1
|
Sachdev A, Kumar A, Mehra B, Gupta N, Gupta D, Gupta S, Chugh P. Transpulmonary Pressure-Guided Mechanical Ventilation in Severe Acute Respiratory Distress Syndrome in PICU: Single-Center Retrospective Study in North India, 2018-2021. Pediatr Crit Care Med 2024:00130478-990000000-00381. [PMID: 39298567 DOI: 10.1097/pcc.0000000000003609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
OBJECTIVES In this study, we have reviewed the association between esophageal pressure-guided positive end-expiratory pressure (PEEP) setting and oxygenation and lung mechanics with a conventional mechanical ventilation (MV) strategy in patient with moderate to severe pediatric acute respiratory distress syndrome (PARDS). DESIGN Retrospective cohort, 2018-2021. SETTING Tertiary PICU. PATIENTS Moderate to severe PARDS patients who required MV with PEEP of greater than or equal to 8 cm H2O. INTERVENTIONS Esophageal pressure (i.e., transpulmonary pressure [PTP]) guided MV vs. not. MEASUREMENTS AND MAIN RESULTS We identified 26 PARDS cases who were divided into those who had been managed with PTP-guided MV (PTP group) and those managed with conventional ventilation strategy (non-PTP). Oxygenation and lung mechanics were compared between groups at baseline (0 hr) and 24, 48, and 72 hours of MV. There were 13 patients in each group in the first 24 hours. At 48 and 72 hours, there were 11 in PTP group and 12 in non-PTP group. On comparing these groups, first, use of PTP monitoring was associated with higher median (interquartile range) mean airway pressure at 24 hours (18 hr [18-20 hr] vs. 15 hr [13-18 hr]; p = 0.01) and 48 hours (19 hr [17-19 hr] vs. 15 hr [13-17 hr]; p = 0.01). Second, use of PTP was associated with higher PEEP at 24, 48, and 72 hours (all p < 0.05). Third, use of PTP was associated with lower Fio2 and greater Pao2 to Fio2 ratio at 72 hours. Last, there were 18 of 26 survivors, and we failed to identify an association between use of PTP monitoring and survival. CONCLUSIONS In this cohort of moderate to severe PARDS cases undergoing MV with PEEP greater than or equal to 8 cm H2O, we have identified some favorable associations of oxygenation status when PTP-guided MV was used vs. not. Larger studies are required.
Collapse
Affiliation(s)
- Anil Sachdev
- Department of Pediatrics, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil Kumar
- Department of Pediatrics, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Bharat Mehra
- Department of Pediatrics, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Neeraj Gupta
- Department of Pediatrics, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Dhiren Gupta
- Department of Pediatrics, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Suresh Gupta
- Department of Pediatrics, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Parul Chugh
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
2
|
Bhalla AK, Klein MJ, Hotz J, Kwok J, Bonilla-Cartagena JE, Baron DA, Kohler K, Bornstein D, Chang D, Vu K, Armenta-Quiroz A, Nelson LP, Newth CJL, Khemani RG. Noninvasive Surrogate for Physiologic Dead Space Using the Carbon Dioxide Ventilatory Equivalent: Testing in a Single-Center Cohort, 2017-2023. Pediatr Crit Care Med 2024; 25:784-794. [PMID: 38771137 PMCID: PMC11379541 DOI: 10.1097/pcc.0000000000003539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
OBJECTIVES We sought to evaluate the association between the carbon dioxide ( co2 ) ventilatory equivalent (VEq co2 = minute ventilation/volume of co2 produced per min), a marker of dead space that does not require a blood gas measurement, and mortality risk. We compared the strength of this association to that of physiologic dead space fraction (V D /V t = [Pa co2 -mixed-expired P co2 ]/Pa co2 ) as well as to other commonly used markers of dead space (i.e., the end-tidal alveolar dead space fraction [AVDSf = (Pa co2 -end-tidal P co2 )/Pa co2 ], and ventilatory ratio [VR = (minute ventilation × Pa co2 )/(age-adjusted predicted minute ventilation × 37.5)]). DESIGN Retrospective cohort data, 2017-2023. SETTING Quaternary PICU. PATIENTS One hundred thirty-one children with acute respiratory distress syndrome. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS All dead space markers were calculated at the same 1-minute timepoint for each patient within the first 72 hours of using invasive mechanical ventilation. The 131 children had a median (interquartile range, IQR) age of 5.8 (IQR 1.4, 12.6) years, oxygenation index (OI) of 7.5 (IQR 4.6, 14.3), V D /V t of 0.47 (IQR 0.38, 0.61), and mortality was 17.6% (23/131). Higher VEq co2 ( p = 0.003), V D /V t ( p = 0.002), and VR ( p = 0.013) were all associated with greater odds of mortality in multivariable models adjusting for OI, immunosuppressive comorbidity, and overall severity of illness. We failed to identify an association between AVDSf and mortality in the multivariable modeling. Similarly, we also failed to identify an association between OI and mortality after controlling for any dead space marker in the modeling. For the 28-day ventilator-free days outcome, we failed to identify an association between V D /V t and the dead space markers in multivariable modeling, although OI was significant. CONCLUSIONS VEq co2 performs similarly to V D /V t and other surrogate dead space markers, is independently associated with mortality risk, and may be a reasonable noninvasive surrogate for V D /V t .
