1
|
Libiseller-Egger J, Phelan JE, Attia ZI, Benavente ED, Campino S, Friedman PA, Lopez-Jimenez F, Leon DA, Clark TG. Deep learning-derived cardiovascular age shares a genetic basis with other cardiac phenotypes. Sci Rep 2022; 12:22625. [PMID: 36587059 PMCID: PMC9805465 DOI: 10.1038/s41598-022-27254-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Artificial intelligence (AI)-based approaches can now use electrocardiograms (ECGs) to provide expert-level performance in detecting heart abnormalities and diagnosing disease. Additionally, patient age predicted from ECGs by AI models has shown great potential as a biomarker for cardiovascular age, where recent work has found its deviation from chronological age ("delta age") to be associated with mortality and co-morbidities. However, despite being crucial for understanding underlying individual risk, the genetic underpinning of delta age is unknown. In this work we performed a genome-wide association study using UK Biobank data (n=34,432) and identified eight loci associated with delta age ([Formula: see text]), including genes linked to cardiovascular disease (CVD) (e.g. SCN5A) and (heart) muscle development (e.g. TTN). Our results indicate that the genetic basis of cardiovascular ageing is predominantly determined by genes directly involved with the cardiovascular system rather than those connected to more general mechanisms of ageing. Our insights inform the epidemiology of CVD, with implications for preventative and precision medicine.
Collapse
Affiliation(s)
- Julian Libiseller-Egger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Zachi I Attia
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - David A Leon
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Department of Community Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
2
|
Peng M, Deng F, Qi D, Hu Z, Zhang L. The Hyperbilirubinemia and Potential Predictors Influence on Long-Term Outcomes in Sepsis: A Population-Based Propensity Score-Matched Study. Front Med (Lausanne) 2021; 8:713917. [PMID: 34604255 PMCID: PMC8484885 DOI: 10.3389/fmed.2021.713917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 01/20/2023] Open
Abstract
Objective: Although hyperbilirubinemia has been associated with mortality in patients who are critically ill, yet no clinical studies dissect the effect of dynamic change of hyperbilirubinemia on long-term septic prognosis. The study aims to investigate the specific stages of hyperbilirubinemia and potential risk factors on long-term outcomes in patients with sepsis. Methods: In this retrospective observational cohort study, patients with sepsis, without previous chronic liver diseases, were identified from the Medical Information Mart for the Intensive Care III MIMIC-III database. We used propensity scores (PS) to adjust the baseline differences in septic patients with hyperbilirubinemia or not. The multivariate Cox was employed to investigate the predictors that influence a clinical outcome in sepsis. Results: Of 2,784 patients with sepsis, hyperbilirubinemia occurred in 544 patients (19.5%). After PS matching, a survival curve demonstrated that patients with sepsis with the new onset of total bilirubin (TBIL) levels more than or equal to 5 mg/dl survived at significantly lower rates than those with TBIL levels <5 mg/dl. Multivariate Cox hazard analysis showed that patients with TBIL at more than or equal to 5 mg/dl during sepsis exhibit 1.608 times (95% CI: 1.228-2.106) higher risk of 1-year mortality than those with TBIL levels <5 mg/dl. Also, age above 65 years old, preexisting malignancy, a respiratory rate above 30 beats/min at admission, serum parameters levels within 24-h admission, containing international normalized ratio (INR) above 1.5, platelet <50*10∧9/L, lactate above 4 mmol/L, and bicarbonate <22 or above 29 mmol/L are the independent risk factors for long-term mortality of patients with sepsis. Conclusions: After PS matching, serum TBIL levels at more than or equal to 5 mg/dl during hospitality are associated with increased long-term mortality for patients with sepsis. This study may provide clinicians with some cutoff values for early intervention, which may improve the prognosis of patients with sepsis.
