (pseudoprogression) and recurrent glioblastoma (true progression). Our image analysis workflow was capable of removing background autofluorescence and permitted quantification of DAPI-PTBP1 positive cells. PTBP1-positive nuclei, and the mean intensity value of PTBP1 signal in cells. Traditional pathological interpretation was unable to distinguish between groups due to unacceptably high discordance rates amongst expert neuropathologists. Our data demonstrated that recurrent glioblastoma showed more DAPI-PTBP1 positive cells and a higher mean intensity value of PTBP1 signal compared to resections from second surgeries that showed only reactive gliosis. Our work demonstrates the potential of utilizing automated image analysis to overcome the challenges of implementing fluorescent microscopy in diagnostic neuropathology.
Collapse
Affiliation(s)
- Behiye Kaya
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Evgin Goceri
- Akdeniz University, Engineering Faculty, Computer Engineering Department, Antalya, Turkey
| | - Aline Becker
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio, United States of America
| | - Brad Elder
- Department of Neurological Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Vinay Puduvalli
- Division of Neuro-oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Jessica Winter
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- William G. Lowie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Metin Gurcan
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - José Javier Otero
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
21
|
Wood MD, Reis GF, Reuss DE, Phillips JJ. Protein Analysis of Glioblastoma Primary and Posttreatment Pairs Suggests a Mesenchymal Shift at Recurrence. J Neuropathol Exp Neurol 2016; 75:925-935. [PMID: 27539476 DOI: 10.1093/jnen/nlw068] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas (GBM) are aggressive brain tumors that inevitably recur despite surgical resection, chemotherapy, and radiation. The degree to which recurrent GBM retains its initial immunophenotype is incompletely understood. We generated tissue microarrays of paired initial and posttreatment GBM (3 pairs positive and 17 negative for IDH1R132H) from the same patients and made comparisons in the IDH1R132H-negative group for immunohistochemical and gene expression differences between primary and recurrent tumors. In initial tumors, immunopositivity for Ki-67 in > 20% of tumor cells was associated with shorter progression-free and overall survival. Recurrent tumors showed decreased staining for CD34 suggesting lower vessel density. A subset of tumors showed increased staining for markers associated with the mesenchymal gene expression pattern, including CD44, phosphorylated STAT3, and YKL40. Recurrent tumors with the greatest increase in mesenchymal marker expression had rapid clinical progression, but no difference in overall survival after second surgery. Comparison of protein and gene expression data from the same samples revealed a poor correlation. A subset of tumors (15%) showed loss of neurofibromin protein in both initial and recurrent tumors. These data support the notion that GBM progression is associated with a shift toward a mesenchymal phenotype in a subset of tumors and this may portend a more aggressive behavior.
Collapse
Affiliation(s)
- Matthew D Wood
- From the Division of Neuropathology, Department of Pathology (MDW, GFR, JJP) and Department of Neurological Surgery (JJP), University of California San Francisco, San Francisco, California; and Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany (DER)
| | - Gerald F Reis
- From the Division of Neuropathology, Department of Pathology (MDW, GFR, JJP) and Department of Neurological Surgery (JJP), University of California San Francisco, San Francisco, California; and Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany (DER)
| | - David E Reuss
- From the Division of Neuropathology, Department of Pathology (MDW, GFR, JJP) and Department of Neurological Surgery (JJP), University of California San Francisco, San Francisco, California; and Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany (DER)
| | - Joanna J Phillips
- From the Division of Neuropathology, Department of Pathology (MDW, GFR, JJP) and Department of Neurological Surgery (JJP), University of California San Francisco, San Francisco, California; and Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany (DER).
