1
|
Reis J, Buguet A, Radomski M, Stella AB, Vásquez TC, Spencer PS. Neurological patients confronting climate change: A potential role for the glymphatic system and sleep. J Neurol Sci 2024; 458:122900. [PMID: 38310733 DOI: 10.1016/j.jns.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
Interest in the health consequences of climate change (global warming, heatwaves) has increased in the neurological community. This review addresses the impact of elevated ambient temperatures and heatwaves on patients with neurological and mental health disorders, including multiple sclerosis, synucleinopathies, dementia, epilepsies, mental health, and stroke. Patients with such conditions are highly vulnerable during heatwaves because of functional disorders affecting sleep, thermoregulation, autonomic system reactivity, mood, and cognitive ability. Several medications may also increase the risk of heatstroke. Special attention is devoted to the involvement of common underlying mechanisms, such as sleep and the glymphatic system. Disease prevention and patient care during heatwaves are major issues for caregivers. Beyond the usual recommendations for individuals, we favor artificially induced acclimation to heat, which provides preventive benefits with proven efficacy for healthy adults.
Collapse
Affiliation(s)
- Jacques Reis
- Department of Neurology, University Hospital of Strasbourg, 67000 Strasbourg, France; Association RISE, 3 rue du Loir, 67205 Oberhausbergen, France.
| | - Alain Buguet
- Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, 69622 Villeurbanne, France; 21 rue de Champfranc, 38630 Les Avenières Veyrins-Thuellin, France
| | - Manny Radomski
- Emeritus at the University of Toronto, Apt n° 2501, 2010 Islington Avenue, Toronto, ON M9P3S8, Canada
| | - Alex Buoite Stella
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Teresa Corona Vásquez
- División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico; Clinical Neurodegenerative Diseases Laboratory, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
2
|
Verma V, Lange F, Bainbridge A, Harvey-Jones K, Robertson NJ, Tachtsidis I, Mitra S. Brain temperature monitoring in newborn infants: Current methodologies and prospects. Front Pediatr 2022; 10:1008539. [PMID: 36268041 PMCID: PMC9577084 DOI: 10.3389/fped.2022.1008539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/15/2022] [Indexed: 02/02/2023] Open
Abstract
Brain tissue temperature is a dynamic balance between heat generation from metabolism, passive loss of energy to the environment, and thermoregulatory processes such as perfusion. Perinatal brain injuries, particularly neonatal encephalopathy, and seizures, have a significant impact on the metabolic and haemodynamic state of the developing brain, and thereby likely induce changes in brain temperature. In healthy newborn brains, brain temperature is higher than the core temperature. Magnetic resonance spectroscopy (MRS) has been used as a viable, non-invasive tool to measure temperature in the newborn brain with a reported accuracy of up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This measurement is based on the separation of chemical shifts between the temperature-sensitive water peaks and temperature-insensitive singlet metabolite peaks. MRS thermometry requires transport to an MRI scanner and a lengthy single-point measurement. Optical monitoring, using near infrared spectroscopy (NIRS), offers an alternative which overcomes this limitation in its ability to monitor newborn brain tissue temperature continuously at the cot side in real-time. Near infrared spectroscopy uses linear temperature-dependent changes in water absorption spectra in the near infrared range to estimate the tissue temperature. This review focuses on the currently available methodologies and their viability for accurate measurement, the potential benefits of monitoring newborn brain temperature in the neonatal intensive care unit, and the important challenges that still need to be addressed.
Collapse
Affiliation(s)
- Vinita Verma
- Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics and Engineering, University College London Hospital, London, United Kingdom
| | - Kelly Harvey-Jones
- Institute for Women's Health, University College London, London, United Kingdom
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
3
|
Prendergast E, Allen KY, Mills MG, Moran T, Harris ZL, Malakooti M, Smith CM, Wainwright MS, McCarthy-Kowols M. Targeted Temperature Management Protocol in a Pediatric Intensive Care Unit: A Quality Improvement Project. Crit Care Nurse 2021; 41:41-50. [PMID: 34595494 DOI: 10.4037/ccn2021554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND In patients with acute neurological injury, abrupt temperature change exacerbates increased intracranial pressures and negatively affects perfusion pressure and cerebral blood flow. Critical care nurses must provide coordinated and effective interventions to maintain normothermia without precipitating shivering immediately after acute neurological injury in pediatric patients. OBJECTIVE To improve hyperthermia management in a 40-bed pediatric intensive care unit, an interdisciplinary pediatric critical care team developed, implemented, and evaluated a targeted temperature management protocol. METHODS The project was guided by the organization's plan-do-study-act quality improvement process. Quality improvement was assessed retrospectively using electronic medical records of patients meeting eligibility criteria. Samples of pediatric patients who received temperature interventions were compared before and after protocol implementation. The protocol included environmental, pharmacological, and body surface cooling device interventions, as well as use of a bedside shivering assessment scale and stepwise interventions to prevent and control shivering. RESULTS Before implementation of the targeted temperature management protocol, 64% of patients had documented temperatures higher than 37.5 °C, and body surface cooling devices were used in 10% of patients. After protocol implementation, more than 80% of patients had documented temperatures higher than 37.5 °C, and body surface cooling devices were used in 62% of patients. Four patients (6%) before and 5 patients (31%) after protocol implementation were treated with body surface cooling without requiring use of neuromuscular blockade. CONCLUSIONS Creation and implementation of a targeted temperature management protocol increased nurses' documented use of body surface cooling to manage hyperthermia in pediatric intensive care unit patients with acute neurological injury.
