1
|
Wei S, Lin H, Cheng C, Choi JI, Simone CB, Kang M. An ultra-high dose rate Bragg peak tracking technique provides more affordable proton radiotherapy for cancer patients: From principle to experimental validation. Radiother Oncol 2025; 206:110800. [PMID: 39988304 DOI: 10.1016/j.radonc.2025.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE This work aims to experimentally validate a novel cost-effective solution for achieving both conventional dose-rate and ultra-high dose rate (UHDR) deliveries in pencil beam scanning proton therapy. METHODS A proton therapy delivery solution was previously developed by our group using only a single pristine Bragg peak of the highest energy proton beams from a cyclotron. This approach streamlines upstream beam modifiers, including energy degrader, selection and focusing systems, while utilizing of universal range shifters (URS) and range compensators (RCs) to preserve high beam transmission efficiency for UHDR beam delivery. It achieves the Bragg peak tracking and target dose conformity, making it potentially suitable for FLASH radiation therapy. In the current study, we highlighted the realization of the solution by using URS and customized beam-specific RCs via simulation in an in-house treatment planning software (TPS) which is then fabricated by a 3D printer, facilitating precise beam shaping and Bragg peak tracking. Experimental validation of this method was conducted using a clinical proton system to showcase a practical solution that can be translated into realistic operation. Both dose and dose rate were measured and compared to treatment planning results. RESULTS The proton convolution superposition (PCS) dose calculation was benchmarked by the Monte Carlo calculation. Matrixx PT measured the delivered dose in the uniform and head-neck (HN) phantom, and the gamma passing rates were > 99 % in the water phantom. The gamma rate was > 98 % for the HN phantom for this distal tracking method. The measured dose difference between the TPS and HN phantom was < 2 %. The implementation of a high temporal resolution strip ion chamber detector array enabled accurate measurement of the spot time structure, facilitating 3D dose rate reconstruction across various beam currents. CONCLUSION The experimental validation successfully demonstrated the dosimetric accuracy and robustness of this proposed delivery method. The employment of the Bragg peak tracking method holds great promise for reducing treatment delivery costs for future UHDR and conventional dose rate proton radiation therapy, ultimately benefiting a larger population of patients.
Collapse
Affiliation(s)
- Shouyi Wei
- New York Proton Center, New York, NY 10035, USA.
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA.
| | - Chingyun Cheng
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53792, USA.
| | | | | | - Minglei Kang
- New York Proton Center, New York, NY 10035, USA.
| |
Collapse
|
2
|
Ning MS, Odwuor A, Chang JY, Gandhi S, Liao Z, Lin SH, Chen A, Welsh JW, Nguyen QN, O’Reilly MS, Chun SG, Bronk J, Qian D, Lee P. Salvage Reirradiation with Proton Beam Therapy for Locoregionally Recurrent Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3587. [PMID: 39518028 PMCID: PMC11545237 DOI: 10.3390/cancers16213587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES This retrospective study evaluates outcomes of 66 patients who underwent reirradiation (re-RT) with proton beam therapy (PBT) for recurrent non-small cell lung cancer. METHODS Toxicity was scored via the CTCAE v5.0, and outcomes estimated using the Kaplan-Meier method, with associations evaluated via Cox proportional hazards and logistic regression analyses. RESULTS Patients were treated to a median re-RT prescription of 66 Gy/33 fxs (BED10 = 79 Gy; IQR: 71-84 Gy) at an interval of 1.4 years from prior RT. Half (50%) received concurrent chemotherapy. At 14 months follow-up, the median OS and PFS were 5 months (95%CI: 13-17) and 12.5 months (95%CI: 10-15), respectively. On multivariable analysis, a higher RT dose (BED10 > 70 Gy) [HR0.37; 95%CI: 0.20-0.68, p = 0.001] and concurrent chemotherapy (HR0.48; 95%CI: 0.28-0.81, p = 0.007) were associated with improved PFS, while treatment site overlap was adversely associated (HR1.78; 95%CI: 1.05-3.02, p = 0.031). The median PFS for definitive RT with concurrent chemotherapy (n = 28), definitive RT alone (BED10 > 70 Gy) [n = 22], and lower prescription RT (BED10 < 70 Gy) [n = 16] was 15.5 months (95%CI: 7.3-23.7), 14.1 months (95%CI: 10.9-17.3), and 3.3 months (95%CI: 0-12.3), respectively (log-rank, p = 0.006), with corresponding 2-year estimates of 37% (±9), 18% (±8), and 12.5% (±8), respectively. The incidence of Grade 3+ toxicity was 10.5% (6% pulmonary; 3% esophageal; and 1.5% skin), including one Grade 4 bronchopulmonary hemorrhage but no Grade 5 events. Cases with central site overlap had higher composite Dmax to the esophagus (median 87 Gy [IQR:77-90]), great vessels (median 120 Gy [IQR:110-138]), and proximal bronchial tree (median 120 Gy [IQR:110-138]) as compared to other cases (p ≤ 0.001 for all). However, no significant associations were identified with Grade 3+ events. CONCLUSIONS Thoracic re-RT with PBT is an option for recurrent NSCLC with acceptable outcomes and toxicity for select patients. When feasible, higher prescription doses (BED10 > 70 Gy) should be delivered for definitive intent, and concurrent chemotherapy may benefit individual cases.
Collapse
Affiliation(s)
- Matthew S. Ning
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - Abigael Odwuor
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - Joe Y. Chang
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - Saumil Gandhi
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - Zhongxing Liao
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - Steven H. Lin
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - Aileen Chen
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - James W. Welsh
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - Quynh-Nhu Nguyen
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - Michael S. O’Reilly
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - Stephen G. Chun
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - Julianna Bronk
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - David Qian
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.O.)
| | - Percy Lee
- Department of Radiation Oncology, City of Hope Orange County, Lennar Foundation Cancer Center, Irvine, CA 92618, USA;
| |
Collapse
|
3
|
Liu W, Feng H, Taylor PA, Kang M, Shen J, Saini J, Zhou J, Giap HB, Yu NY, Sio TS, Mohindra P, Chang JY, Bradley JD, Xiao Y, Simone CB, Lin L. NRG Oncology and Particle Therapy Co-Operative Group Patterns of Practice Survey and Consensus Recommendations on Pencil-Beam Scanning Proton Stereotactic Body Radiation Therapy and Hypofractionated Radiation Therapy for Thoracic Malignancies. Int J Radiat Oncol Biol Phys 2024; 119:1208-1221. [PMID: 38395086 PMCID: PMC11209785 DOI: 10.1016/j.ijrobp.2024.01.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/25/2023] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally fractionated PBSPT because of concerns of amplified uncertainties at the larger dose per fraction. The NRG Oncology and Particle Therapy Cooperative Group Thoracic Subcommittee surveyed proton centers in the United States to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Among other points, the recommendations highlight the need for volumetric image guidance and multiple computed tomography-based robust optimization and robustness tools to minimize further the effect of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.
Collapse
Affiliation(s)
- Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona.
| | - Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona; College of Mechanical and Power Engineering, China Three Gorges University, Yichang, Hubei, China; Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, Guangdong, China
| | - Paige A Taylor
- Imaging and Radiation Oncology Core Houston Quality Assurance Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Jatinder Saini
- Seattle Cancer Care Alliance Proton Therapy Center and Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Huan B Giap
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Terence S Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Pranshu Mohindra
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Joe Y Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey D Bradley
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Liyong Lin
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
4
|
Valdes G, Scholey J, Nano TF, Gennatas ED, Mohindra P, Mohammed N, Zeng J, Kotecha R, Rosen LR, Chang J, Tsai HK, Urbanic JJ, Vargas CE, Yu NY, Ungar LH, Eaton E, Simone CB. Predicting the Effect of Proton Beam Therapy Technology on Pulmonary Toxicities for Patients With Locally Advanced Lung Cancer Enrolled in the Proton Collaborative Group Prospective Clinical Trial. Int J Radiat Oncol Biol Phys 2024; 119:66-77. [PMID: 38000701 DOI: 10.1016/j.ijrobp.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
PURPOSE This study aimed to predict the probability of grade ≥2 pneumonitis or dyspnea within 12 months of receiving conventionally fractionated or mildly hypofractionated proton beam therapy for locally advanced lung cancer using machine learning. METHODS AND MATERIALS Demographic and treatment characteristics were analyzed for 965 consecutive patients treated for lung cancer with conventionally fractionated or mildly hypofractionated (2.2-3 Gy/fraction) proton beam therapy across 12 institutions. Three machine learning models (gradient boosting, additive tree, and logistic regression with lasso regularization) were implemented to predict Common Terminology Criteria for Adverse Events version 4 grade ≥2 pulmonary toxicities using double 10-fold cross-validation for parameter hyper-tuning without leak of information. Balanced accuracy and area under the curve were calculated, and 95% confidence intervals were obtained using bootstrap sampling. RESULTS The median age of the patients was 70 years (range, 20-97), and they had predominantly stage IIIA or IIIB disease. They received a median dose of 60 Gy in 2 Gy/fraction, and 46.4% received concurrent chemotherapy. In total, 250 (25.9%) had grade ≥2 pulmonary toxicity. The probability of pulmonary toxicity was 0.08 for patients treated with pencil beam scanning and 0.34 for those treated with other techniques (P = 8.97e-13). Use of abdominal compression and breath hold were highly significant predictors of less toxicity (P = 2.88e-08). Higher total radiation delivered dose (P = .0182) and higher average dose to the ipsilateral lung (P = .0035) increased the likelihood of pulmonary toxicities. The gradient boosting model performed the best of the models tested, and when demographic and dosimetric features were combined, the area under the curve and balanced accuracy were 0.75 ± 0.02 and 0.67 ± 0.02, respectively. After analyzing performance versus the number of data points used for training, we observed that accuracy was limited by the number of observations. CONCLUSIONS In the largest analysis of prospectively enrolled patients with lung cancer assessing pulmonary toxicities from proton therapy to date, advanced machine learning methods revealed that pencil beam scanning, abdominal compression, and lower normal lung doses can lead to significantly lower probability of developing grade ≥2 pneumonitis or dyspnea.