Collapse
Affiliation(s)
- Anoopindar K Bhalla
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Margaret J Klein
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Justin Hotz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Jeni Kwok
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | | | - David A Baron
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Kristen Kohler
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Dinnel Bornstein
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Daniel Chang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Kennedy Vu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Anabel Armenta-Quiroz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Lara P Nelson
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Christopher J L Newth
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
3
|
Klein-Blommert R, Markhorst DG, Bem RA. Exhaled CO2: No Volume to Waste. Pediatr Crit Care Med 2024; 25:860-863. [PMID: 39240665 DOI: 10.1097/pcc.0000000000003570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Affiliation(s)
- Rozalinde Klein-Blommert
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Dick G Markhorst
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Reinout A Bem
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Tasker RC. Editor's Choice Articles for September. Pediatr Crit Care Med 2024; 25:779-783. [PMID: 39240664 DOI: 10.1097/pcc.0000000000003597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Affiliation(s)
- Robert C Tasker
- orcid.org/0000-0003-3647-8113
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Selwyn College, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
5
|
Fernández-Sarmiento J, Bejarano-Quintero AM, Tibaduiza JD, Moreno-Medina K, Pardo R, Mejía LM, Junco JL, Rojas J, Peña O, Martínez Y, Izquierdo L, Guzmán MC, Vásquez-Hoyos P, Molano M, Gallon C, Bonilla C, Fernández-Palacio MC, Merino V, Bernal C, Fernández-Sarta JP, Hernandez E, Alvarez I, Tobo JC, Beltrán MC, Ortiz J, Botia L, Fernández-Rengifo JM, Del Pilar Pereira-Ospina R, Blundell A, Nieto A, Duque-Arango C. Time Course of Mechanical Ventilation Driving Pressure Levels in Pediatric Acute Respiratory Distress Syndrome: Outcomes in a Prospective, Multicenter Cohort Study From Colombia, 2018-2022. Pediatr Crit Care Med 2024; 25:848-857. [PMID: 38668099 DOI: 10.1097/pcc.0000000000003528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
OBJECTIVES High driving pressure (DP, ratio of tidal volume (V t ) over respiratory system compliance) is a risk for poor outcomes in patients with pediatric acute respiratory distress syndrome (PARDS). We therefore assessed the time course in level of DP (i.e., 24, 48, and 72 hr) after starting mechanical ventilation (MV), and its association with 28-day mortality. DESIGN Multicenter, prospective study conducted between February 2018 and December 2022. SETTING Twelve tertiary care PICUs in Colombia. PATIENTS One hundred eighty-four intubated children with moderate to severe PARDS. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The median (interquartile range [IQR]) age of the PARDS cohort was 11 (IQR 3-24) months. A total of 129 of 184 patients (70.2%) had a pulmonary etiology leading to PARDS, and 31 of 184 patients (16.8%) died. In the first 24 hours after admission, the plateau pressure in the nonsurvivor group, compared with the survivor group, differed (28.24 [IQR 24.14-32.11] vs. 23.18 [IQR 20.72-27.13] cm H 2 O, p < 0.01). Of note, children with a V t less than 8 mL/kg of ideal body weight had lower adjusted odds ratio (aOR [95% CI]) of 28-day mortality (aOR 0.69, [95% CI, 0.55-0.87]; p = 0.02). However, we failed to identify an association between DP level and the oxygenation index (aOR 0.58; 95% CI, 0.21-1.58) at each of time point. In a diagnostic exploratory analysis, we found that DP greater than 15 cm H 2 O at 72 hours was an explanatory variable for mortality, with area under the receiver operating characteristic curve of 0.83 (95% CI, 0.74-0.89); there was also increased hazard for death with hazard ratio 2.5 (95% CI, 1.07-5.92). DP greater than 15 cm H 2 O at 72 hours was also associated with longer duration of MV (10 [IQR 7-14] vs. 7 [IQR 5-10] d; p = 0.02). CONCLUSIONS In children with moderate to severe PARDS, a DP greater than 15 cm H 2 O at 72 hours after the initiation of MV is associated with greater odds of 28-day mortality and a longer duration of MV. DP should be considered a variable worth monitoring during protective ventilation for PARDS.