Collapse
Affiliation(s)
- Milin Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fuxing Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Desheng Qi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| | - Zhonghua Hu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Institute of Molecular Precision Medicine, Central South University, Changsha, China
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Kang W, Cheng Y, Wang X, Zhou F, Zhou C, Wang L, Zhong L. Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review). Mol Med Rep 2020; 21:2311-2320. [PMID: 32236630 PMCID: PMC7185085 DOI: 10.3892/mmr.2020.11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 03/04/2020] [Indexed: 11/10/2022] Open
Abstract
Neuregulin-1 (NRG-1) is a type of epidermal growth factor‑like protein primarily distributed in the nervous and cardiovascular systems. When sepsis occurs, the incidence of cardiac dysfunction in myocardial injury is high and the mechanism is complicated. It directly causes myocardial cell damage, whilst also causing damage to the structure and function of myocardial cells, weakening of endothelial function and coronary microcirculation, autonomic dysfunction, and activation of myocardial inhibitory factors. Studies investigating NRG‑1 have been performed using a variety of methods, including in vitro models, and animal and human clinical trials; however, the results are not consistent. NRG‑1/ErbBs signaling is involved in a variety of cardiac processes, from the development of the myocardium and cardiac conduction systems to the promotion of angiogenesis in cardiomyocytes, and in cardio‑protective effects during injury. NRG‑1 may exert a multifaceted cardiovascular protective effect by activating NRG‑1/ErbBs signaling and regulating multiple downstream signaling pathways, thereby improving myocardial cell dysfunction in sepsis, and protecting cardiomyocytes and endothelial cells. It may alleviate myocardial microvascular endothelial injury in sepsis; its anti‑inflammatory effects inhibit the production of myocardial inhibitory factors in sepsis, improve myocardial ischemia, decrease oxidative stress, regulate the disruption to the homeostasis of the autonomic nervous system, improve diastolic function, and offer protective effects at multiple target sites. As the mechanism of action of NRG‑1 intersects with the pathways involved in the pathogenesis of sepsis, it may be applicable as a treatment strategy to numerous pathological processes in sepsis.
Collapse
Affiliation(s)
- Wen Kang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chenliang Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Liang Zhong
- Department of Anesthesiology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
4
|
Long G, Yang C. A six‑gene support vector machine classifier contributes to the diagnosis of pediatric septic shock. Mol Med Rep 2020; 21:1561-1571. [PMID: 32016447 PMCID: PMC7003034 DOI: 10.3892/mmr.2020.10959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/12/2019] [Indexed: 11/06/2022] Open
Abstract
Septic shock is induced by an uncontrolled inflammatory immune response to pathogens and the survival rate of patients with pediatric septic shock (PSS) is particularly low, with a mortality rate of 25‑50%. The present study explored the mechanisms of PSS using four microarray datasets (GSE26378, GSE26440, GSE13904 and GSE4607) that were obtained from the Gene Expression Omnibus database. Based on the MetaDE package, the consistently differentially expressed genes (DEGs) in the four datasets were screened. Using the WGCNA package, the disease‑associated modules and genes were identified. Subsequently, the optimal feature genes were further selected using the caret package. Finally, a support vector machine (SVM) classifier based on the optimal feature genes was built using the e1071 package. Initially, there were 2,699 consistent DEGs across the four datasets. From the 10 significantly stable modules across the datasets, four stable modules (including the magenta, purple, turquoise and yellow modules), in which the consistent DEGs were significantly enriched (P<0.05), were further screened. Subsequently, six optimal feature genes (including cysteine rich transmembrane module containing 1, S100 calcium binding protein A9, solute carrier family 2 member 14, stomatin, uridine phosphorylase 1 and utrophin) were selected from the genes in the four stable modules. Additionally, an effective SVM classifier was constructed based on the six optimal genes. The SVM classifier based on the six optimal genes has the potential to be applied for PSS diagnosis. This may improve the accuracy of early PSS diagnosis and suggest possible molecular targets for interventions.
Collapse
Affiliation(s)
- Guoli Long
- Department of The Intensive Care Unit, Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610101, P.R. China
| | - Chen Yang
- Department of The Intensive Care Unit, Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610101, P.R. China
| |
Collapse
|
5
|
Lautz AJ, Zingarelli B. Age-Dependent Myocardial Dysfunction in Critically Ill Patients: Role of Mitochondrial Dysfunction. Int J Mol Sci 2019; 20:ijms20143523. [PMID: 31323783 PMCID: PMC6679204 DOI: 10.3390/ijms20143523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Myocardial dysfunction is common in septic shock and post-cardiac arrest but manifests differently in pediatric and adult patients. By conventional echocardiographic parameters, biventricular systolic dysfunction is more prevalent in children with septic shock, though strain imaging reveals that myocardial injury may be more common in adults than previously thought. In contrast, diastolic dysfunction in general and post-arrest myocardial systolic dysfunction appear to be more widespread in the adult population. A growing body of evidence suggests that mitochondrial dysfunction mediates myocardial depression in critical illness; alterations in mitochondrial electron transport system function, bioenergetic production, oxidative and nitrosative stress, uncoupling, mitochondrial permeability transition, fusion, fission, biogenesis, and autophagy all may play key pathophysiologic roles. In this review we summarize the epidemiologic and clinical phenotypes of myocardial dysfunction in septic shock and post-cardiac arrest and the multifaceted manifestations of mitochondrial injury in these disease processes. Since neonatal and pediatric-specific data for mitochondrial dysfunction remain sparse, conclusive age-dependent differences are not clear; instead, we highlight what evidence exists and identify gaps in knowledge to guide future research. Finally, since focal ischemic injury (with or without reperfusion) leading to myocardial infarction is predominantly an atherosclerotic disease of the elderly, this review focuses specifically on septic shock and global ischemia-reperfusion injury occurring after resuscitation from cardiac arrest.