| |
Collapse
|
22
|
Sun Q, Mu L, Qiao W, Li H, Tang J, Wang C, Hu W, Zhao T, Dong B, Song Y, Liu X. Inhibition of SHP-2 promotes radiosensitivity in glioma. Mol Med Rep 2015; 12:3563-3568. [PMID: 26004555 DOI: 10.3892/mmr.2015.3829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 04/20/2015] [Indexed: 11/06/2022] Open
Abstract
As a phosphatase, SHP-2 has been identified to be involved in regulating several cell functions, including growth, division, adhesion and motility. Therefore, SHP‑2 may affect the response of glioma to radiotherapy, such as via enhancing angiogenesis. The present study aimed to investigate the function of SHP‑2, a protein tyrosine phosphatase, in the radiosensitivity of glioma. U251, U87 and SHG44 glioma cell lines were transfected with small interfering (si)RNA against SHP‑2 and cell proliferation was assessed using a cell counting kit 8 assay, cell apoptosis was assessed by fluorescence‑activated cell sorting and immunoblotting, cell invasion was determined by an invasion assay, and the vasculogenic mimicry capacity was assessed by a tube formation assay. SHP‑2 siRNA transfection reduced the proliferation and increased apoptosis in the glioma cell lines. Downregulation of SHP‑2 suppressed glioma cell invasion and vasculogenic mimicry. These results demonstrated that no significant difference was observed between glioma tissues and normal brain tissues, however, silencing of SHP‑2 inhibited cell proliferation, invasion and vasculogenic mimicry in the glioma cell lines. SHP‑2 may be a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Quanye Sun
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Luyan Mu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wanchen Qiao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hui Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiabin Tang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ce Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Hu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tianshu Zhao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Baijing Dong
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuwen Song
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaoqian Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
23
|
Blasel S, Zagorcic A, Jurcoane A, Bähr O, Wagner M, Harter PN, Hattingen E. Perfusion MRI in the Evaluation of Suspected Glioblastoma Recurrence. J Neuroimaging 2015; 26:116-23. [PMID: 25907688 DOI: 10.1111/jon.12247] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/01/2015] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Treatment-related changes (TRC) often imitate tumor progression in glioblastomas. Increased regional cerebral blood volume (rCBV) can differentiate tumor progression from TRC after the standardized first-line radiochemotherapy, but information about diagnostic accuracy of rCBV for patients without any clinical selection criteria is limited. Therefore, we aimed to evaluate if rCBV can differentiate between TRC and tumor progression irrespective of preceding therapies and number of tumor progressions. METHODS We analyzed mean and maximum rCBV from the enhancing areas normalized to the contralateral white matter in 44 pretreated glioblastomas with MR-morphological tumor progression. The diagnosis (real progression vs. TRC) was determined by histopathology or by clinical/MRI-follow-up. We performed nonparametric tests, receiver operating characteristics (ROC), and Kaplan-Meier analysis. RESULTS Significant differences between tumor progression (N = 37) and TRC (N = 7) were found for rCBVmean (2.44 ± 1.05 vs. 1.69 ± .56, P < .03) and rCBVmax (3.40 ± 1.25 vs. 2.21 ± .62, P < .0007). A rCBVmax of 2.6 had 78% sensitivity and 86% specificity to detect tumor progression. Neither rCBVmean nor rCBVmax was predictive for the patient overall survival (OS). There were no statistically different rCBVmean and rCBVmax between the first and further tumor progressions. CONCLUSIONS The rCBVmax differentiates tumor progression from TRC in unselected recurrent glioblastomas, but it is not predictive for the OS.