Collapse
Affiliation(s)
- Jaime Fernández-Sarmiento
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | - Ana María Bejarano-Quintero
- Department of Critical Care Medicine and Pediatrics, Clínica Infantil Colsubsidio. Universidad del Rosario, Bogotá, Colombia
| | - Jose Daniel Tibaduiza
- Department of Critical Care Medicine and Pediatrics, Clinica Somer, Medellin, Colombia
| | - Karen Moreno-Medina
- Research Department, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Rosalba Pardo
- Department of Critical Care Medicine and Pediatrics, Clínica Infantil Colsubsidio, Bogotá, Colombia
| | - Luz Marina Mejía
- Department of Critical Care Medicine and Pediatrics, Instituto Roosevelt, Bogotá, Colombia
| | - Jose Luis Junco
- Department of Critical Care Medicine and Pediatrics, Instituto Roosevelt, Bogotá, Colombia
| | - Jorge Rojas
- Department of Critical Care Medicine and Pediatrics, Hospital Santa Clara, Bogotá, Colombia
| | - Oscar Peña
- Department of Critical Care Medicine and Pediatrics, Hospital Pablo Tobon, Medellin, Colombia
| | - Yomara Martínez
- Department of Critical Care Medicine and Pediatrics, Hospital San Vicente, Medellin, Colombia
| | - Ledys Izquierdo
- Department of Critical Care Medicine and Pediatrics, Hospital Militar Central, Bogotá, Colombia
| | - Maria Claudia Guzmán
- Department of Critical Care Medicine and Pediatrics, Universidad del Bosque, Bogotá, Colombia
| | - Pablo Vásquez-Hoyos
- Department of Critical Care Medicine and Pediatrics, Hospital San Jose Centro, Fundación Universitaria Ciencias de La Salud, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Milton Molano
- Department of Critical Care Medicine and Pediatrics, Hospital Universitario de Neiva, Neiva, Colombia
| | - Carlos Gallon
- Department of Critical Care Medicine and Pediatrics, Clínica General del Norte, Barranquilla, Colombia
| | - Carolina Bonilla
- Department of Critical Care Medicine and Pediatrics, Fundación Santa Fe de Bogotá and Fundación Cardioinfantil-IC, Bogotá, Colombia
| | - Maria Carolina Fernández-Palacio
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | - Valentina Merino
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | - Christian Bernal
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | - Juan Pablo Fernández-Sarta
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
- Department of Pediatrics, Universidad del Rosario, Bogotá, Colombia
| | - Estefanía Hernandez
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | - Isabela Alvarez
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | - Juan Camilo Tobo
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | - Maria Camila Beltrán
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | - Juanita Ortiz
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | - Laura Botia
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | - Jose Manuel Fernández-Rengifo
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | | | - Alexandra Blundell
- Research Department, California University of Science and Medicine (CUSM), School of Medicine, Colton, CA
| | - Andres Nieto
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
- Department of Pediatrics, Universidad del Rosario, Bogotá, Colombia
| | - Catalina Duque-Arango
- Department of Critical Care Medicine and Pediatrics, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| |
Collapse
|
6
|
Goodfellow LT, Miller AG, Varekojis SM, LaVita CJ, Glogowski JT, Hess DR. AARC Clinical Practice Guideline: Patient-Ventilator Assessment. Respir Care 2024; 69:1042-1054. [PMID: 39048148 PMCID: PMC11298231 DOI: 10.4187/respcare.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Given the important role of patient-ventilator assessments in ensuring the safety and efficacy of mechanical ventilation, a team of respiratory therapists and a librarian used Grading of Recommendations, Assessment, Development, and Evaluation methodology to make the following recommendations: (1) We recommend assessment of plateau pressure to ensure lung-protective ventilator settings (strong recommendation, high certainty); (2) We recommend an assessment of tidal volume (VT) to ensure lung-protective ventilation (4-8 mL/kg/predicted body weight) (strong recommendation, high certainty); (3) We recommend documenting VT as mL/kg predicted body weight (strong recommendation, high certainty); (4) We recommend an assessment of PEEP and auto-PEEP (strong recommendation, high certainty); (5) We suggest assessing driving pressure to prevent ventilator-induced injury (conditional recommendation, low certainty); (6) We suggest assessing FIO2 to ensure normoxemia (conditional recommendation, very low certainty); (7) We suggest telemonitoring to supplement direct bedside assessment in settings with limited resources (conditional recommendation, low certainty); (8) We suggest direct bedside assessment rather than telemonitoring when resources are adequate (conditional recommendation, low certainty); (9) We suggest assessing adequate humidification for patients receiving noninvasive ventilation (NIV) and invasive mechanical ventilation (conditional recommendation, very low certainty); (10) We suggest assessing the appropriateness of the humidification device during NIV and invasive mechanical ventilation (conditional recommendation, low certainty); (11) We recommend that the skin surrounding artificial airways and NIV interfaces be assessed (strong recommendation, high certainty); (12) We suggest assessing the dressing used for tracheostomy tubes and NIV interfaces (conditional recommendation, low certainty); (13) We recommend assessing the pressure inside the cuff of artificial airways using a manometer (strong recommendation, high certainty); (14) We recommend that continuous cuff pressure assessment should not be implemented to decrease the risk of ventilator-associated pneumonia (strong recommendation, high certainty); and (15) We suggest assessing the proper placement and securement of artificial airways (conditional recommendation, very low certainty).