Collapse
Affiliation(s)
- Andrew J Lautz
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
6
|
Guillon A, Preau S, Aboab J, Azabou E, Jung B, Silva S, Textoris J, Uhel F, Vodovar D, Zafrani L, de Prost N, Radermacher P. Preclinical septic shock research: why we need an animal ICU. Ann Intensive Care 2019; 9:66. [PMID: 31183570 PMCID: PMC6557957 DOI: 10.1186/s13613-019-0543-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022] Open
Abstract
Animal experiments are widely used in preclinical medical research with the goal of disease modeling and exploration of novel therapeutic approaches. In the context of sepsis and septic shock, the translation into clinical practice has been disappointing. Classical animal models of septic shock usually involve one-sex-one-age animal models, mostly in mice or rats, contrasting with the heterogeneous population of septic shock patients. Many other factors limit the reliability of preclinical models and may contribute to preclinical research failure in critical care, including the host specificity of several pathogens, the fact that laboratory animals are raised in pathogen-free facilities and that organ support techniques are either absent or minimal. Advanced animal models have been developed with the aim of improving the clinical translatability of experimental findings. So-called animal ICUs refer to the preclinical investigation of adult or even aged animals of either sex, using—in case of rats and mice—miniaturized equipment allowing for reproducing an ICU environment at a small animal scale and integrating chronic comorbidities to more closely reflect the clinical conditions studied. Strength and limitations of preclinical animal models designed to decipher the mechanisms involved in septic cardiomyopathy are discussed. This article reviews the current status and the challenges of setting up an animal ICU.
Collapse
Affiliation(s)
- Antoine Guillon
- Service de Médecine Intensive - Réanimation, CHRU de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, INSERM, Faculté de Médecine, Université de Tours, Tours, France
| | - Sebastien Preau
- Service de Médecine Intensive, Hôpital Salengro, CHU Lille, Lille, France.,Lille Inflammation Research International Center (LIRIC), U 995, School of Medicine, INSERM, Univ. Lille, Lille, France
| | - Jérôme Aboab
- Service de Réanimation, Hôpital Delafontaine, Saint-Denis, France
| | - Eric Azabou
- Service de Réanimation, Assistance Publique-Hôpitaux de Paris, Hôpital Raymond Poincaré, 92380, Garches, France
| | - Boris Jung
- Service de Réanimation, CHU de Montpellier, Montpellier, France
| | - Stein Silva
- Service de Réanimation, CHU Purpan, 31300, Toulouse, France
| | - Julien Textoris
- Département d'Anesthésie-Réanimation, hôpital Édouard-Herriot, Hospices Civils de Lyon, CHU de Lyon, 69437, Lyon, France.,EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon - bioMérieux, Hôpital Edouard Herriot, 69437, Lyon, France
| | - Fabrice Uhel
- Service de Réanimation Médicale et Maladies Infectieuses, CHU de Rennes, Hôpital Pontchaillou, Rennes, France
| | - Dominique Vodovar
- Centre Antipoison et de Toxicovigilance de Paris - Fédération de Toxicologie, Hôpital Fernand-Widal, Assistance Publique-Hôpitaux de Paris, Paris, France.,UMRS 1144, Faculté de Pharmacie, INSERM, Paris, France
| | - Lara Zafrani
- Service de Réanimation Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Nicolas de Prost
- Service de Réanimation Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France.