Collapse
Affiliation(s)
- Gilmer Valdes
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Jessica Scholey
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Tomi F Nano
- Department of Radiation Oncology, University of California, San Francisco, California.
| | - Efstathios D Gennatas
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Pranshu Mohindra
- University of Maryland School of Medicine and Maryland Proton Treatment Center, Baltimore, Maryland
| | - Nasir Mohammed
- Northwestern Medicine Chicago Proton Center, Warrenville, Illinois
| | - Jing Zeng
- University of Washington and Seattle Cancer Care Alliance Proton Therapy Center, Seattle, Washington
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Lane R Rosen
- Willis-Knighton Medical Center, Shreveport, Louisiana
| | - John Chang
- Oklahoma Proton Center, Oklahoma City, Oklahoma
| | - Henry K Tsai
- New Jersey Procure Proton Therapy Center, Somerset, New Jersey
| | - James J Urbanic
- Department of Radiation Oncology, California Protons Therapy Center, San Diego, California
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic Proton Center, Phoenix, Arizona
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic Proton Center, Phoenix, Arizona
| | - Lyle H Ungar
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric Eaton
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| |
Collapse
|
5
|
Seo SH, Pyo H, Ahn YC, Oh D, Yang K, Kim N, Sun JM, Park S, Jung HA, Lee SH, Ahn JS, Ahn MJ, Noh JM. Pulmonary function and toxicities of proton versus photon for limited-stage small cell lung cancer. Radiat Oncol J 2023; 41:274-282. [PMID: 38185932 PMCID: PMC10772597 DOI: 10.3857/roj.2023.00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 01/09/2024] Open
Abstract
PURPOSE We aimed to compare the oncological outcomes and toxicities of definitive proton beam therapy (PBT) and photon beam therapy in patients with limited-stage small cell lung cancer (LS-SCLC). MATERIALS AND METHODS We retrospectively reviewed 262 patients with newly diagnosed LS-SCLC who underwent definitive PBT (n = 20; proton group) or photon beam therapy (n = 242; photon group) with concurrent chemotherapy between January 2016 and February 2021 and compared overall survival (OS), progression-free survival (PFS), dose-volume parameters, and toxicities between the groups. RESULTS The median follow-up duration was 24.5 months (range, 3.7 to 78.7). Baseline lung function was significantly worse and clinical target volume (CTV) was larger in the proton group (CTV: 296.6 vs. 215.3 mL; p = 0.080). The mean lung V10 was 37.7% ± 16.8% and 51.6% ± 24.5% in the proton and photon groups, respectively (p = 0.002). Two-year OS and PFS rates were 57.2% and 35.7% in the proton group and 65.3% and 40.8% in the photon group, respectively (p = 0.542 and 0.748, respectively). Grade ≥2 radiation pneumonitis and esophagitis occurred in 5 (25.0%) and 7 (35.0%) PBT-treated patients and 66 (27.3%) and 40 (16.5%) photon beam therapy-treated patients, respectively (p = 0.826 and 0.062, respectively). CONCLUSION Although the proton group had poorer lung function and a larger CTV than that in the photon group, both groups exhibited comparable treatment outcomes and radiation-related toxicities in LS-SCLC. PBT may be a valuable therapeutic modality in patients with poor pulmonary function or extensive disease burden owing to its lung-sparing ability.
Collapse
Affiliation(s)
- Sang Hoon Seo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungmi Yang
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Choi JI, Simone CB, Lozano A, Frank SJ. Advances and Challenges in Conducting Clinical Trials With Proton Beam Therapy. Semin Radiat Oncol 2023; 33:407-415. [PMID: 37684070 PMCID: PMC10503212 DOI: 10.1016/j.semradonc.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Advances in proton therapy have garnered much attention and speculation in recent years as the indications for proton therapy have grown beyond pediatric, prostate, spine, and ocular tumors. To achieve and maintain consistent access to this cancer treatment and to ensure the future viability and availability of proton centers in the United States, a call for evidence has been heard and answered by proton radiation oncologists. Answers provided in this review include the evolution of proton therapy research, rationale for proton clinical trial design, challenges in and barriers to the conduct of proton therapy research, and other unique considerations for the study of proton therapy.
Collapse
Affiliation(s)
- J Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.; New York Proton Center, New York, NY..
| | - Charles B Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.; New York Proton Center, New York, NY
| | - Alicia Lozano
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, VA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
7
|
Fisher DA, Murphy MC, Montesi SB, Hariri LP, Hallowell RW, Keane FK, Lanuti M, Mooradian MJ, Fintelmann FJ. Diagnosis and Treatment of Lung Cancer in the Setting of Interstitial Lung Disease. Radiol Clin North Am 2022; 60:993-1002. [PMID: 36202484 PMCID: PMC9969995 DOI: 10.1016/j.rcl.2022.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interstitial lung disease (ILD) including idiopathic pulmonary fibrosis increases the risk of developing lung cancer. Diagnosing and staging lung cancer in patients with ILD is challenging and requires careful interpretation of computed tomography (CT) and fluorodeoxyglucose PET/CT to distinguish nodules from areas of fibrosis. Minimally invasive tissue sampling is preferred but may be technically challenging given tumor location, coexistent fibrosis, and pneumothorax risk. Current treatment options include surgery, radiation therapy, percutaneous thermal ablation, and systemic therapy; however, ILD increases the risks associated with each treatment option, especially acute ILD exacerbation.
Collapse
Affiliation(s)
- Dane A Fisher
- Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Mark C Murphy
- Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Sydney B Montesi
- Division of Pulmonology and Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Robert W Hallowell
- Division of Pulmonology and Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Florence K Keane
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael Lanuti
- Department of Surgery, Division of Thoracic Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Meghan J Mooradian
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA 02114, USA
| | - Florian J Fintelmann
- Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Wei S, Lin H, Huang S, Shi C, Xiong W, Zhai H, Hu L, Yu G, Press RH, Hasan S, Chhabra AM, Choi JI, Simone CB, Kang M. Dose rate and dose robustness for proton transmission FLASH-RT treatment in lung cancer. Front Oncol 2022; 12:970602. [PMID: 36059710 PMCID: PMC9435957 DOI: 10.3389/fonc.2022.970602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purposes To evaluate the plan quality and robustness of both dose and dose rate of proton pencil beam scanning (PBS) transmission FLASH delivery in lung cancer treatment. Methods and materials An in-house FLASH planning platform was used to optimize 10 lung cancer patients previously consecutively treated with proton stereotactic body radiation therapy (SBRT) to receive 3 and 5 transmission beams (Trx-3fds and Trx-5fds, respectively) to 34 Gy in a single fraction. Perturbation scenarios (n=12) for setup and range uncertainties (5 mm and 3.5%) were introduced, and dose-volume histogram and dose-rate-volume histogram bands were generated. Conventional proton SBRT clinical plans were used as a reference. RTOG 0915 dose metrics and 40 Gy/s dose rate coverage (V40Gy/s) were used to assess the dose and dose rate robustness. Results Trx-5fds yields a comparable iCTV D2% of 105.3%, whereas Trx-3fds resulted in inferior D2% of 111.9% to the clinical SBRT plans with D2% of 105.6% (p<0.05). Both Trx-5fds and Trx-3fds plans had slightly worse dose metrics to organs at risk than SBRT plans. Trx-5fds achieved superior dosimetry robustness for iCTV, esophagus, and spinal cord doses than both Trx-3fds and conventional SBRT plans. There was no significant difference in dose rate robustness for V40Gy/s coverage between Trx-3fds and Trx-5fds. Dose rate distribution has similar distributions to the dose when perturbation exists. Conclusion Transmission plans yield overall modestly inferior plan quality compared to the conventional proton SBRT plans but provide improved robustness and the potential for a toxicity-sparing FLASH effect. By using more beams (5- versus 3-field), both dose and dose rate robustness for transmission plans can be achieved.