Collapse
Affiliation(s)
- Lynda T Goodfellow
- Director of AARC Clinical Practice Guideline Development and is affiliated with American Association for Respiratory Care/Daedalus Enterprises, Irving, Texas, and Georgia State University, Atlanta, Georgia
| | | | | | | | | | - Dean R Hess
- Massachusetts General Hospital, Boston, Massachusetts; and Daedalus Enterprises, Irving, Texas
| |
Collapse
|
7
|
Bianzina S, Singh Y, Iacobelli R, Amodeo A, Guner Y, Di Nardo M. Use of point-of-care ultrasound (POCUS) to monitor neonatal and pediatric extracorporeal life support. Eur J Pediatr 2024; 183:1509-1524. [PMID: 38236403 DOI: 10.1007/s00431-023-05386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Extracorporeal membrane oxygenation (ECMO) is an invasive life support technique that requires a blood pump, an artificial membrane lung, and vascular cannulae to drain de-oxygenated blood, remove carbon dioxide, oxygenate, and return it to the patient. ECMO is generally used to provide advanced and prolonged cardiopulmonary support in patients with refractory acute cardiac and/or respiratory failure. After its first use in 1975 to manage a severe form of meconium aspiration syndrome with resultant pulmonary hypertension, the following years were dominated by the use of ECMO to manage neonatal respiratory failure and limited to a few centers across the world. In the 1990s, evidence for neonatal respiratory ECMO support increased; however, the number of cases began to decline with the use of newer pharmacologic therapies (e.g., inhaled nitric oxide, exogenous surfactant, and high-frequency oscillatory ventilation). On the contrary, pediatric ECMO sustained steady growth. Combined advances in ECMO technology and bedside medical management have improved general outcomes, although ECMO-related complications remain challenging. Point-of-care ultrasound (POCUS) is an essential tool to monitor all phases of neonatal and pediatric ECMO: evaluation of ECMO candidacy, ultrasound-guided ECMO cannulation, daily evaluation of heart and lung function and brain perfusion, detection and management of major complications, and weaning from ECMO support. Conclusion: Based on these considerations and on the lack of specific guidelines for the use of POCUS in the neonatal and pediatric ECMO setting, the aim of this paper is to provide a systematic overview for the application of POCUS during ECMO support in these populations. What is Known: • Extracorporeal membrane oxygenation (ECMO) provides advanced cardiopulmonary support for patients with refractory acute cardiac and/or respiratory failure and requires appropriate monitoring. • Point-of-care ultrasound (POCUS) is an accessible and adaptable tool to assess neonatal and pediatric cardiac and/or respiratory failure at bedside. What is New: • In this review, we discussed the use of POCUS to monitor and manage at bedside neonatal and pediatric patients supported with ECMO. • We explored the potential use of POCUS during all phases of ECMO support: pre-ECMO assessment, ECMO candidacy evaluation, daily evaluation of heart, lung and brain function, detection and troubleshooting of major complications, and weaning from ECMO support.