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Ulm, Germany
| | | |
Collapse
|
7
|
Upperman JS, Lacroix J, Curley MAQ, Checchia PA, Lee DW, Cooke KR, Tamburro RF. Specific Etiologies Associated With the Multiple Organ Dysfunction Syndrome in Children: Part 1. Pediatr Crit Care Med 2017; 18:S50-S57. [PMID: 28248834 PMCID: PMC5333126 DOI: 10.1097/pcc.0000000000001048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To describe a number of the conditions associated with multiple organ dysfunction syndrome presented as part of the Eunice Kennedy Shriver National Institute of Child Health and Human Development multiple organ dysfunction syndrome workshop (March 26-27, 2015). DATA SOURCES Literature review, research data, and expert opinion. STUDY SELECTION Not applicable. DATA EXTRACTION Moderated by an expert from the field, issues relevant to the association of multiple organ dysfunction syndrome with a variety of conditions were presented, discussed, and debated with a focus on identifying knowledge gaps and research priorities. DATA SYNTHESIS Summary of presentations and discussion supported and supplemented by the relevant literature. CONCLUSIONS There is a wide range of medical conditions associated with multiple organ dysfunction syndrome in children. Traditionally, sepsis and trauma are the two conditions most commonly associated with multiple organ dysfunction syndrome both in children and adults. However, there are a number of other pathophysiologic processes that may result in multiple organ dysfunction syndrome. In this article, we discuss conditions such as cancer, congenital heart disease, and acute respiratory distress syndrome. In addition, the relationship between multiple organ dysfunction syndrome and clinical therapies such as hematopoietic stem cell transplantation and cardiopulmonary bypass is also considered. The purpose of this article is to describe the association of multiple organ dysfunction syndrome with a variety of conditions in an attempt to identify similarities, differences, and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jeffrey S Upperman
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA. 2Division of Pediatric Critical Care Medicine, Department of Pediatrics, Sainte-Justine Hospital, Université de Montréal, Montreal, QC, Canada. 3School of Nursing, Departments of Anesthesia and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA. 4Sections of Critical Care and Cardiology, Department of Pediatrics, Baylor College of Medicine Texas Children's Hospital, Houston, TX. 5Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Virginia, Charlottesville, VA. 6Department of Oncology, Pediatric Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, The Johns Hopkins University School of Medicine, Baltimore, MD. 7Pediatric Trauma and Critical Illness Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD
| | | | | | | | | | | | | |
Collapse
|
8
|
Myocardial depressant effects of interleukin 6 in meningococcal sepsis are regulated by p38 mitogen-activated protein kinase. Crit Care Med 2011; 39:1692-711. [PMID: 21494108 DOI: 10.1097/ccm.0b013e3182186d27] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Myocardial failure, leading to inotrope-unresponsive shock, is the predominant cause of death in meningococcal and other forms of septic shock. Proinflammatory cytokines released in septic shock are known to have myocardial depressant effects. We previously showed that interleukin 6 is a major myocardial depressant factor in children with meningococcal septicemia. In the current study, we aimed to investigate the mechanisms by which interleukin 6 induces myocardial failure in meningococcal sepsis and to identify potential novel therapeutic targets. DESIGN Laboratory-based study. SETTING University hospital and laboratories. PATIENTS Children with a clinical diagnosis of meningococcal septic shock. METHODS We studied interleukin 6-induced signaling events, both in vitro using isolated rat ventricular cardiac myocytes as a model of myocardial contractility and in whole blood from children with meningococcal sepsis. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We demonstrated involvement of Janus kinase 2, phosphatidylinositol 3-kinase, Akt, and p38 mitogen-activated protein kinase in interleukin 6-induced negative inotropy in isolated cardiac myocytes. Inhibition of p38 mitogen-activated protein kinase not only reversed interleukin 6-induced myocardial depression in both rat and human myocytes, but restored inotrope responsiveness. Cardiomyocytes transduced with dominant-negative p38 mitogen-activated protein kinase showed no interleukin 6-induced myocardial depression. To investigate p38 mitogen-activated protein kinase in vivo, we profiled global RNA expression patterns in peripheral blood of children with meningococcal septicemia. Transcripts for genes mapping to the p38 mitogen-activated protein kinase pathway showed significantly altered levels of abundance with a high proportion of genes of this pathway affected. CONCLUSIONS Our findings demonstrate an integral role of the p38 mitogen-activated protein kinase pathway in interleukin 6-mediated cardiac contractile dysfunction and inotrope insensitivity. Dysregulation of the p38 mitogen-activated protein kinase pathway in meningococcal septicemia suggests that this pathway may be an important target for novel therapies to reverse myocardial dysfunction in patients with meningococcal septic shock who are not responsive to inotropic support.