Collapse
Affiliation(s)
- Shouyi Wei
- New York Proton Center, New York, NY, United States
| | - Haibo Lin
- New York Proton Center, New York, NY, United States
| | - Sheng Huang
- New York Proton Center, New York, NY, United States
| | - Chengyu Shi
- City of Hope, Orange County, Irvine, CA, United States
| | - Weijun Xiong
- New York Proton Center, New York, NY, United States
| | - Huifang Zhai
- New York Proton Center, New York, NY, United States
| | - Lei Hu
- New York Proton Center, New York, NY, United States
| | - Gang Yu
- New York Proton Center, New York, NY, United States
| | | | | | | | | | | | - Minglei Kang
- New York Proton Center, New York, NY, United States
- *Correspondence: Minglei Kang,
| |
Collapse
|
9
|
Wei S, Lin H, Isabelle Choi J, Shi C, Simone CB, Kang M. Advanced pencil beam scanning Bragg peak FLASH-RT delivery technique can enhance lung cancer planning treatment outcomes compared to conventional multiple-energy proton PBS techniques. Radiother Oncol 2022; 175:238-247. [PMID: 35961583 DOI: 10.1016/j.radonc.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the dosimetric characteristics between an advanced proton pencil beam scanning (PBS) Bragg peak FLASH technique and conventional PBS planning technique in lung tumors. To evaluate the "FLASHness" of single-field in a multiple-field delivery scheme for a hypofractionation regimen and move a step forward to clinical application. METHODS Single-energy PBS Bragg peak FLASH treatment plans were optimized based on a novel Bragg peak tracking technique to enable Bragg peaks to stop at the distal edge of the target. Inverse treatment planning using multiple-field optimization (MFO) can achieve sufficient FLASH dose rate and intensity-modulated proton therapy (IMPT)-equivalent dosimetric quality. The dose rate of organs-at-risk (OARs) and the target were calculated under FLASH machine parameters. A group of 10 consecutive lung SBRT patients was optimized to 34 Gy/fraction using a standard treatment of PBS technique with multiple energy layers as references to the Bragg peak plans. The dosimetric quality was compared between Bragg peak FLASH and conventional plans based on RTOG0915 dose metrics. FLASH dose rate ratios (V40Gy/s) were calculated as a metric of the FLASH-sparing effect. RESULTS For higher dose thresholds, the Bragg peak plans achieved greater V40Gy/s FLASH coverage for all major OARs. The V40Gy/s was close to 100% for all OARs when the dose thresholds were > 5 Gy for full plan and single beam evaluations. The less "FLASHness" region was associated with a low dose distribution, mainly occurring in the PBS field penumbra region. The conventional IMPT treatment plans yielded slightly superior target dose uniformity with a D2%(%) of 108.02% versus that of Bragg peak 300 MU plans of 111.81% (p < 0.01) and that of Bragg peak 1200 MU plans of 115.95% (p < 0.01). No significant difference in dose metrics was found between Bragg peak and IMPT treatment plans for the spinal cord, esophagus, heart, or lung-GTV (all p > 0.05). CONCLUSION Hypofractionated lung Bragg peak plans can maintain comparable plan quality to conventional PBS while achieving sufficient FLASH dose rate coverage for major OARs for each field under the multiple-field delivery scheme. The novel Bragg peak FLASH technique has the potential to enhance lung cancer planning treatment outcomes compared to standard PBS treatment techniques.
Collapse
Affiliation(s)
- Shouyi Wei
- New York Proton Center, New York, NY 10035, USA
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA.
| | | | - Chengyu Shi
- City of Hope, Orange County, Irvine, CA 92618, USA
| | | | - Minglei Kang
- New York Proton Center, New York, NY 10035, USA.
| |
Collapse
|
10
|
Amstutz F, Fabiano S, Marc L, Weber DC, Lomax AJ, Unkelbach J, Zhang Y. Combined proton-photon therapy for non-small cell lung cancer. Med Phys 2022; 49:5374-5386. [PMID: 35561077 PMCID: PMC9544482 DOI: 10.1002/mp.15715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/18/2022] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Advanced non-small cell lung cancer (NSCLC) is still a challenging indication for conventional photon radiotherapy. Proton therapy has the potential to improve outcomes, but proton treatment slots remain a limited resource despite an increasing number of proton therapy facilities. This work investigates the potential benefits of optimally combined proton-photon therapy delivered using a fixed horizontal proton beam line in combination with a photon Linac, which could increase accessibility to proton therapy for such a patient cohort. MATERIALS AND METHODS A treatment planning study has been conducted on a patient cohort of seven advanced NSCLC patients. Each patient had a planning CT and multiple repeated CTs from three different days and for different breath-holds on each day. Treatment plans for combined proton-photon therapy (CPPT) were calculated for individual patients by optimizing the combined cumulative dose on the initial planning CT only (non-adapted) as well as on each daily CT respectively (adapted). The impact of inter-fractional changes and/or breath-hold variability was then assessed on the repeat breath-hold CTs. Results were compared to plans for IMRT or IMPT alone, as well as against combined treatments assuming a proton gantry. Plan quality was assessed in terms of dosimetric, robustness and NTCP metrics. RESULTS Combined treatment plans improved plan quality compared to IMRT treatments, especially in regard to reductions of low and medium doses to organs at risk (OARs), which translated into lower NTCP estimates for three side effects. For most patients, combined treatments achieved results close to IMPT-only plans. Inter-fractional changes impact mainly the target coverage of combined and IMPT treatments, while OARs doses were less affected by these changes. With plan adaptation however, target coverage of combined treatments remained high even when taking variability between breath-holds into account. CONCLUSIONS Optimally combined proton-photon plans improve treatment plan quality compared to IMRT only, potentially reducing the risk of toxicity while also allowing to potentially increase accessibility to proton therapy for NSCLC patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Louise Marc
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
11
|
Choi JI, Khan AJ, Powell SN, McCormick B, Lozano AJ, Del Rosario G, Mamary J, Liu H, Fox P, Gillespie E, Braunstein LZ, Mah D, Cahlon O. Proton reirradiation for recurrent or new primary breast cancer in the setting of prior breast irradiation. Radiother Oncol 2021; 165:142-151. [PMID: 34688807 DOI: 10.1016/j.radonc.2021.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Late local recurrences and second primary breast cancers are increasingly common. Proton beam therapy (PBT) reirradiation (reRT) may allow safer delivery of a second definitive radiotherapy (RT) course. We analyzed outcomes of patients with recurrent or new primary breast cancer who underwent reRT. MATERIALS AND METHODS In an IRB-approved retrospective study, patient/tumor characteristics, treatment parameters, outcomes, and toxicities were collected for all consecutive patients with recurrent or new primary non-metastatic breast cancer previously treated with breast or chest wall RT who underwent PBT reRT. RESULTS Forty-six patients received reRT using uniform (70%) or pencil beam (30%) scanning PBT. Median first RT, reRT, and cumulative doses were 60 Gy (range 45-66 Gy), 50.4 Gy(RBE) (40-66.6 Gy(RBE)), and 110 Gy(RBE) (96.6-169.4 Gy(RBE)), respectively. Median follow-up was 21 months. There were no local or regional recurrences; 17% developed distant recurrence. Two-year DMFS and OS were 92.0% and 93.6%, respectively. Nine of 13 (69.2%) patients who underwent implant or flap reconstruction developed capsular contracture, 3 (23.1%) requiring surgical intervention. One (7.7%) patient developed grade 3 breast pain requiring mastectomy after breast conserving surgery. No acute or late grade 4-5 toxicities were seen. Increased body mass index (BMI) was protective of grade ≥ 2 acute toxicity (OR = 0.84, 95%CI = 0.70-1.00). CONCLUSION In the largest series to date of PBT reRT for breast cancer recurrence or new primary after prior definitive breast or chest wall RT, excellent locoregional control and few high-grade toxicities were encountered. PBT reRT may provide a relatively safe and highly effective salvage option. Additional patients and follow-up are needed to correlate composite normal tissue doses with toxicities and assess long-term outcomes.
Collapse
Affiliation(s)
- J Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA; New York Proton Center, New York, USA.
| | - Atif J Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Beryl McCormick
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | | | | | | | - Haoyang Liu
- ProCure Proton Therapy Center, Somerset, USA
| | - Pamela Fox
- ProCure Proton Therapy Center, Somerset, USA
| | - Erin Gillespie
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Lior Z Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Dennis Mah
- ProCure Proton Therapy Center, Somerset, USA
| | - Oren Cahlon
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA; New York Proton Center, New York, USA
| |
Collapse
|
12
|
Heinzerling JH, Mileham KF, Simone CB. The utilization of immunotherapy with radiation therapy in lung cancer: a narrative review. Transl Cancer Res 2021; 10:2596-2608. [PMID: 35116573 PMCID: PMC8797746 DOI: 10.21037/tcr-20-2241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
Despite decreasing smoking rates, lung cancer remains the leading cause of death from cancer in the United States. Radiation therapy has been established as an effective locoregional therapy for both early stage and locally advanced disease and is known to stimulate local immune response. Past treatment paradigms have established the role of combining cytotoxic chemotherapy regimens and radiation therapy to help address the local and systemic nature of lung cancer. However, these regimens have limitations in their tolerability due to toxicity. Additionally, cytotoxic chemotherapy has limited efficacy in preventing systemic spread of lung cancer. Newer systemic agents such as immune checkpoint inhibitors have shown improved survival in metastatic and locally advanced lung cancer and have the advantage of more limited toxicity profiles compared to cytotoxic chemotherapy. Furthermore, improved overall response rates and systemic tumor responses have been observed with the combination of radiation therapy and immunotherapy, leading to numerous active clinical trials evaluating the combination of immune checkpoint inhibition with radiotherapy. This comprehensive review discusses the current clinical data and ongoing studies evaluating the combination of radiation therapy and immunotherapy in both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC).