Collapse
Affiliation(s)
- Stella Blasel
- Institute of Neuroradiology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Andrea Zagorcic
- Institute of Neuroradiology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Alina Jurcoane
- Institute of Neuroradiology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Oliver Bähr
- Dr. Senckenberg Institute of Neurooncology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Patrick N Harter
- Edinger Institute, Institute of Neurology, Goethe-University Frankfurt, Heinrich Hoffmann Strasse 7, 60528, Frankfurt, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| |
Collapse
|
24
|
Characterization of pseudoprogression in patients with glioblastoma: is histology the gold standard? J Neurooncol 2015; 123:141-50. [PMID: 25894594 DOI: 10.1007/s11060-015-1774-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 04/02/2015] [Indexed: 01/29/2023]
Abstract
Pseudoprogression (psPD) refers to an increase in size or appearance of new areas of MRI contrast enhancement soon after completing chemoradiation, timely diagnosis of which has been a challenge. Given that tissue sampling of the MRI changes would be expected to accurately distinguish psPD from true progression when MRI changes are first seen, we examined the utility of surgery in diagnosing psPD and influencing patient outcome. We retrospectively reviewed data from adults with GBM who had MRI changes suggestive of progression within 3 months of chemoRT; of these, 34 underwent surgical resection. Three subsets-tumor, psPD or mixed-were identified based on histology and immunohistochemistry in the surgical group and by imaging characteristics in the nonsurgical group. A cohort of patients with stable disease post-chemoRT served as control. PFS and OS were determined using the Kaplan-Meier method and log rank analysis. Concordance for psPD between radiological interpretation and subsequent histological diagnosis was seen in only 32% of cases (11/34) 95%CI 19-49%. A large proportion of patients had a histologically "mixed" pattern with tumor and treatment effect. No significant differences in PFS or OS were seen among the three subtypes. Surgical sampling and histologic review of MRI changes after chemoRT may not serve as a gold standard to distinguish psPD from true progression in GBM patients. Refinement of the histological criteria, careful intraoperative selection of regions of interest and advanced imaging modalities are needed for early differentiation of PsPD from progression to guide clinical management.
Collapse
|
25
|
Molenaar RJ, Verbaan D, Lamba S, Zanon C, Jeuken JWM, Boots-Sprenger SHE, Wesseling P, Hulsebos TJM, Troost D, van Tilborg AA, Leenstra S, Vandertop WP, Bardelli A, van Noorden CJF, Bleeker FE. The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro Oncol 2014; 16:1263-73. [PMID: 24510240 PMCID: PMC4136888 DOI: 10.1093/neuonc/nou005] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetic and epigenetic profiling of glioblastomas has provided a comprehensive list of altered cancer genes of which only O(6)-methylguanine-methyltransferase (MGMT) methylation is used thus far as a predictive marker in a clinical setting. We investigated the prognostic significance of genetic and epigenetic alterations in glioblastoma patients. METHODS We screened 98 human glioblastoma samples for genetic and epigenetic alterations in 10 genes and chromosomal loci by PCR and multiplex ligation-dependent probe amplification (MLPA). We tested the association between these genetic and epigenetic alterations and glioblastoma patient survival. Subsequently, we developed a 2-gene survival predictor. RESULTS Multivariate analyses revealed that mutations in isocitrate dehydrogenase 1 (IDH1), promoter methylation of MGMT, irradiation dosage, and Karnofsky Performance Status (KFS) were independent prognostic factors. A 2-gene predictor for glioblastoma survival was generated. Based on the genetic and epigenetic status of IDH1 and MGMT, glioblastoma patients were stratified into 3 clinically different genotypes: glioblastoma patients with IDH1mt/MGMTmet had the longest survival, followed by patients with IDH1mt/MGMTunmet or IDH1wt/MGMTmet, and patients with IDH1wt/MGMTunmet had the shortest survival. This 2-gene predictor was an independent prognostic factor and performed significantly better in predicting survival than either IDH1 mutations or MGMT methylation alone. The predictor was validated in 3 external datasets. DISCUSSION The combination of IDH1 mutations and MGMT methylation outperforms either IDH1 mutations or MGMT methylation alone in predicting survival of glioblastoma patients. This information will help to increase our understanding of glioblastoma biology, and it may be helpful for baseline comparisons in future clinical trials.