Collapse
|
9
|
Wynn JL, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Lin R, Shanley TP, Bigham MT, Banschbach S, Beckman E, Wong HR. The influence of developmental age on the early transcriptomic response of children with septic shock. Mol Med 2011; 17:1146-56. [PMID: 21738952 DOI: 10.2119/molmed.2011.00169] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/09/2011] [Indexed: 01/24/2023] Open
Abstract
Septic shock is a frequent and costly problem among patients in the pediatric intensive care unit (PICU) and is associated with high mortality and devastating survivor morbidity. Genome-wide expression patterns can provide molecular granularity of the host response and offer insight into why large variations in outcomes exist. We derived whole-blood genome-wide expression patterns within 24 h of PICU admission from children with septic shock. We compared the transcriptome between septic shock developmental-age groups defined as neonates (≤ 28 d, n = 17), infants (1 month to 1 year, n = 62), toddlers (2-5 years, n = 54) and school-age (≥ 6 years, n = 47) and age-matched controls. Direct intergroup comparisons demonstrated profound changes in neonates, relative to older children. Neonates with septic shock demonstrated reduced expression of genes representing key pathways of innate and adaptive immunity. In contrast to the largely upregulated transcriptome in all other groups, neonates exhibited a predominantly downregulated transcriptome when compared with controls. Neonates and school-age subjects had the most uniquely regulated genes relative to controls. Age-specific studies of the host response are necessary to identify developmentally relevant translational opportunities that may lead to improved sepsis outcomes.
Collapse
Affiliation(s)
- James L Wynn
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Werner JA, Schierding W, Dixon D, MacMillan S, Oppedal D, Muenzer J, Cobb JP, Checchia PA. Preliminary evidence for leukocyte transcriptional signatures for pediatric ventilator-associated pneumonia. J Intensive Care Med 2011; 27:362-9. [PMID: 21606059 DOI: 10.1177/0885066611406835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Ventilator-associated pneumonia (VAP) is a significant contributor to intensive care unit (ICU) morbidity and mortality and presents a significant diagnostic challenge. Our hypothesis was that blood RNA expression profiles can be used to track the response to VAP in children, using the same methods that proved informational in adults. DESIGN A pilot, nonrandomized, repeated measures case-control study of changes in the abundance of total RNA in buffy coat and clinical scores for VAP. SETTING A large, multispecialty university-based pediatric ICU and cardiac ICU. PATIENTS Seven children requiring intubation and mechanical ventilation. INTERVENTIONS Blood samples were drawn at time of enrollment and every 48 hours for a maximum of 11 samples (21 days). Patients ranged in age from 1 to 18 months (mean 8 months). All patients survived to the end of the study. Of the 7 patients studied, 4 developed VAP. MEASUREMENTS AND MAIN RESULTS Statistical analysis of the Affymetrix Human Genome Focus GeneChip signal was conducted on normalized expression values of 8793 probe sets using analysis of variance (ANOVA) with a false discovery rate of 0.10. The expression patterns of 48 genes appeared to discriminate between the 2 classes of ventilated children: those with and those without pneumonia. Gene expression network analysis revealed several gene ontologies of interest, including cell proliferation, differentiation, growth, and apoptosis, as well as genes not previously implicated in sepsis. CONCLUSIONS These preliminary data are the first in critically ill children supporting the hypothesis that there is a detectable VAP signal in gene expression profiles. Larger studies are needed to validate these preliminary findings and test the diagnostic value of longitudinal changes in leukocyte RNA signatures.
Collapse
Affiliation(s)
- Jason A Werner
- The Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
OBJECTIVE To propose ways in which clinical trials in intensive care can be improved. METHODS An international roundtable conference was convened focused on improvement in three broad areas: translation of new knowledge from bench to bedside; design and conduct of clinical trials; and clinical trial infrastructure and environment. RESULTS The roundtable recommendations were: improvement in clinical trials is a multistep process from better preclinical studies to better clinical trial methodology; new technologies should be used to improve models of critical illness; diseasomes and theragnostics will aid inpatient population selection and more appropriate targeting of interventions; broader study end points should include morbidity as well as mortality; more multicenter studies should be conducted by national and international networks or clinical trials groups; and better collaboration is needed with the industry. CONCLUSIONS There was broad agreement among the roundtable participants regarding a number of explicit opportunities for the improvement of clinical trials in critical care.
Collapse
|
12
|
Discovery science: uncovering new questions. Pediatr Crit Care Med 2008; 9:543-4. [PMID: 18779706 DOI: 10.1097/pcc.0b013e3181849f95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|