Collapse
Affiliation(s)
- John H. Heinzerling
- Levine Cancer Institute, Atrium Health, Southeast Radiation Oncology, Charlotte, NC, USA
| | | | - Charles B. Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- New York Proton Center, New York, NY, USA
| |
Collapse
|
13
|
Simone CB. First Randomized Trial Supporting the Use of Proton Over Photon Chemoradiotherapy in Esophageal Cancer. J Clin Oncol 2020; 38:2952-2955. [PMID: 32706638 DOI: 10.1200/jco.20.01405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Charles B Simone
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
14
|
Simone CB, Plastaras JP, Jabbour SK, Lee A, Lee NY, Choi JI, Frank SJ, Chang JY, Bradley J. Proton Reirradiation: Expert Recommendations for Reducing Toxicities and Offering New Chances of Cure in Patients With Challenging Recurrence Malignancies. Semin Radiat Oncol 2020; 30:253-261. [PMID: 32503791 PMCID: PMC10870390 DOI: 10.1016/j.semradonc.2020.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Local and regional recurrences are common following an initial course of radiotherapy, yet management of these recurrences remains a challenge. Reirradiation may be an optimal treatment approach for providing durable tumor control and even offering select patients with locoregional recurrences or new primary tumors a chance of cure, but photon reirradiation can be associated with considerable risks of high grade acute and late toxicities. The high conformality and lack of exit dose with proton therapy offer significant advantages for reirradiation. By decreasing dose to adjacent normal tissues, proton therapy can more safely deliver definitive instead of palliative doses of reirradiation, more safely dose escalate reirradiation treatment, and more safely allow for concurrent systemic therapy in the reirradiation setting. In this case-based analysis, renowned experts in the fields of proton therapy and of reirradiation present cases for which they recently employed proton reirradiation. This manuscript focuses on case studies in patients with lung cancer, head and neck malignancies, and pelvic malignancies. Considerations for when to deliver proton therapy in the reirradiation setting and the pros and cons of proton therapy are discussed, and the existing literature supporting the use of proton reirradiation for these disease sites is assessed.
Collapse
Affiliation(s)
- Charles B Simone
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, NY.
| | - John P Plastaras
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Anna Lee
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nancy Y Lee
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, NY
| | - J Isabelle Choi
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey Bradley
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
15
|
Li XD, Simone CB. The inflammatory response from stereotactic body proton therapy versus stereotactic body radiation therapy: implications from early stage non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:S295. [PMID: 32016014 DOI: 10.21037/atm.2019.11.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xingzhe D Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles B Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,New York Proton Center, New York, NY, USA
| |
Collapse
|
16
|
Vojtíšek R. Cardiac toxicity of lung cancer radiotherapy. Rep Pract Oncol Radiother 2020; 25:13-19. [PMID: 31762693 PMCID: PMC6864155 DOI: 10.1016/j.rpor.2019.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/15/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Radical radiotherapy of lung cancer with dose escalation has been associated with increased tumor control. However, these attempts to continually improve local control through dose escalation, have met mixed results culminating in the findings of the RTOG trial 0617, where the heart dose was associated with a worse overall survival, indicating a significant contribution to radiation-induced cardiac morbidity. It is, therefore, very likely that poorly understood cardiac toxicity may have offset any potential improvement in overall survival derived from dose escalation and may be an obstacle that limits disease control and survival of patients. The manifestations of cardiac toxicity are relatively common after high dose radiotherapy of advanced lung cancers and are independently associated with both heart dose and baseline cardiac risk. Toxicity following the treatment may occur earlier than previously thought and, therefore, heart doses should be minimized. In patients with lung cancer, who not only receive substantial heart dose, but are also older with more comorbidities, all cardiac events have the potential to be clinically significant and life-threatening. Sophisticated radiation treatment planning techniques, charged particle therapy, and modern imaging methods in radiotherapy planning, may lead to reduction of the heart dose, which could potentially improve the clinical outcomes in patients with lung cancer. Efforts should be made to minimize heart radiation exposure whenever possible even at doses lower than those generally recommended. Heart doses should be limited as much as possible. A heart dosimetry as a whole is important for patient outcomes, rather than emphasizing just one parameter.
Collapse
Affiliation(s)
- Radovan Vojtíšek
- Department of Oncology and Radiotherapy, University Hospital in Pilsen, alej Svobody 80, 304 60 Pilsen, Czech Republic
| |
Collapse
|
17
|
Gomez DR, Rimner A, Simone CB, Cho BCJ, de Perrot M, Adjei AA, Bueno R, Gill RR, Harpole DH, Hesdorffer M, Hirsch FR, Jackson AA, Pass HI, Rice DC, Rusch VW, Tsao AS, Yorke E, Rosenzweig K. The Use of Radiation Therapy for the Treatment of Malignant Pleural Mesothelioma: Expert Opinion from the National Cancer Institute Thoracic Malignancy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation. J Thorac Oncol 2019; 14:1172-1183. [PMID: 31125736 DOI: 10.1016/j.jtho.2019.03.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Detailed guidelines regarding the use of radiation therapy for malignant pleural mesothelioma (MPM) are currently lacking because of the rarity of the disease, the wide spectrum of clinical presentations, and the paucity of high-level data on individual treatment approaches. METHODS In March 2017, a multidisciplinary meeting of mesothelioma experts was cosponsored by the U.S. National Cancer Institute, International Association for the Study of Lung Cancer Research, and Mesothelioma Applied Research Foundation. Among the outcomes of this conference was the foundation of detailed, multidisciplinary consensus guidelines. RESULTS Here we present consensus recommendations on the use of radiation therapy for MPM in three discrete scenarios: (1) hemithoracic radiation therapy to be used before or after extrapleural pneumonectomy; (2) hemithoracic radiation to be used as an adjuvant to lung-sparing procedures (i.e., without pneumonectomy); and (3) palliative radiation therapy for focal symptoms caused by the disease. We discuss appropriate simulation techniques, treatment volumes, dose fractionation regimens, and normal tissue constraints. We also assess the role of particle beam therapy, specifically, proton beam therapy, for MPM. CONCLUSION The recommendations provided in this consensus statement should serve as important guidelines for developing future clinical trials of treatment approaches for MPM.
Collapse
Affiliation(s)
- Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - B C John Cho
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Marc de Perrot
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Alex A Adjei
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ritu R Gill
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - David H Harpole
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | | | - Fred R Hirsch
- Department of Medicine, University of Colorado, Denver, Colorado; Department of Pathology, University of Colorado, Denver, Colorado
| | | | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York
| | - David C Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Valerie W Rusch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Rosenzweig
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
18
|
Radiotherapy Improves the Survival of Patients With Metastatic Cervical Cancer: A Propensity-Matched Analysis of SEER Database. Int J Gynecol Cancer 2019; 28:1360-1368. [PMID: 30036221 DOI: 10.1097/igc.0000000000001313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To demonstrate whether radiotherapy has an effect on the survival of patients with stage IVb (M1) cervical cancer, as it has not been adequately clarified. METHODS We analyzed International Federation of Gynecology and Obstetrics (FIGO) stage M1 cervical cancer diagnosed in patients between 1992 and 2013 using population-based data from the Surveillance, Epidemiology, and End Results registry. Propensity score (PS) analysis with 1:1 matching and the nearest neighbor matching method was performed to ensure well-balanced characteristics of comparison groups. Data were analyzed by Kaplan-Meier and Cox proportional hazards regression models to evaluate the overall survival (OS) and cancer-specific survival (CSS) months with corresponding 95% confidence intervals (95% CIs). RESULTS In general, receiving radiotherapy significantly improved OS and CSS both before and after PS matching (PSM) (P < 0.001), with significantly improved OS (hazard ratio, 0.69; 95% CI, 0.62-0.76) and CSS (hazard ratio, 0.79; 95% CI, 0.70-0.89) after PSM in patients with stage M1 cervical cancer. Before PSM, radiotherapy was found to be associated with improved survival even for the patients with stage M1 cervical cancer with extensive metastasis (≥2 metastatic sites) (P < 0.001). Although P value was not significant for brain metastasis, the survival month was numerically improved before PSM (OS and CSS, 1 month vs 4 months). Overall, radiotherapy still significantly improved survival for patients with one metastatic site (ie, oligometastases) either before or after PSM (P < 0.05), with the survival month improved more than 6 months. CONCLUSIONS The large Surveillance, Epidemiology, and End Results results support that radiotherapy might improve the survival of patients with metastatic cervical cancer. It might be prudent to carefully select suitable patients for radiation therapy for metastatic cervical cancer.
Collapse
|
19
|
Badiyan SN, Rutenberg MS, Hoppe BS, Mohindra P, Larson G, Hartsell WF, Tsai H, Zeng J, Rengan R, Glass E, Katz S, Vargas C, Feigenberg SJ, Simone CB. Clinical Outcomes of Patients With Recurrent Lung Cancer Reirradiated With Proton Therapy on the Proton Collaborative Group and University of Florida Proton Therapy Institute Prospective Registry Studies. Pract Radiat Oncol 2019; 9:280-288. [PMID: 30802618 DOI: 10.1016/j.prro.2019.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE We sought to assess clinical outcomes and toxicities of patients with recurrent lung cancer reirradiated with proton beam therapy (PBT) who were enrolled in 2 prospective registry trials. METHODS AND MATERIALS Seventy-nine consecutive patients were reirradiated with PBT at 8 institutions. Conventionally fractionated radiation therapy was used to treat the previous lung cancer in 68% of patients (median equivalent dose in 2 Gy fractions [EQD2], 60.2 Gy) and hypofractionated/stereotactic body radiation therapy in 32% (median EQD2, 83.3 Gy). Nine patients (11%) received ≥2 courses of thoracic irradiation before PBT. Eastern Cooperative Oncology Group (ECOG) performance status was 2 to 3 in 13%. Median time from prior radiation therapy to PBT was 19.9 months. PBT was delivered with conventional fractionation in 58% (median EQD2, 60 Gy), hyperfractionation in 3% (median EQD2, 62.7 Gy), and hypofractionation in 39% (median EQD2, 60.4 Gy). Twenty-four patients (30%) received chemotherapy concurrently with PBT. RESULTS All patients completed PBT as planned. At a median follow-up of 10.7 months after PBT, median overall survival (OS) and progression-free survival (PFS) were 15.2 months and 10.5 months, respectively. Acute and late grade 3 toxicities occurred in 6% and 1%, respectively. Three patients died after PBT from possible radiation toxicity. On multivariate analysis, ECOG performance status ≤1 was associated with OS (hazard ratio, 0.35; 95% confidence interval, 0.15-0.80; P = .014) and PFS (hazard ratio, 0.32; 95% confidence interval, 0.14-0.73; P = .007). CONCLUSIONS This is the largest series to date of PBT reirradiation for recurrent lung cancer and indicates that reirradiation with PBT is well tolerated with acceptable toxicity and encouraging efficacy. ECOG performance status was associated with OS and PFS.