Collapse
Affiliation(s)
- Remco J Molenaar
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Dagmar Verbaan
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Simona Lamba
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Carlo Zanon
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Judith W M Jeuken
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Sandra H E Boots-Sprenger
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Pieter Wesseling
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Theo J M Hulsebos
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Dirk Troost
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Angela A van Tilborg
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Sieger Leenstra
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - W Peter Vandertop
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Alberto Bardelli
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Cornelis J F van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| | - Fonnet E Bleeker
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (R.J.M., C.J.F.v.N.); Neurosurgical Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands (F.E.B., D.V., W.P.V.); Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy (S.La., C.Z., A.B., F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands (J.W.M.J., S.H.E.B.-S., P.W.); Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands (P.W.); Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.J.M.H.); Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.T., A.A.v.T.); Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands (W.P.V.); Department of Neurosurgery, St. Elisabeth Hospital Tilburg, The Netherlands (S.Le.); Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands (S.Le.); FIRC Institute of Molecular Oncology, Milan, Italy (A.B.)Present affiliation: Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (F.E.B.); Department of Pathology, Radboud University Medical Center Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (A.A.v.T.); Department of Neurology, Radboud University Medical Centre Nijmegen, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands (S.H.E.B.-S.); Department of Pathology, Stichting PAMM, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands (J.W.M.J.)
| |
Collapse
|
26
|
Nayernia Z, Turchi L, Cosset E, Peterson H, Dutoit V, Dietrich PY, Tirefort D, Chneiweiss H, Lobrinus JA, Krause KH, Virolle T, Preynat-Seauve O. The relationship between brain tumor cell invasion of engineered neural tissues and in vivo features of glioblastoma. Biomaterials 2013; 34:8279-90. [PMID: 23899445 DOI: 10.1016/j.biomaterials.2013.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022]
Abstract
Glioblastoma is an aggressive brain tumor characterized by its high propensity for local invasion, formation of secondary foci within the brain, as well as areas of necrosis. This study aims to (i) provide a technical approach to reproduce features of the disease in vitro and (ii) characterize the tumor/host brain tissue interaction at the molecular level. Human engineered neural tissue (ENT) obtained from pluripotent stem cells was generated and co-cultured with human glioblastoma-initiating cells. Within two weeks, glioblastoma cells invaded the nervous tissue. This invasion displayed features of the disease in vivo: a primary tumor mass, diffuse migration of invading single cells into the nervous tissue, secondary foci, as well as peritumoral cell death. Through comparative molecular analyses, this model allowed the identification of more than 100 genes that are specifically induced and up-regulated by the nervous tissue/tumor interaction. Notably the type I interferon response, extracellular matrix-related genes were most highly represented and showed a significant correlation with patient survival. In conclusion, glioblastoma development within a nervous tissue can be engineered in vitro, providing a relevant model to study the disease and allows the identification of clinically-relevant genes induced by the tumor/host tissue interaction.
Collapse
Affiliation(s)
- Zeynab Nayernia
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ulasov I, Thaci B, Sarvaiya P, Yi R, Guo D, Auffinger B, Pytel P, Zhang L, Kim CK, Borovjagin A, Dey M, Han Y, Baryshnikov AY, Lesniak MS. Inhibition of MMP14 potentiates the therapeutic effect of temozolomide and radiation in gliomas. Cancer Med 2013; 2:457-67. [PMID: 24156018 PMCID: PMC3799280 DOI: 10.1002/cam4.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 12/12/2022] Open
Abstract
Metalloproteinases are membrane-bound proteins that play a role in the cellular responses to antiglioma therapy. Previously, it has been shown that treatment of glioma cells with temozolomide (TMZ) and radiation (XRT) induces the expression of metalloproteinase 14 (MMP14). To investigate the role of MMP14 in gliomagenesis, we used several chemical inhibitors which affect MMP14 expression. Of all the inhibitors tested, we found that Marimastat not only inhibits the expression of MMP14 in U87 and U251 glioma cells, but also induces cell cycle arrest. To determine the relationship between MMP14 inhibition and alteration of the cell cycle, we used an RNAi technique. Genetic knockdown of MMP14 in U87 and U251 glioma cells induced G2/M arrest and decreased proliferation. Mechanistically, we show that TMZ and XRT regulated expression of MMP14 in clinical samples and in vitro models through downregulation of microRNA374. In vivo genetic knockdown of MMP14 significantly decreased tumor growth of glioma xenografts and improved survival of glioma-bearing mice. Moreover, the combination of MMP14 silencing with TMZ and XRT significantly improved the survival of glioma-bearing mice compared to a single modality treatment group. Therefore, we show that the inhibition of MMP14 sensitizes tumor cells to TMZ and XRT and could be used as a future strategy for antiglioma therapy. Glioblastoma remains an incurable form of brain cancer. In this manuscript, we show that inhibition of MMP14 can potentiate the efficacy of current standard of care which includes chemo- and radiotherapy.