Collapse
Affiliation(s)
- Erica Prendergast
- Erica Prendergast is a neurocritical care nurse practitioner, Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Kiona Y Allen
- Kiona Y. Allen is Medical Director of the Regenstein Cardiac Care Unit and Associate Director of the NICU-Cardiac Neurodevelopmental Program, Ann & Robert H. Lurie Children's Hospital of Chicago, and an assistant professor, Department of Pediatrics, Division of Cardiology and Division of Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michele Grimason Mills
- Michele Grimason Mills is a neurocritical care nurse practitioner, Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Ann & Robert H. Lurie Children's Hospital of Chicago
| | - Thomas Moran
- Thomas Moran is Manager of Clinical Pharmacy Services, Ann & Robert H. Lurie Children's Hospital of Chicago
| | - Z Leah Harris
- Z. Leah Harris is Chairman of Pediatrics at Dell Medical School, University of Texas at Austin, and Director of the Dell Pediatric Research Institute and Physician-in-Chief at Dell Children's Medical Center, Austin, Texas
| | - Marcelo Malakooti
- Marcelo Malakooti is Associate Chief Medical Officer and Medical Director of the pediatric intensive care unit, Ann & Robert H. Lurie Children's Hospital of Chicago, and an assistant professor, Department of Pediatrics, Division of Critical Care Medicine, Northwestern University Feinberg School of Medicine
| | - Craig M Smith
- Craig Smith is an assistant professor of pediatrics and neurology, Northwestern University Feinberg School of Medicine, and faculty for pediatric critical care medicine and neurocritical care, Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Ann & Robert H. Lurie Children's Hospital of Chicago
| | - Mark S Wainwright
- Mark S. Wainwright is Division Head of Pediatric Neurology, University of Washington, Seattle
| | - Maureen McCarthy-Kowols
- Maureen McCarthy-Kowols is a former nursing professional development practitioner/clinical educator, Ann & Robert H. Lurie Children's Hospital of Chicago
| |
Collapse
|
4
|
Kim DK, Lee DH, Lee BK, Cho YS, Ryu SJ, Jung YH, Lee JH, Han JH. Performance of Modified Early Warning Score (MEWS) for Predicting In-Hospital Mortality in Traumatic Brain Injury Patients. J Clin Med 2021; 10:jcm10091915. [PMID: 33925023 PMCID: PMC8124302 DOI: 10.3390/jcm10091915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to analyze and compare the prognostic performances of the Revised Trauma Score (RTS), Injury Severity Score (ISS), Shock Index (SI), and Modified Early Warning Score (MEWS) for in-hospital mortality in patients with traumatic brain injury (TBI). This retrospective observational study included severe trauma patients with TBI who visited the emergency department between January 2018 and December 2020. TBI was considered when the Abbreviated Injury Scale was 3 or higher. The primary outcome was in-hospital mortality. In total, 1108 patients were included, and the in-hospital mortality was 183 patients (16.3% of the cohort). Receiver operating characteristic curve analyses were performed for the ISS, RTS, SI, and MEWS with respect to the prediction of in-hospital mortality. The area under the curves (AUCs) of the ISS, RTS, SI, and MEWS were 0.638 (95% confidence interval (CI), 0.603–0.672), 0.742 (95% CI, 0.709–0.772), 0.524 (95% CI, 0.489–0.560), and 0.799 (95% CI, 0.769–0.827), respectively. The AUC of MEWS was significantly different from the AUCs of ISS, RTS, and SI. In multivariate analysis, age (odds ratio (OR), 1.012; 95% CI, 1.000–1.023), the ISS (OR, 1.040; 95% CI, 1.013–1.069), the Glasgow Coma Scale (GCS) score (OR, 0.793; 95% CI, 0.761–0.826), and body temperature (BT) (OR, 0.465; 95% CI, 0.329–0.655) were independently associated with in-hospital mortality after adjustment for confounders. In the present study, the MEWS showed fair performance for predicting in-hospital mortality in patients with TBI. The GCS score and BT seemed to have a significant role in the discrimination ability of the MEWS. The MEWS may be a useful tool for predicting in-hospital mortality in patients with TBI.