Collapse
Affiliation(s)
- Shahed N Badiyan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Bradford S Hoppe
- University of Florida Proton Therapy Institute, Jacksonville, Florida
| | - Pranshu Mohindra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gary Larson
- Oklahoma Procure Proton Therapy Center, Oklahoma City, Oklahoma
| | | | - Henry Tsai
- New Jersey Procure Proton Therapy Center, Somerset, New Jersey
| | - Jing Zeng
- University of Washington and Seattle Cancer Care Alliance Proton Therapy Center, Seattle, Washington
| | - Ramesh Rengan
- University of Washington and Seattle Cancer Care Alliance Proton Therapy Center, Seattle, Washington
| | - Erica Glass
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sanford Katz
- Willis-Knighton Proton Therapy Center, Shreveport, Louisiana
| | - Carlos Vargas
- Mayo Clinic Arizona Proton Therapy Program, Rochester, Minnesota
| | - Steven J Feigenberg
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
20
|
Zhang R, Li P, Li Q, Qiao Y, Xu T, Ruan P, Song Q, Fu Z. Radiotherapy improves the survival of patients with extensive-disease small-cell lung cancer: a propensity score matched analysis of Surveillance, Epidemiology, and End Results database. Cancer Manag Res 2018; 10:6525-6535. [PMID: 30555258 PMCID: PMC6278721 DOI: 10.2147/cmar.s174801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The survival advantage of radiotherapy for patients with extensive-disease small-cell lung cancer (ED-SCLC) has not been adequately evaluated. Methods We analyzed stage IV SCLC patients enrolled from the Surveillance, Epidemiology, and End Results (SEER) registry through January 2010 and December 2012. Propensity score analysis with 1:1 matching was performed to ensure well-balanced characteristics of all comparison groups. Kaplan-Meier and Cox proportional hazardous model were used to evaluate the overall survival (OS), cancer-specific survival (CSS), and corresponding 95% CI. Results Overall, for all metastatic ED-SCLC, receiving radiotherapy was associated with both improved OS and CSS. Radiotherapy for thoracic lesion and any metastatic sites could significantly improve the OS and CSS, except for brain metastasis. For M1a-SCLC patient, radiotherapy, most likely to the primary site, significantly improved the survival (P<0.001). Furthermore, for those ED-SCLC patients with ≥ 2 metastatic sites, that is, polymetastatic ED-SCLC patients, radiation also significantly improved the median OS from 6.0 to 8.0 months (P=0.015) and the median CSS from 7.0 to 8.0 months (P=0.020). Conclusion The large SEER results support that radiotherapy in addition to chemotherapy might improve the survival of patients with metastatic ED-SCLC.
Collapse
Affiliation(s)
- Rui Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China,
| | - Ping Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China,
| | - Qin Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China,
| | - Yunfeng Qiao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China,
| | - Tangpeng Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China,
| | - Peng Ruan
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China,
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China,
| | - Zhenming Fu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China,
| |
Collapse
|
21
|
A prospective study of the feasibility of FDG-PET/CT imaging to quantify radiation-induced lung inflammation in locally advanced non-small cell lung cancer patients receiving proton or photon radiotherapy. Eur J Nucl Med Mol Imaging 2018; 46:206-216. [PMID: 30229527 DOI: 10.1007/s00259-018-4154-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE This prospective study assessed the feasibility of 18F-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) to quantify radiation-induced lung inflammation in patients with locally advanced non-small cell lung cancer (NSCLC) who received radiotherapy (RT), and compared the differences in inflammation in the ipsilateral and contralateral lungs following proton and photon RT. METHODS Thirty-nine consecutive patients with NSCLC underwent FDG-PET/CT imaging before and after RT on a prospective study. A novel quantitative approach utilized regions of interest placed around the anatomical boundaries of the lung parenchyma and provided lung mean standardized uptake value (SUVmean), global lung glycolysis (GLG), global lung parenchymal glycolysis (GLPG) and total lung volume (LV). To quantify primary tumor metabolic response to RT, an adaptive contrast-oriented thresholding algorithm was applied to measure metabolically active tumor volume (MTV), tumor uncorrected SUVmean, tumor partial volume corrected SUVmean (tumor-PVC-SUVmean), and total lesion glycolysis (TLG). Parameters of FDG-PET/CT scans before and after RT were compared using two-tailed paired t-tests. RESULTS All tumor parameters after either proton or photon RT decreased significantly (p < 0.001). Among the 21 patients treated exclusively with proton RT, no significant increase in PVC-SUVmean or PVC-GLPG was observed in ipsilateral lungs after the PVC parameters of primary tumor were subtracted (p = 0.114 and p = 0.453, respectively). Also, there were no significant increases in SUVmean or GLG of contralateral lungs of patients who received proton RT (p = 0.841, p = 0.241, respectively). In contrast, among the nine patients who received photon RT, there was a statistically significant increase in PVC-GLPG of ipsilateral lung (p < 0.001) and in GLG of contralateral (p = 0.036) lung. In the subset of nine patients who received a combined proton and photon RT, there was a statistically significant increase in PVC-GLPG of ipsilateral lung (p < 0.001). CONCLUSION Our data suggest less induction of inflammatory response in both the ipsilateral and contralateral lungs of patients treated with proton compared to photon or combined proton-photon RT.
Collapse
|
22
|
Bekelman JE, Denicoff A, Buchsbaum J. Randomized Trials of Proton Therapy: Why They Are at Risk, Proposed Solutions, and Implications for Evaluating Advanced Technologies to Diagnose and Treat Cancer. J Clin Oncol 2018; 36:2461-2464. [PMID: 29985746 PMCID: PMC6366815 DOI: 10.1200/jco.2018.77.7078] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Justin E. Bekelman
- Justin E. Bekelman, University of Pennsylvania, Philadelphia, PA; Andrea Denicoff, National Cancer Institute, Bethesda, MD; and Jeffrey Buchsbaum, National Cancer Institute, Bethesda, MD
| | - Andrea Denicoff
- Justin E. Bekelman, University of Pennsylvania, Philadelphia, PA; Andrea Denicoff, National Cancer Institute, Bethesda, MD; and Jeffrey Buchsbaum, National Cancer Institute, Bethesda, MD
| | - Jeffrey Buchsbaum
- Justin E. Bekelman, University of Pennsylvania, Philadelphia, PA; Andrea Denicoff, National Cancer Institute, Bethesda, MD; and Jeffrey Buchsbaum, National Cancer Institute, Bethesda, MD
| |
Collapse
|
23
|
Vyfhuis MAL, Rice S, Remick J, Mossahebi S, Badiyan S, Mohindra P, Simone CB. Reirradiation for locoregionally recurrent non-small cell lung cancer. J Thorac Dis 2018; 10:S2522-S2536. [PMID: 30206496 PMCID: PMC6123190 DOI: 10.21037/jtd.2017.12.50] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
Locoregional failure in non-small cell lung cancer (NSCLC) remains high, and the management for recurrent disease in the setting of prior radiotherapy is difficult. Retreatment options such as surgery or systemic therapy are typically limited or frequently result in suboptimal outcomes. Reirradiation (reRT) of thoracic malignancies may be an optimal strategy for providing definitive local control and offering a new chance of cure. Yet, retreatment with radiation therapy can be challenging for fear of excessive toxicities and the inability to safely deliver definitive (≥60 Gy) doses of reRT. However, with recent improvements in radiation delivery techniques and image-guidance, dose-escalation with reRT is possible and outcomes are encouraging. Here, we present a review of various radiation techniques, clinical outcomes and associated toxicities in patients with locoregionally recurrent NSCLC treated primarily with reRT.