Collapse
Affiliation(s)
- Ilya Ulasov
- The Brain Tumor Center, The University of Chicago Chicago, Illinois, 60637
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Histopathological correlates with survival in reoperated glioblastomas. J Neurooncol 2013; 113:485-93. [PMID: 23666202 DOI: 10.1007/s11060-013-1141-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/28/2013] [Indexed: 01/15/2023]
Abstract
The addition of concomitant and adjuvant chemotherapy to radiation therapy after surgical resection has increased significantly the survival of patients with glioblastoma (GB). In conjunction, there has been an increasing fraction of patients who present with new enlarged areas of contrast enhancement and edema on post-treatment imaging that improve without further treatment. It remains to be established how this phenomenon, commonly termed pseudoprogression, can be distinguished from true tumor recurrence defined as the histological presence of active high-grade tumor, as well as its prognostic significance. Data for over 500 patients undergoing surgery for recurrent GB were reviewed. Pathological specimens were categorized as those that contained active high-grade glioma in any amount, and those that did not. Patient survival was compared between these two groups, and independent associations were assessed using Cox proportionate hazards regression analysis. 59 patients met the study criteria including complete pathological and follow-up data. Mean age was 53 ± 11 years. Median survival from suspected recurrence and initial diagnosis were 8 [5-14] and 20 [12-30] months. Seventeen patients (29 %) had no evidence of active high-grade tumor and 42 (71 %) had at least focal active high-grade glioma. Pathologic pseudoprogression at re-operation (p = 0.03) and gross total resection (p = 0.01) were independently associated with survival. The histopathological features defined here and used to assess the tumor at reoperation were independently associated with survival. These findings may be important in designing treatment strategies and clinical trial endpoints for patients with GB.
Collapse
|
29
|
Zach L, Guez D, Last D, Daniels D, Grober Y, Nissim O, Hoffmann C, Nass D, Talianski A, Spiegelmann R, Cohen ZR, Mardor Y. Delayed contrast extravasation MRI for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors. PLoS One 2012; 7:e52008. [PMID: 23251672 PMCID: PMC3522646 DOI: 10.1371/journal.pone.0052008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/07/2012] [Indexed: 11/23/2022] Open
Abstract
The current standard of care for newly diagnosed glioblastoma multiforme (GBM) is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that our high resolution MRI-based delayed enhancement subtraction maps may be applied for clear depiction of tumor and non-tumoral tissues in patients with primary brain tumors and patients with brain metastases.