Collapse
|
5
|
Wu TW, Wisnowski JL, Geisler RF, Reitman A, Ho E, Tamrazi B, Chapman R, Blüml S. An In Vivo Assessment of Regional Brain Temperature during Whole-Body Cooling for Neonatal Encephalopathy. J Pediatr 2020; 220:73-79.e3. [PMID: 32089332 PMCID: PMC7265905 DOI: 10.1016/j.jpeds.2020.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To assess differences in regional brain temperatures during whole-body hypothermia and test the hypothesis that brain temperature profile is nonhomogenous in infants with hypoxic-ischemic encephalopathy. STUDY DESIGN Infants with hypoxic-ischemic encephalopathy were enrolled prospectively in this observational study. Magnetic resonance (MR) spectra of basal ganglia, thalamus, cortical gray matter, and white matter (WM) were acquired during therapeutic hypothermia. Regional brain tissue temperatures were calculated from the chemical shift difference between water signal and metabolites in the MR spectra after performing calibration measurements. Overall difference in regional temperature was analyzed by mixed-effects model; temperature among different patterns and severity of injury on MR imaging also was analyzed. Correlation between temperature and depth of brain structure was analyzed using repeated-measures correlation. RESULTS In total, 53 infants were enrolled (31 girls, mean gestational age: 38.6 ± 2 weeks; mean birth weight: 3243 ± 613 g). MR spectroscopy was acquired at mean age of 2.2 ± 0.6 days. A total of 201 MR spectra were included in the analysis. The thalamus, the deepest structure (36.4 ± 2.3 mm from skull surface), was lowest in temperature (33.2 ± 0.8°C, compared with basal ganglia: 33.5 ± 0.9°C; gray matter: 33.6 ± 0.7°C; WM: 33.8 ± 0.9°C, all P < .001). Temperatures in more superficial gray matter and WM regions (depth: 21.9 ± 2.4 and 21.5 ± 2.2 mm) were greater than the rectal temperatures (33.4 ± 0.4°C, P < .03). There was a negative correlation between temperature and depth of brain structure (rrm = -0.36, P < .001). CONCLUSIONS Whole-body hypothermia was effective in cooling deep brain structures, whereas superficial structures were warmer, with temperatures significantly greater than rectal temperatures.
Collapse
Affiliation(s)
- Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | - Jessica L. Wisnowski
- Department of Radiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA;,Rudi Schulte Research Institute, Santa Barbara, CA
| | - Robert F. Geisler
- Division of Neonatology, Children’s Hospital, Fetal and Neonatal Institute, Los Angeles
| | - Aaron Reitman
- Division of Neonatology, Children’s Hospital, Fetal and Neonatal Institute, Los Angeles
| | - Eugenia Ho
- Division of Neurology, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Benita Tamrazi
- Department of Radiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rachel Chapman
- Division of Neonatology, Children’s Hospital, Fetal and Neonatal Institute, Los Angeles;,Department of Pediatrics, Keck School of Medicine, University of Southern California
| | - Stefan Blüml
- Department of Radiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA;,Rudi Schulte Research Institute, Santa Barbara, CA
| |
Collapse
|
6
|
Cooling via Trans-nasal High Flow Ambient Air: Does it Pass the Smell Test? Neurocrit Care 2019; 30:505-507. [PMID: 30903589 DOI: 10.1007/s12028-019-00701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Empfehlung zum Temperaturmanagement nach Atem-Kreislauf-Stillstand und schwerem Schädel-Hirn-Trauma im Kindesalter jenseits der Neonatalperiode. Monatsschr Kinderheilkd 2017. [DOI: 10.1007/s00112-017-0306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Brenner S, Eich C, Rellensmann G, Schuhmann MU, Nicolai T, Hoffmann F. [Recommendation on temperature management after cardiopulmonary arrest and severe traumatic brain injury in childhood beyond the neonatal period : Statement of the German Society for Neonatology and Pediatric Intensive Care Medicine (GNPI) and the scientific Working Group for Paediatric Anaesthesia (WAKKA) of the German Society of Anaesthesiology and Intensive Care (DGAI)]. Anaesthesist 2017; 66:128-133. [PMID: 28091756 DOI: 10.1007/s00101-016-0256-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The available data on the effectiveness of therapeutic hypothermia in different patient groups are heterogeneous. Although the benefits have been proven for some collectives, recommendations for the use of hypothermia treatment in other groups are based on less robust data and conclusions by analogy. This article gives a review of the current evidence of temperature management in all age groups and based on this state of knowledge, recommends active temperature management with the primary aim of strict normothermia (36-36.5 °C) for 72 hours after cardiopulmonary arrest or severe traumatic brain injury for children beyond the neonatal period.