Collapse
Affiliation(s)
- Stefania Bianzina
- Pediatric Anaesthesia and Intensive Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Yogen Singh
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Roberta Iacobelli
- Area of Cardiac Surgery, Cardiology, Heart and Lung Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Amodeo
- Heart Failure, Transplantation and Cardio-Respiratory Mechanical Assistance Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Yigit Guner
- Pediatric Surgery, Children's Hospital of Orange County and University of California Irvine, Orange, CA, USA
| | - Matteo Di Nardo
- Pediatric Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
8
|
Lepage-Farrell A, Tabone L, Plante V, Kawaguchi A, Feder J, Al Omar S, Emeriaud G. Noninvasive Neurally Adjusted Ventilatory Assist in Infants With Bronchiolitis: Respiratory Outcomes in a Single-Center, Retrospective Cohort, 2016-2018. Pediatr Crit Care Med 2024; 25:201-211. [PMID: 38019615 DOI: 10.1097/pcc.0000000000003407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
OBJECTIVES To describe our experience of using noninvasive neurally adjusted ventilatory assist (NIV-NAVA) in infants with bronchiolitis, its association with the evolution of respiratory effort, and PICU outcomes. DESIGN Retrospective analysis of a prospectively curated, high-frequency electronic database. SETTING A PICU in a university-affiliated maternal-child health center in Canada. PATIENTS Patients younger than 2 years old who were admitted with a diagnosis of acute bronchiolitis and treated with NIV-NAVA from October 2016 to June 2018. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Patient characteristics, as well as respiratory and physiologic parameters, including electrical diaphragmatic activity (Edi), were extracted from the electronic database. Respiratory effort was estimated using the modified Wood Clinical Asthma Score (mWCAS) and the inspiratory Edi. A comparison in the respiratory effort data was made between the 2 hours before and 2 hours after starting NIV-NAVA. In the two seasons, 64 of 205 bronchiolitis patients were supported with NIV-NAVA. These 64 patients had a median (interquartile range [IQR]) age of 52 days (32-92 d), and there were 36 of 64 males. Treatment with NIV-NAVA was used after failure of first-tier noninvasive respiratory support; 25 of 64 patients (39%) had at least one medical comorbidity. NIV-NAVA initiation was associated with a moderate decrease in mWCAS from 3.0 (IQR, 2.5-3.5) to 2.5 (IQR, 2.0-3.0; p < 0.001). NIV-NAVA initiation was also associated with a statistically significant decrease in Edi ( p < 0.01). However, this decrease was only clinically relevant in infants with a 2-hour baseline Edi greater than 20 μV; here, the before and after Edi was 44 μV (IQR, 33-54 μV) compared with 27 μV (IQR, 21-36 μV), respectively ( p < 0.001). Overall, six of 64 patients (9%) required endotracheal intubation. CONCLUSIONS In this single-center retrospective cohort, in infants with bronchiolitis who were considered to have failed first-tier noninvasive respiratory support, the use of NIV-NAVA was associated with a rapid decrease in respiratory effort and a 9% intubation rate.
Collapse
Affiliation(s)
- Alex Lepage-Farrell
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, London Children's Hospital, Western University, London, ON, Canada
| | - Laurence Tabone
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Pediatric Intensive Care and Pediatric Emergency Department, CHU Clocheville, Tours, France
| | - Virginie Plante
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Atsushi Kawaguchi
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Pediatric Critical Care, St Marianna University, Kawasaki, Japan
| | - Joshua Feder
- Department of Pediatrics, Pediatric Intensive Care Unit, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Sally Al Omar
- CHU Sainte Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Guillaume Emeriaud
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- CHU Sainte Justine Research Center, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
9
|
Cruces P, Moreno D, Reveco S, Améstica M, Araneda P, Ramirez Y, Vásquez-Hoyos P, Díaz F. Capnometry after an inspiratory breath hold, PLAT CO 2 , as a surrogate for P aCO 2 ${P}_{{\mathrm{aCO}}_{2}}$ in mild to moderate pediatric acute respiratory distress syndrome: A feasibility study. Pediatr Pulmonol 2023; 58:2899-2905. [PMID: 37594148 DOI: 10.1002/ppul.26610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Accurate and reliable noninvasive methods to estimate gas exchange are necessary to guide clinical decisions to avoid frequent blood samples in children with pediatric acute respiratory distress syndrome (PARDS). We aimed to investigate the correlation and agreement between end-tidalP CO 2 ${P}_{{\mathrm{CO}}_{2}}$ measured immediately after a 3-s inspiratory-hold (PLAT CO2 ) by capnometry andP aCO 2 ${P}_{{\mathrm{aCO}}_{2}}$ measured by arterial blood gases (ABG) in PARDS. DESIGN Prospective cohort study. SETTING Seven-bed Pediatric Intensive Care Unit, Hospital El Carmen de Maipú, Chile. PATIENTS Thirteen mechanically ventilated patients aged ≤15 years old undergoing neuromuscular blockade as part of management for PARDS. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS All patients were in volume-controlled ventilation mode. The regular end-tidalP CO 2 ( P ETCO 2 ) ${P}_{{\mathrm{CO}}_{2}}({P}_{{\mathrm{ETCO}}_{2}})$ (without the inspiratory hold) was registered immediately after the ABG sample. An inspiratory-hold of 3 s was performed for lung mechanics measurements, recordingP ETCO 2 ${P}_{{\mathrm{ETCO}}_{2}}$ in the breath following the inspiratory-hold. (PLAT CO2 ). End-tidal alveolar dead space fraction (AVDSf) was calculated as[ ( P aCO 2 - P ETCO 2 ) / P aCO 2 ] $[({P}_{{\mathrm{aCO}}_{2}}\mbox{--}{P}_{{\mathrm{ETCO}}_{2}})/{P}_{{\mathrm{aCO}}_{2}}]$ and its surrogate (S)AVDSf as[ ( PLAT CO 2 - P ETCO 2 ) / PLAT CO 2 ] $[{(}_{\mathrm{PLAT}}{\mathrm{CO}}_{2}\mbox{--}{P}_{{\mathrm{ETCO}}_{2}}){/}_{\mathrm{PLAT}}{\mathrm{CO}}_{2}]$ . Measurements ofP aCO 2 ${P}_{{\mathrm{aCO}}_{2}}$ were considered the gold standard. We performed concordance correlation coefficient (ρc), Spearman's correlation (rho), and Bland-Altmann's analysis (mean difference ± SD [limits of agreement, LoA]). Eleven patients were included, with a median (interquartile range) age of 5 (2-11) months. Tidal volume was 5.8 (5.7-6.3) mL/kg, PEEP 8 (6-8), driving pressure 10 (8-11), and plateau pressure 17 (17-19) cm H2 O. Forty-one paired measurements were analyzed.P aCO 2 ${P}_{{\mathrm{aCO}}_{2}}$ was higher thanP ETCO 2 ${P}_{{\mathrm{ETCO}}_{2}}$ (52 mmHg [48-54] vs. 42 mmHg [38-45], p < 0.01), and there were no significant differences with PLAT CO2 (50 mmHg [46-55], p > 0.99). The concordance correlation coefficient and Spearman's correlation betweenP aCO 2 ${P}_{{\mathrm{aCO}}_{2}}$ and PLAT CO2 were robust (ρc = 0.80 [95% confidence interval [CI]: 0.67-0.90]; and rho = 0.80, p < 0.001.), and forP ETCO 2 ${P}_{{\mathrm{ETCO}}_{2}}$ were weak and strong (ρc = 0.27 [95% CI: 0.15-0.38]; and rho = 0.63, p < 0.01). The bias between PLAT CO2 andP aCO 2 ${P}_{{\mathrm{aCO}}_{2}}$ was -0.4 ± 3.5 mmHg (LoA -7.2 to 6.4), and betweenP ETCO 2 ${P}_{{\mathrm{ETCO}}_{2}}$ andP aCO 2 ${P}_{{\mathrm{aCO}}_{2}}$ was -8.5 ± 4.1 mmHg (LoA -16.6 to -0.5). The correlation between AVDSf and (S)AVDSf was moderate (rho = 0.55, p < 0.01), and the mean difference was -0.5 ± 5.6% (LoA -11.5 to 10.5). CONCLUSION This pilot study showed the feasibility of measuring end-tidal CO2 after a 3-s end-inspiratory breath hole in pediatric patients undergoing controlled ventilation for ARDS. Encouraging preliminary results warrant further study of this technique.
Collapse
Affiliation(s)
- Pablo Cruces
- Unidad de Paciente Crítico Pediátrico, Departamento de Pediatría, Hospital El Carmen de Maipú, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Red Colaborativa Pediátrica de Latinoamérica (LARed Network), Colombia
| | - Diego Moreno
- Unidad de Paciente Crítico Pediátrico, Departamento de Pediatría, Hospital El Carmen de Maipú, Santiago, Chile
| | - Sonia Reveco
- Unidad de Paciente Crítico Pediátrico, Departamento de Pediatría, Hospital El Carmen de Maipú, Santiago, Chile
| | - Marjorie Améstica
- Unidad de Paciente Crítico Pediátrico, Departamento de Pediatría, Hospital El Carmen de Maipú, Santiago, Chile
| | - Patricio Araneda
- Unidad de Paciente Crítico Pediátrico, Departamento de Pediatría, Hospital El Carmen de Maipú, Santiago, Chile
| | - Yenny Ramirez
- Unidad de Paciente Crítico Pediátrico, Departamento de Pediatría, Hospital El Carmen de Maipú, Santiago, Chile
| | - Pablo Vásquez-Hoyos
- Departamento de Pediatría, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia
- Departamento de Pediatría, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Franco Díaz
- Unidad de Paciente Crítico Pediátrico, Departamento de Pediatría, Hospital El Carmen de Maipú, Santiago, Chile
- Red Colaborativa Pediátrica de Latinoamérica (LARed Network), Colombia
- Unidad de Investigación y epidemiología clínica, Escuela de Medicina, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
10
|
Cruces P, Moreno D, Reveco S, Ramirez Y, Díaz F. Plateau Pressure and Driving Pressure in Volume- and Pressure-Controlled Ventilation: Comparison of Frictional and Viscoelastic Resistive Components in Pediatric Acute Respiratory Distress Syndrome. Pediatr Crit Care Med 2023; 24:750-759. [PMID: 37260322 DOI: 10.1097/pcc.0000000000003291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