Collapse
Affiliation(s)
- Melissa A L Vyfhuis
- Maryland Proton Treatment Center, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Stephanie Rice
- Maryland Proton Treatment Center, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Jill Remick
- Maryland Proton Treatment Center, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Sina Mossahebi
- Maryland Proton Treatment Center, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Shahed Badiyan
- Maryland Proton Treatment Center, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Pranshu Mohindra
- Maryland Proton Treatment Center, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Charles B Simone
- Maryland Proton Treatment Center, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|
24
|
Verma V, Lin L, Simone CB. Proton Beam Therapy for Bronchogenic Adenoid Cystic Carcinoma: Dosimetry, Toxicities, and Outcomes. Int J Part Ther 2018; 4:1-9. [PMID: 31773012 DOI: 10.14338/ijpt-17-00014.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/23/2018] [Indexed: 12/25/2022] Open
Abstract
Purpose Bronchogenicadenoid cystic carcinoma (ACC) is a rare malignancy particularly challenging to irradiate, largely owing to anatomic location and associated toxicities. Proton beam therapy (PBT) can reduce doses to nearby organs at risk, but only one case report has been published detailing PBT for this neoplasm. Patients and Methods This study was an institutional review board-approved retrospective chart review of all patients at one institution with bronchogenic ACC treated with PBT. Toxicities were assessed per Common Toxicity Criteria for Adverse Events, version 4.0. Results Five patients, median age 67 years (range = 40-97 years), were all symptomatic before PBT. Two patients were debulked before PBT, which was delivered at a median 66.6 Gy (RBE) (range, 57.5-80 Gy (RBE)). Two patients received concurrent platinum-based chemotherapy. Symptoms improved in all patients. Acute toxicities included the following: grade 1 fatigue (n = 3), grade 1 dermatitis (n = 2), grade 1 esophagitis (n = 1), grade 2 fatigue (n = 1), grade 2 dermatitis (n = 1), grade 2 esophagitis (n = 2). There was one case of late radiation fibrosis causing bronchial stenosis and requiring a stent, and another of late grade 1 dysphagia. All grade 2 toxicities occurred in patients receiving concurrent chemoradiotherapy. At median follow-up of 10 months (range = 5-47 months), no patient experienced tumor recurrence and none had symptoms impairing daily functioning or quality of life. Although statistically nonsignificant owing to low sample sizes, dosimetric data revealed that PBT numerically reduced doses, most notably to the heart and to low-dose volumes of the lung. Conclusions This is the largest series to date evaluating PBT for bronchogenic ACC. PBT is associated with low rates of acute and late toxicities and excellent early local control.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Liyong Lin
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|
25
|
Abstract
The finite range of proton beams in tissues offers unique dosimetric advantages that theoretically allow the dose to the target to be escalated while minimizing exposure of surrounding tissues and thereby minimizing radiation-induced toxicity. These theoretical advantages have led to widespread adoption of proton therapy around the world for a wide variety of tumors at different anatomic sites. Many treatment-planning comparisons have shown that proton therapy has substantial dosimetric advantages over conventional photon (X-ray) radiation therapy. However, given the typically significant difference in cost between proton therapy versus conventional photon therapy, strong evidence of proton therapy's clinical benefits in terms of toxicity and survival is warranted. Some findings from retrospective studies, single-arm prospective studies, and a very few randomized clinical trials comparing these modalities are beginning to emerge. In this review, we examine the available data on proton therapy for (non-small cell lung cancer NSCLC). We begin by discussing the unique challenges involved in treating moving targets with significant tissue heterogeneity and the technologic efforts underway to overcome these challenges. We then discuss the rationale for minimizing normal tissue toxicity, particularly pulmonary, cardiac, and hematologic toxicity, within the context of previously unsuccessful attempts at dose escalation for lung cancer. Finally, we explore strategies for accelerating the development of trials aimed at measuring meaningful clinical endpoints and for maximizing the value of proton therapy by personalizing its use for individual patients.
Collapse
Affiliation(s)
- Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|
26
|
Verma V, Choi JI, Simone CB. Proton therapy for small cell lung cancer. Transl Lung Cancer Res 2018; 7:134-140. [PMID: 29876312 PMCID: PMC5960657 DOI: 10.21037/tlcr.2018.04.02] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
The prognosis of limited-stage small cell lung cancer (LS-SCLC) continues to improve and is now roughly comparable to that of locally advanced non-small cell lung cancer (NSCLC). This shift, taken together with the decreased toxicities of modern radiotherapy (RT) for LS-SCLC compared with those reported in historical trials, necessitates further evaluation of whether proton beam therapy (PBT) could further reduce both acute and late toxicities for patients receiving concurrent chemoradiotherapy for LS-SCLC. These notions are discussed theoretically, with an emphasis on cardiac events. This is followed by a review of the published evidence to date demonstrating improved dosimetry with PBT over intensity-modulated RT and encouraging safety and efficacy profiles seen in early clinical reports. In addition to covering technical aspects of PBT for LS-SCLC such as intensity-modulated PBT, image-guidance for PBT, and adaptive planning, this review also discusses the need for increased data on intensity-modulated PBT for LS-SCLC, economic and quality of life analyses for future PBT SCLC studies, careful categorization of cardiac events in these patients, and the role for immunotherapy combined with photon- or proton-based RT for LS-SCLC.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - J. Isabelle Choi
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Charles B. Simone
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Verma V, Simone CB, Mishra MV. Quality of Life and Patient-Reported Outcomes Following Proton Radiation Therapy: A Systematic Review. J Natl Cancer Inst 2018; 110:4430583. [PMID: 29028221 DOI: 10.1093/jnci/djx208] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/05/2017] [Indexed: 09/19/2023] Open
Abstract
Background As costs of cancer care rise, the importance of documenting value in oncology increases. Proton beam radiotherapy (PBT) has the potential to reduce toxicities in cancer patients, but is relatively expensive and unproven. Evaluating quality of life (QOL) and patient-reported outcomes (PROs) is essential to establishing PBT's "value" in oncologic therapy. The goal of this systematic review was to assess QOL and PROs in patients treated with PBT. Methods Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided systematic searches were conducted. The PubMed search engine was the primary data source, along with publications found from references of selected articles, and articles known to the authors published through 2017. Seventeen original investigations were found to have sufficient focus and relevance to be incorporated into the systematic review. Results Studies of skull base (n = 1), brain (n = 1), head/neck (n = 1), lung (n = 1), breast (n = 2), prostate (n = 8), and pediatric (n = 3) malignancies treated with PBT that met eligibility criteria were included. QOL did not deteriorate during PBT for skull base and after PBT for brain tumors, respectively. PROs were higher for PBT than photon-based radiotherapy for both head/neck and lung cancer. Patient-reported breast cosmesis was appropriate after PBT and comparable to photon modalities. PBT in various settings of prostate cancer displayed an expected post-therapy decline; one study showed improved PROs (rectal urgency, bowel frequency) for PBT, and two others showed PROs/QOL comparable with other modalities. Pediatric studies demonstrated improvements in QOL during therapy, with additional increases thereafter. Conclusions Based on limited data, PBT provides favorable QOL/PRO profiles for select brain, head/neck, lung, and pediatric cancers; measures for prostate and breast cancers were more modest. These results have implications for cost-effective cancer care and prudently designed QOL evaluation in ongoing trials, which are discussed. Future data could substantially change the conclusions of this review.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Charles B Simone
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Mark V Mishra
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
28
|
Chao HH, Berman AT. Proton therapy for thoracic reirradiation of non-small cell lung cancer. Transl Lung Cancer Res 2018; 7:153-159. [PMID: 29876314 DOI: 10.21037/tlcr.2018.03.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer is a leading cause of cancer death with frequent local failures after initial curative-intent treatment. Locally recurrent non-small cell lung cancer represents a challenging clinical scenario as patients have often received prior radiation as part of a definitive treatment regimen. Proton beam therapy, through its characteristic Bragg peak and lack of exit dose is a potential means of minimizing the toxicity to previously irradiated organs and improving the therapeutic ratio. This article aims to review the rationale for the use of proton beam therapy for treatment of locally recurrent non-small cell lung cancer, highlight the current published experience on the feasibility, efficacy, and limitations of proton beam reirradiation, and discuss future avenues for improved patient selection and treatment delivery.
Collapse
Affiliation(s)
- Hann-Hsiang Chao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail T Berman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Cutroneo M. Fabrication and characterization of porous opaque PMMA foils to be laser irradiated producing ion acceleration. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201816702008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, the effect of pore size in the opaque poly(methyl methacrylate) and its composition is investigated by optical measurements as well as Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analyses. The enhancement of the absorption coefficient induced by the presence of micrometric beads makes these porous thin foils high absorbent to IR radiation and suitable to be laser irradiated in order to generate a hot plasma rich in proton emission. The presented results indicate that the high optical transparency of PMMA foils can be strongly reduced by the presence of the micrometric acrylic beads and that the presence of high Z-metallic nanoparticles, such as gold, embedded in the polymer enhances the acceleration of emitted ions. The fabricated advanced targets have been irradiated by lasers at low intensity (Messina University) and at high intensity (PALS Research Infrastructure in Prague) generating plasma accelerating high proton yield and energy.
Collapse
|
30
|
Vyfhuis MA, Onyeuku N, Diwanji T, Mossahebi S, Amin NP, Badiyan SN, Mohindra P, Simone CB. Advances in proton therapy in lung cancer. Ther Adv Respir Dis 2018; 12:1753466618783878. [PMID: 30014783 PMCID: PMC6050808 DOI: 10.1177/1753466618783878] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
Lung cancer remains the leading cause of cancer deaths in the United States (US) and worldwide. Radiation therapy is a mainstay in the treatment of locally advanced non-small cell lung cancer (NSCLC) and serves as an excellent alternative for early stage patients who are medically inoperable or who decline surgery. Proton therapy has been shown to offer a significant dosimetric advantage in NSCLC patients over photon therapy, with a decrease in dose to vital organs at risk (OARs) including the heart, lungs and esophagus. This in turn, can lead to a decrease in acute and late toxicities in a population already predisposed to lung and cardiac injury. Here, we present a review on proton treatment techniques, studies, clinical outcomes and toxicities associated with treating both early stage and locally advanced NSCLC.