Collapse
Affiliation(s)
- S Brenner
- Neonatologie und pädiatrische Intensivmedizin, Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - C Eich
- Abteilung Anästhesie, Kinderintensiv- und Notfallmedizin, Kinder- und Jugendkrankenhaus AUF DER BULT, Hannover, Deutschland
| | - G Rellensmann
- Neonatologie und pädiatrische Intensivmedizin, Klinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Münster, Deutschland
| | - M U Schuhmann
- Bereich Pädiatrische Neurochirurgie, Klinik für Neurochirurgie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - T Nicolai
- Interdisziplinäre Kinderintensivstation, Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Klinikum der Universität München, München, Deutschland
| | - F Hoffmann
- Interdisziplinäre Kinderintensivstation, Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Klinikum der Universität München, München, Deutschland
| |
Collapse
|
9
|
Greater temperature variability is not associated with a worse neurological outcome after cardiac arrest. Resuscitation 2015; 96:268-74. [DOI: 10.1016/j.resuscitation.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 08/19/2015] [Accepted: 09/04/2015] [Indexed: 11/23/2022]
|
10
|
Kochanek PM, Jackson TC. It might be time to let cooler heads prevail after mild traumatic brain injury or concussion. Exp Neurol 2015; 267:13-7. [PMID: 25732932 DOI: 10.1016/j.expneurol.2015.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Patrick M Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA; Safar Center for Resuscitation Research, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | - Travis C Jackson
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA; Safar Center for Resuscitation Research, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
11
|
Wang H, Wang B, Normoyle KP, Jackson K, Spitler K, Sharrock MF, Miller CM, Best C, Llano D, Du R. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 2014; 8:307. [PMID: 25339859 PMCID: PMC4189373 DOI: 10.3389/fnins.2014.00307] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Brain temperature, as an independent therapeutic target variable, has received increasingly intense clinical attention. To date, brain hypothermia represents the most potent neuroprotectant in laboratory studies. Although the impact of brain temperature is prevalent in a number of common human diseases including: head trauma, stroke, multiple sclerosis, epilepsy, mood disorders, headaches, and neurodegenerative disorders, it is evident and well recognized that the therapeutic application of induced hypothermia is limited to a few highly selected clinical conditions such as cardiac arrest and hypoxic ischemic neonatal encephalopathy. Efforts to understand the fundamental aspects of brain temperature regulation are therefore critical for the development of safe, effective, and pragmatic clinical treatments for patients with brain injuries. Although centrally-mediated mechanisms to maintain a stable body temperature are relatively well established, very little is clinically known about brain temperature's spatial and temporal distribution, its physiological and pathological fluctuations, and the mechanism underlying brain thermal homeostasis. The human brain, a metabolically "expensive" organ with intense heat production, is sensitive to fluctuations in temperature with regards to its functional activity and energy efficiency. In this review, we discuss several critical aspects concerning the fundamental properties of brain temperature from a clinical perspective.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Bonnie Wang
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kieran P. Normoyle
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Jackson
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Spitler
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Matthew F. Sharrock
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
| | - Claire M. Miller
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Catherine Best
- Molecular and Cellular Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Daniel Llano
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
12
|
Kochanek P, Puccio A, Diringer M, Kochanek P. Temperature management in neurological and neurosurgical intensive care units. Ther Hypothermia Temp Manag 2014; 3:41-5. [PMID: 24837796 DOI: 10.1089/ther.2013.1508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Patrick Kochanek
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
13
|
Adelson PD, Bell MJ, Wisniewski SR. Hypothermia in paediatric traumatic brain injury--authors' reply. Lancet Neurol 2013; 12:849-850. [PMID: 23948173 DOI: 10.1016/s1474-4422(13)70205-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.
| | - Michael J Bell
- Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh of UPMC, PA, USA
| | - Stephen R Wisniewski
- Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh of UPMC, PA, USA
| |
Collapse
|
14
|
Picetti E, Rossi I, Caspani ML. Hypothermia in paediatric traumatic brain injury. Lancet Neurol 2013; 12:849. [DOI: 10.1016/s1474-4422(13)70204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kochanek PM, Fink EL, Bell MJ. Politics and hypothermia-what might they have in common? Editorial comment on silasi and colbourne, 2011. Ther Hypothermia Temp Manag 2012; 2:11-3. [PMID: 24717133 DOI: 10.1089/ther.2012.1504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | |
Collapse
|