OBJECTIVES To examine frictional, viscoelastic, and elastic resistive components, as well threshold pressures, during volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) in pediatric patients with acute respiratory distress syndrome (ARDS). DESIGN Prospective cohort study. SETTING Seven-bed PICU, Hospital El Carmen de Maipú, Chile. PATIENTS Eighteen mechanically ventilated patients less than or equal to 15 years old undergoing neuromuscular blockade as part of management for ARDS. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS All patients were in VCV mode during measurement of pulmonary mechanics, including: the first pressure drop (P1) upon reaching zero flow during the inspiratory hold, peak inspiratory pressure (PIP), plateau pressure (P PLAT ), and total positive end-expiratory pressure (tPEEP). We calculated the components of the working pressure, as defined by the following: frictional resistive = PIP-P1; viscoelastic resistive = P1-P PLAT ; purely elastic = driving pressure (ΔP) = P PLAT -tPEEP; and threshold = intrinsic PEEP. The procedures and calculations were repeated on PCV, keeping the same tidal volume and inspiratory time. Measurements in VCV were considered the gold standard. We performed Spearman correlation and Bland-Altman analysis. The median (interquartile range [IQR]) for patient age was 5 months (2-17 mo). Tidal volume was 5.7 mL/kg (5.3-6.1 mL/kg), PIP cm H 2 O 26 (23-27 cm H 2 O), P1 23 cm H 2 O (21-26 cm H 2 O), P PLAT 19 cm H 2 O (17-22 cm H 2 O), tPEEP 9 cm H 2 O (8-9 cm H 2 O), and ΔP 11 cm H 2 O (9-13 cm H 2 O) in VCV mode at baseline. There was a robust correlation (rho > 0.8) and agreement between frictional resistive, elastic, and threshold components of working pressure in both modes but not for the viscoelastic resistive component. The purely frictional resistive component was negligible. Median peak inspiratory flow with decelerating-flow was 21 (IQR, 15-26) and squared-shaped flow was 7 L/min (IQR, 6-10 L/min) ( p < 0.001). CONCLUSIONS P PLAT , ΔP, and tPEEP can guide clinical decisions independent of the ventilatory mode. The modest purely frictional resistive component emphasizes the relevance of maintaining the same safety limits, regardless of the selected ventilatory mode. Therefore, peak inspiratory flow should be studied as a mechanism of ventilator-induced lung injury in pediatric ARDS.
Collapse
Affiliation(s)
- Pablo Cruces
- Departamento de Pediatría, Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile
- Centro de Investigación de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Red Colaborativa Pediátrica de Latinoamérica (LARed Network), Montevideo, Uruguay
- Unidad de Investigación y Epidemiología Clínica, Escuela de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Diego Moreno
- Departamento de Pediatría, Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile
| | - Sonia Reveco
- Departamento de Pediatría, Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile
| | - Yenny Ramirez
- Departamento de Pediatría, Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile
| | - Franco Díaz
- Departamento de Pediatría, Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile
- Red Colaborativa Pediátrica de Latinoamérica (LARed Network), Montevideo, Uruguay
- Unidad de Investigación y Epidemiología Clínica, Escuela de Medicina, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
11
|
Webb L, Burton L, Manchikalapati A, Prabhakaran P, Loberger JM, Richter RP. Cardiac dysfunction in severe pediatric acute respiratory distress syndrome: the right ventricle in search of the right therapy. Front Med (Lausanne) 2023; 10:1216538. [PMID: 37654664 PMCID: PMC10466806 DOI: 10.3389/fmed.2023.1216538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Severe acute respiratory distress syndrome in children, or PARDS, carries a high risk of morbidity and mortality that is not fully explained by PARDS severity alone. Right ventricular (RV) dysfunction can be an insidious and often under-recognized complication of severe PARDS that may contribute to its untoward outcomes. Indeed, recent evidence suggest significantly worse outcomes in children who develop RV failure in their course of PARDS. However, in this narrative review, we highlight the dearth of evidence regarding the incidence of and risk factors for PARDS-associated RV dysfunction. While we wish to draw attention to the absence of available evidence that would inform recommendations around surveillance and treatment of RV dysfunction during severe PARDS, we leverage available evidence to glean insights into potentially helpful surveillance strategies and therapeutic approaches.
Collapse
Affiliation(s)
- Lece Webb
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luke Burton
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ananya Manchikalapati
- Division of Pediatric Critical Care, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Priya Prabhakaran
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeremy M. Loberger
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert P. Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Tasker RC. Editor's Choice Articles for July. Pediatr Crit Care Med 2023; 24:537-540. [PMID: 37409895 DOI: 10.1097/pcc.0000000000003302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
This is another excellent issue of Pediatric Critical Care Medicine (PCCM) for July; congratulations to our authors and many thanks to all reviewers. This month, my Editor's Choice articles cover three topics: clinical pathophysiology in pediatric patients supported using extracorporeal membrane oxygenation (ECMO); unplanned extubation of endotracheal tubes in pediatric cardiac ICU (CICU) patients; and sepsis biomarkers in the low-middle income (LMIC) resource setting. The PCCM Connections for Readers focuses on a novel pediatric theme in lung mechanics physiology, i.e., mechanical power in pediatric acute respiratory distress syndrome (PARDS).