Collapse
Affiliation(s)
- Melissa A.L. Vyfhuis
- Maryland Proton Treatment Center, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Nasarachi Onyeuku
- Maryland Proton Treatment Center, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Tejan Diwanji
- Maryland Proton Treatment Center, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Sina Mossahebi
- Maryland Proton Treatment Center, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Neha P. Amin
- Maryland Proton Treatment Center, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Shahed N. Badiyan
- Maryland Proton Treatment Center, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Pranshu Mohindra
- Maryland Proton Treatment Center, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Charles B. Simone
- Maryland Proton Treatment Center, University of
Maryland School of Medicine, 850 West Baltimore Street, Baltimore, MD 21201,
USA
| |
Collapse
|
31
|
Haque W, Verma V, Fakhreddine M, Butler EB, Teh BS, Simone CB. Trends in Cardiac Mortality in Patients With Locally Advanced Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2017; 100:470-477. [PMID: 29353659 DOI: 10.1016/j.ijrobp.2017.10.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE To use the Surveillance, Epidemiology, and End Results (SEER) database to compare cardiac-specific mortality (CSM) between left- and right-sided locally advanced non-small cell lung cancer (LA-NSCLC) patients treated with definitive radiation therapy; and to stratify these patients over fixed time intervals to assess for differences in events by treatment era. METHODS AND MATERIALS The SEER database was queried for patients with stage III NSCLC who received radiation therapy to compare CSM between left- and right-sided primary cases at 5 time intervals: 1988-1992, 1993-1997, 1998-2002, 2003-2007, and 2008-2012. Cumulative incidence of CSM was compared between left- and right-sided patients using Gray's test. The multivariate Fine and Gray competing risk model was used to compare CSM while accounting for other-cause mortality. RESULTS Of 884,610 lung cancer patients, 52,624 met inclusion criteria; of these, 31,549 (60%) were right-sided and 21,075 (40%) were left-sided. When evaluating CSM in each of the 5 time periods, the overall incidence of CSM decreased over time. There was a statistically significant (P<.05) difference based on laterality in all time periods except 1988-1992 (P=.14). The subdistribution hazard ratio for CSM based on disease laterality in all time periods was 1.30 (95% confidence interval 1.18-1.42) and did not discernibly differ by time interval. On multivariate analysis using the Fine and Gray competing risk model, left-sided laterality independently predicted for CSS from 1993 to 2007 (P<.05). CONCLUSIONS Cardiac-specific mortality has decreased over time, and left-sided disease independently predicted for CSS during 1993-2007 but not 2008-2012. The time course of cardiac mortality seems to be early, consistent with other studies. These findings underscore the importance of minimizing cardiac irradiation during radiation treatment planning.
Collapse
Affiliation(s)
- Waqar Haque
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas.
| | - Vivek Verma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mohamad Fakhreddine
- Department of Radiation Oncology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - E Brian Butler
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Bin S Teh
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|
32
|
Wang X, Li H, Zhu XR, Hou Q, Liao L, Jiang B, Li Y, Wang P, Lang J, Zhang X. Multiple-CT optimization of intensity-modulated proton therapy - Is it possible to eliminate adaptive planning? Radiother Oncol 2017; 128:167-173. [PMID: 29054378 DOI: 10.1016/j.radonc.2017.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE We hypothesized that a plan's robustness to anatomical changes can be improved by optimizing with multiple CT scans of a patient. The purpose of this study was to determine whether an intensity modulated proton therapy (IMPT) plan could be developed to meet dose criteria on both planning and adaptive CT plans. MATERIAL AND METHODS Eight lung cancer patients who underwent adaptive IMPT were retrospectively selected. Each patient had two CTs: a primary planning CT (PCT) and an adaptive planning CT (ACT), and IMPT plans associated with the scans. PCT and ACT were then used in combination to optimize one plan (MCT plan). The doses to the target and organs at risk from the PCT plan, ACT plan, P-ACT plan (PCT plan calculated on ACT data), and MCT plans calculated on both CTs were compared. RESULTS The MCT plan maintained the D95% on both CTs (mean, 65.99 Gy on PCT and 66.02 Gy on ACT). Target dose coverage on ACT was significantly better with the MCT plan than with the P-ACT plan (p = 0.01). MCT plans had slightly higher lung V20 (0.6%, p = 0.02) than did PCT plans. The various plans showed no statistically significant difference in heart and spinal cord dose. CONCLUSIONS The results of this study indicate that an IMPT plan can meet the dose criteria on both PCT and ACT, and that MCT optimization can improve the plan's robustness to anatomical change.
Collapse
Affiliation(s)
- Xianliang Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA; Key Laboratory of Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China; Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Heng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Xiaorong Ronald Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Qing Hou
- Key Laboratory of Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China
| | - Li Liao
- Global Oncology One, Houston, USA
| | - Bo Jiang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yupeng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Pei Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Chengdu, China
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
33
|
Systematic assessment of clinical outcomes and toxicities of proton radiotherapy for reirradiation. Radiother Oncol 2017; 125:21-30. [DOI: 10.1016/j.radonc.2017.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/06/2017] [Accepted: 08/06/2017] [Indexed: 12/25/2022]
|
34
|
|
35
|
Enrollment of Elderly Patients With Locally Advanced Non–Small Cell Lung Cancer in Multi-institutional Trials of Proton Beam Radiation Therapy. Clin Lung Cancer 2017; 18:441-443. [DOI: 10.1016/j.cllc.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/06/2017] [Indexed: 12/25/2022]
|
36
|
Vogel J, Lin L, Simone CB, Berman AT. Risk of major cardiac events following adjuvant proton versus photon radiation therapy for patients with thymic malignancies. Acta Oncol 2017; 56:1060-1064. [PMID: 28338373 DOI: 10.1080/0284186x.2017.1302097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND While often managed with surgery alone, patients with thymic malignancies with high-risk features may benefit from adjuvant radiation therapy but are at risk for late toxicities. Previously, the risk of major cardiac events (MCEs) was reported to increase by 7% per one Gray (Gy) to the heart. In this study, we compare dose to organs at risk (OARs) with intensity-modulated (IMRT) versus proton beam therapy (PBT). We hypothesize a decrease risk of predicted MCEs with PBT. MATERIAL AND METHODS Patients requiring adjuvant therapy for thymic malignancies were treated with double scattered proton beam therapy (DS-PBT). Clinical backup IMRT plans were generated. Predicted MCEs were calculated based on median dose to the heart. A Wilcoxon rank sum test was used for statistical comparisons. RESULTS Twenty-two consecutive patients were evaluated. DS-PBT resulted in statistically significant decreases in dose to the heart, lungs, left ventricle, esophagus, and spinal cord (all p ≤ .01). The increase in risk of MCEs from 0 to ≥20 years was lower with PBT (74% versus 135%, p = .04). DISCUSSION DS-PBT results in decreased dose to OARs and may reduce the risk of MCEs compared with IMRT. Long-term follow-up is required to assess for clinical benefit from DS-PBT.
Collapse
Affiliation(s)
- Jennifer Vogel
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Liyong Lin
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Charles B. Simone
- Department of Radiation Oncology, University of Maryland Medical Center, Maryland Proton Treatment Center, Baltimore, MD, USA
| | - Abigail T. Berman
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Rwigema JCM, Verma V, Lin L, Berman AT, Levin WP, Evans TL, Aggarwal C, Rengan R, Langer C, Cohen RB, Simone CB. Prospective study of proton-beam radiation therapy for limited-stage small cell lung cancer. Cancer 2017; 123:4244-4251. [PMID: 28678434 DOI: 10.1002/cncr.30870] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/09/2017] [Accepted: 05/30/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Existing data supporting the use of proton-beam therapy (PBT) for limited-stage small cell lung cancer (LS-SCLC) are limited to a single 6-patient case series. This is the first prospective study to evaluate clinical outcomes and toxicities of PBT for LS-SCLC. METHODS This study prospectively analyzed patients with primary, nonrecurrent LS-SCLC definitively treated with PBT and concurrent chemotherapy from 2011 to 2016. Clinical backup intensity-modulated radiotherapy (IMRT) plans were generated for each patient and were compared with PBT plans. Outcome measures included local control (LC), recurrence-free survival (RFS), and overall survival (OS) rates and toxicities. RESULTS Thirty consecutive patients were enrolled and evaluated. The median dose was 63.9 cobalt gray equivalents (range, 45-66.6 cobalt gray equivalents) in 33 to 37 fractions delivered daily (n = 18 [60.0%]) or twice daily (n = 12 [40.0%]). The concurrent chemotherapy was cisplatin/etoposide (n = 21 [70.0%]) or carboplatin/etoposide (n = 9 [30.0%]). In comparison with the backup IMRT plans, PBT allowed statistically significant reductions in the cord, heart, and lung mean doses and the volume receiving at least 5 Gy but not in the esophagus mean dose or the lung volume receiving at least 20 Gy. At a median follow-up of 14 months, the 1-/2-year LC and RFS rates were 85%/69% and 63%/42%, respectively. The median OS was 28.2 months, and the 1-/2-year OS rates were 72%/58%. There was 1 case each (3.3%) of grade 3 or higher esophagitis, pneumonitis, anorexia, and pericardial effusion. Grade 2 pneumonitis and esophagitis were seen in 10.0% and 43.3% of patients, respectively. CONCLUSIONS In the first prospective registry study and largest analysis to date of PBT for LS-SCLC, PBT was found to be safe with a limited incidence of high-grade toxicities. Cancer 2017;123:4244-4251. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Jean-Claude M Rwigema
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Vivek Verma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Liyong Lin
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abigail T Berman
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - William P Levin
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tracey L Evans
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charu Aggarwal
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington
| | - Corey Langer
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roger B Cohen
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Remick JS, Schonewolf C, Gabriel P, Doucette A, Levin WP, Kucharczuk JC, Singhal S, Pechet TT, Rengan R, Simone CB, Berman AT. First Clinical Report of Proton Beam Therapy for Postoperative Radiotherapy for Non–Small-Cell Lung Cancer. Clin Lung Cancer 2017; 18:364-371. [DOI: 10.1016/j.cllc.2016.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022]
|
39
|
Vogel J, Lin L, Litzky LA, Berman AT, Simone CB. Predicted Rate of Secondary Malignancies Following Adjuvant Proton Versus Photon Radiation Therapy for Thymoma. Int J Radiat Oncol Biol Phys 2017; 99:427-433. [PMID: 28871993 DOI: 10.1016/j.ijrobp.2017.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/10/2017] [Accepted: 04/14/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE Thymic malignancies are the most common tumors of the anterior mediastinum. The benefit of adjuvant radiation therapy for stage II disease remains controversial, and patients treated with adjuvant radiation therapy are at risk of late complications, including radiation-induced secondary malignant neoplasms (SMNs), that may reduce the overall benefit of treatment. We assess the risk of predicted SMNs following adjuvant proton radiation therapy compared with photon radiation therapy after resection of stage II thymic malignancies to determine whether proton therapy improves the risk-benefit ratio. METHODS AND MATERIALS Ten consecutive patients treated with double-scattered proton beam radiation therapy (DS-PBT) were prospectively enrolled in an institutional review board-approved proton registry study. All patients were treated with DS-PBT. Intensity modulated radiation therapy (IMRT) plans for comparison were generated. SMN risk was calculated based on organ equivalent dose. RESULTS Patients had a median age of 65 years (range, 25-77 years), and 60% were men. All patients had stage II disease, and many had close or positive margins (60%). The median dose was 50.4 Gy (range, 50.4-54.0 Gy) in 1.8-Gy relative biological effectiveness daily fractions. No differences in target coverage were seen with DS-PBT compared with IMRT plans. Significant reductions were seen in mean and volumetric lung, heart, and esophageal doses with DS-PBT compared with IMRT plans (all P≤.01). Significant reductions in SMNs in the lung, breast, esophagus, skin, and stomach were seen with DS-PBT compared with IMRT. For patients with thymoma diagnosed at the median national age, 5 excess secondary malignancies per 100 patients would be avoided by treating them with protons instead of photons. CONCLUSIONS Treatment with proton therapy can achieve comparable target coverage but significantly reduced doses to critical normal structures, which can lead to fewer predicted SMNs compared with IMRT. By decreasing expected late complications, proton therapy may improve the therapeutic ratio of adjuvant radiation therapy for patients with stage II thymic malignancies.