Collapse
Affiliation(s)
- Leor Zach
- Oncology Institute, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David Guez
- Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
| | - David Last
- Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Dianne Daniels
- Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yuval Grober
- Neurosurgery Department, Sheba Medical Center, Ramat-Gan, Israel
| | - Ouzi Nissim
- Neurosurgery Department, Sheba Medical Center, Ramat-Gan, Israel
| | - Chen Hoffmann
- Radiology Institute, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dvora Nass
- Pathology Institute, Sheba Medical Center, Ramat-Gan, Israel
| | | | - Roberto Spiegelmann
- Neurosurgery Department, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Zvi R. Cohen
- Neurosurgery Department, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Mardor
- Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
30
|
Hu LS, Eschbacher JM, Heiserman JE, Dueck AC, Shapiro WR, Liu S, Karis JP, Smith KA, Coons SW, Nakaji P, Spetzler RF, Feuerstein BG, Debbins J, Baxter LC. Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Oncol 2012; 14:919-30. [PMID: 22561797 PMCID: PMC3379799 DOI: 10.1093/neuonc/nos112] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 03/29/2012] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Contrast-enhanced MRI (CE-MRI) represents the current mainstay for monitoring treatment response in glioblastoma multiforme (GBM), based on the premise that enlarging lesions reflect increasing tumor burden, treatment failure, and poor prognosis. Unfortunately, irradiating such tumors can induce changes in CE-MRI that mimic tumor recurrence, so called post treatment radiation effect (PTRE), and in fact, both PTRE and tumor re-growth can occur together. Because PTRE represents treatment success, the relative histologic fraction of tumor growth versus PTRE affects survival. Studies suggest that Perfusion MRI (pMRI)-based measures of relative cerebral blood volume (rCBV) can noninvasively estimate histologic tumor fraction to predict clinical outcome. There are several proposed pMRI-based analytic methods, although none have been correlated with overall survival (OS). This study compares how well histologic tumor fraction and OS correlate with several pMRI-based metrics. METHODS We recruited previously treated patients with GBM undergoing surgical re-resection for suspected tumor recurrence and calculated preoperative pMRI-based metrics within CE-MRI enhancing lesions: rCBV mean, mode, maximum, width, and a new thresholding metric called pMRI-fractional tumor burden (pMRI-FTB). We correlated all pMRI-based metrics with histologic tumor fraction and OS. RESULTS Among 25 recurrent patients with GBM, histologic tumor fraction correlated most strongly with pMRI-FTB (r = 0.82; P < .0001), which was the only imaging metric that correlated with OS (P<.02). CONCLUSION The pMRI-FTB metric reliably estimates histologic tumor fraction (i.e., tumor burden) and correlates with OS in the context of recurrent GBM. This technique may offer a promising biomarker of tumor progression and clinical outcome for future clinical trials.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic in Arizona, Phoenix, AZ 85054, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Patterns of failure after multimodal treatments for high-grade glioma: effectiveness of MIB-1 labeling index. Radiat Oncol 2012; 7:104. [PMID: 22734595 PMCID: PMC3583446 DOI: 10.1186/1748-717x-7-104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 06/03/2012] [Indexed: 02/05/2023] Open
Abstract
Background The purpose of the present study was to analyze the recurrence pattern of
high-grade glioma treated with a multimodal treatment approach and to evaluate
whether the MIB-1 labeling index (LI) could be a useful marker for predicting the
pattern of failure in glioblastoma (GB). Methods and materials We evaluated histologically confirmed 131 patients with either anaplastic
astrocytoma (AA) or GB. A median dose was 60 Gy. Concomitant and adjuvant
chemotherapy were administered to 111 patients. MIB-1 LI was assessed by
immunohistochemistry. Recurrence patterns were categorized according to the areas
of recurrence as follows: central failure (recurrence in the 95% of 60 Gy);
in-field (recurrence in the high-dose volume of 50 Gy; marginal (recurrence
outside the high-dose volume) and distant (recurrence outside the RT field). Results The median follow-up durations were 13 months for all patients and
19 months for those remaining alive. Among AA patients, the 2-year
progression-free and overall survival rates were 23.1% and 39.2%, respectively,
while in GB patients, the rates were 13.3% and 27.6%, respectively. The median
survival time was 20 months for AA patients and 15 months for GB
patients. Among AA patients, recurrences were central in 68.7% of patients;
in-field, 18.8%; and distant, 12.5%, while among GB patients, 69.0% of recurrences
were central, 15.5% were in-field, 12.1% were marginal, and 3.4% were distant. The
MIB-1 LI medians were 18.2% in AA and 29.8% in GB. Interestingly, in patients with
GB, the MIB-1 LI had a strong effect on the pattern of failure
(P = 0.014), while the extent of surgical removal
(P = 0.47) and regimens of chemotherapy (P = 0.57) did
not. Conclusions MIB-1 LI predominantly affected the pattern of failure in GB patients treated with
a multimodal approach, and it might be a useful tool for the management of the
disease.
Collapse
|