Collapse
Affiliation(s)
- Robert C Tasker
- orcid.org/0000-0003-3647-8113
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Selwyn College, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
13
|
Invasive Ventilatory Support in Patients With Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2023; 24:S61-S75. [PMID: 36661436 DOI: 10.1097/pcc.0000000000003159] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To provide evidence for the Second Pediatric Acute Lung Injury Consensus Conference updated recommendations and consensus statements for clinical practice and future research on invasive mechanical ventilation support of patients with pediatric acute respiratory distress syndrome (PARDS). DATA SOURCES MEDLINE (Ovid), Embase (Elsevier), and CINAHL Complete (EBSCOhost). STUDY SELECTION We included clinical studies of critically ill patients undergoing invasive mechanical ventilation for PARDS, January 2013 to April 2022. In addition, meta-analyses and systematic reviews focused on the adult acute respiratory distress syndrome population were included to explore new relevant concepts (e.g., mechanical power, driving pressure, etc.) still underrepresented in the contemporary pediatric literature. DATA EXTRACTION Title/abstract review, full text review, and data extraction using a standardized data collection form. DATA SYNTHESIS The Grading of Recommendations Assessment, Development and Evaluation approach was used to identify and summarize relevant evidence and develop recommendations, good practice statements and research statements. We identified 26 pediatric studies for inclusion and 36 meta-analyses or systematic reviews in adults. We generated 12 recommendations, two research statements, and five good practice statements related to modes of ventilation, tidal volume, ventilation pressures, lung-protective ventilation bundles, driving pressure, mechanical power, recruitment maneuvers, prone positioning, and high-frequency ventilation. Only one recommendation, related to use of positive end-expiratory pressure, is classified as strong, with moderate certainty of evidence. CONCLUSIONS Limited pediatric data exist to make definitive recommendations for the management of invasive mechanical ventilation for patients with PARDS. Ongoing research is needed to better understand how to guide best practices and improve outcomes for patients with PARDS requiring invasive mechanical ventilation.
Collapse
|
14
|
Iyer N, Khemani R, Emeriaud G, López-Fernández YM, Korang SK, Steffen KM, Barbaro RP, Bembea MM. Methodology of the Second Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2023; 24:S76-S86. [PMID: 36661437 PMCID: PMC11069413 DOI: 10.1097/pcc.0000000000003160] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES This article describes the methodology used for The Second Pediatric Acute Lung Injury Consensus Conference (PALICC-2). The PALLIC-2 sought to develop evidence-based clinical recommendations and when evidence was lacking, expert-based consensus statements and research priorities for the diagnosis and management of pediatric acute respiratory distress syndrome (PARDS). DATA SOURCES Electronic searches were conducted using PubMed, Embase, and Cochrane Library (CENTRAL) databases from 2012 to March 2022. STUDY SELECTION Content was divided into 11 sections related to PARDS, with abstract and full text screening followed by data extraction for studies which met inclusion with no exclusion criteria. DATA EXTRACTION We used a standardized data extraction form to construct evidence tables, grade the evidence, and formulate recommendations or statements using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. DATA SYNTHESIS This consensus conference was comprised of a multidisciplinary group of international experts in pediatric critical care, pulmonology, respiratory care, and implementation science which followed standards set by the Institute of Medicine, using the GRADE system and Research And Development/University of California, Los Angeles appropriateness method, modeled after PALICC 2015. The panel of 52 content and four methodology experts had several web-based meetings over the course of 2 years. We conducted seven systematic reviews and four scoping reviews to cover the 11 topic areas. Dissemination was via primary publication listing all statements and separate supplemental publications for each subtopic that include supporting arguments for each recommendation and statement. CONCLUSIONS A consensus conference of experts from around the world developed recommendations and consensus statements for the definition and management of PARDS and identified evidence gaps which need further research.
Collapse
Affiliation(s)
- Narayan Iyer
- Fetal and Neonatal Institute, Division of Neonatology, Children’s Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Robinder Khemani
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital Los Angeles. Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Guillaume Emeriaud
- Department of Pediatrics, Sainte-Justine Hospital, Université de Montréal, Montreal, QC, Canada
| | - Yolanda M. López-Fernández
- Pediatric Intensive Care Unit. Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Bizkaia, Spain
| | - Steven Kwasi Korang
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital Los Angeles. Keck School of Medicine, University of Southern California, Los Angeles, CA
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ryan P. Barbaro
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Melania M. Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|