Collapse
Affiliation(s)
- J Vogel
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - L Lin
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - L A Litzky
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - A T Berman
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - C B Simone
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|
40
|
Multi-Institutional Prospective Study of Reirradiation with Proton Beam Radiotherapy for Locoregionally Recurrent Non–Small Cell Lung Cancer. J Thorac Oncol 2017; 12:281-292. [DOI: 10.1016/j.jtho.2016.10.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022]
|
41
|
Chang JY, Zhang W, Komaki R, Choi NC, Chan S, Gomez D, O'Reilly M, Jeter M, Gillin M, Zhu X, Zhang X, Mohan R, Swisher S, Hahn S, Cox JD. Long-term outcome of phase I/II prospective study of dose-escalated proton therapy for early-stage non-small cell lung cancer. Radiother Oncol 2017; 122:274-280. [PMID: 28139305 PMCID: PMC5319887 DOI: 10.1016/j.radonc.2016.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this phase I/II study was to assess the long-term clinical benefits and toxicities of proton beam therapy for medically inoperable early-stage non-small cell lung cancer (NSCLC). PATIENTS AND METHODS From June 2006 to September 2011, 35 patients with medically inoperable T1N0M0 (central or superior location, 12 patients) or T2-3N0M0 (any location, 23 patients) NSCLC were treated with 87.5Gy at 2.5Gy/fraction of proton therapy. Toxicities were scored according to the Common Terminology Criteria for Adverse Events, version 4.0. RESULTS The median follow-up time was 83.1months (95% CI: 69.2-97.1months). For all 35 patients, the 1, 3, and 5-year overall survival rates were 85.7%, 42.9%, and 28.1%, respectively. The 5-year local recurrence-free, regional recurrence-free, and distant metastasis-free survival rates were 85.0%, 89.2%, and 54.4%, respectively. Different T stages had no effect on local and regional recurrence (p=0.499, p=1.00). However, with the increase in T stages, the distant metastasis rate increased significantly (p=0.006). The most common adverse effects were dermatitis (grade 2, 51.4%; grade 3, 2.9%) and radiation pneumonitis (grade 2, 11.4%; grade 3, 2.9%). Other grade 2 toxicities included esophagitis (2.9%), rib fracture (2.9%), heart toxicities (5.7%), and chest wall pain (2.9%). CONCLUSIONS According to our long-term follow-up data, proton therapy with ablative doses is well tolerated and effective in medically inoperable early-stage NSCLC. Systemic therapy should be considered to reduce the rate of distant metastasis in cases of T2 and T3 lesions.
Collapse
Affiliation(s)
- Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States.
| | - Wencheng Zhang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Noah C Choi
- Department of Radiation Oncology, MGH, Harvard Medical School, United States
| | - Shen Chan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Daniel Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Michael O'Reilly
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Melenda Jeter
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Michael Gillin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Xiaorong Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Stephen Hahn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - James D Cox
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| |
Collapse
|
42
|
Verma V, Lin SH, Simone CB, Mehta MP. Clinical outcomes and toxicities of proton radiotherapy for gastrointestinal neoplasms: a systematic review. J Gastrointest Oncol 2016; 7:644-64. [PMID: 27563457 DOI: 10.21037/jgo.2016.05.06] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Proton beam radiotherapy (PBT) is frequently shown to be dosimetrically superior to photon radiotherapy (RT), though supporting data for clinical benefit are severely limited. Because of the potential for toxicity reduction in gastrointestinal (GI) malignancies, we systematically reviewed the literature on clinical outcomes (survival/toxicity) of PBT. METHODS A systematic search of PubMed, EMBASE, abstracts from meetings of the American Society for Radiation Oncology, Particle Therapy Co-Operative Group, and American Society of Clinical Oncology was conducted for publications from 2000-2015. Thirty-eight original investigations were analyzed. RESULTS Although results of PBT are not directly comparable to historical data, outcomes roughly mirror previous data, generally with reduced toxicities for PBT in some neoplasms. For esophageal cancer, PBT is associated with reduced toxicities, postoperative complications, and hospital stay as compared to photon radiation, while achieving comparable local control (LC) and overall survival (OS). In pancreatic cancer, numerical survival for resected/unresected cases is also similar to existing photon data, whereas grade ≥3 nausea/emesis and post-operative complications are numerically lower than those reported with photon RT. The strongest data in support of PBT for HCC comes from phase II trials demonstrating very low toxicities, and a phase III trial of PBT versus transarterial chemoembolization demonstrating trends towards improved LC and progression-free survival (PFS) with PBT, along with fewer post-treatment hospitalizations. Survival and toxicity data for cholangiocarcinoma, liver metastases, and retroperitoneal sarcoma are also roughly equivalent to historical photon controls. There are two small reports for gastric cancer and three for anorectal cancer; these are not addressed further. CONCLUSIONS Limited quality (and quantity) of data hamper direct comparisons and conclusions. However, the available data, despite the inherent caveats and limitations, suggest that PBT offers the potential to achieve significant reduction in treatment-related toxicities without compromising survival or LC for multiple GI malignancies. Several randomized comparative trials are underway that will provide more definitive answers.
Collapse
Affiliation(s)
- Vivek Verma
- 1 Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA ; 2 Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA ; 3 Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; 4 Miami Cancer Institute, Baptist Health South Florida, Coral Gables, FL, USA
| | - Steven H Lin
- 1 Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA ; 2 Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA ; 3 Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; 4 Miami Cancer Institute, Baptist Health South Florida, Coral Gables, FL, USA
| | - Charles B Simone
- 1 Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA ; 2 Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA ; 3 Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; 4 Miami Cancer Institute, Baptist Health South Florida, Coral Gables, FL, USA
| | - Minesh P Mehta
- 1 Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA ; 2 Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA ; 3 Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ; 4 Miami Cancer Institute, Baptist Health South Florida, Coral Gables, FL, USA
| |
Collapse
|
43
|
Simone CB, Houshmand S, Kalbasi A, Salavati A, Alavi A. PET-Based Thoracic Radiation Oncology. PET Clin 2016; 11:319-32. [DOI: 10.1016/j.cpet.2016.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Giaddui T, Chen W, Yu J, Lin L, Simone CB, Yuan L, Gong YUT, Wu QJ, Mohan R, Zhang X, Bluett JB, Gillin M, Moore K, O'Meara E, Presley J, Bradley JD, Liao Z, Galvin J, Xiao Y. Establishing the feasibility of the dosimetric compliance criteria of RTOG 1308: phase III randomized trial comparing overall survival after photon versus proton radiochemotherapy for inoperable stage II-IIIB NSCLC. Radiat Oncol 2016; 11:66. [PMID: 27142674 PMCID: PMC4855766 DOI: 10.1186/s13014-016-0640-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background To establish the feasibility of the dosimetric compliance criteria of the RTOG 1308 trial through testing against Intensity Modulation Radiation Therapy (IMRT) and Passive Scattering Proton Therapy (PSPT) plans. Methods Twenty-six lung IMRT and 26 proton PSPT plans were included in the study. Dose Volume Histograms (DVHs) for targets and normal structures were analyzed. The quality of IMRT plans was assessed using a knowledge-based engineering tool. Results Most of the RTOG 1308 dosimetric criteria were achieved. The deviation unacceptable rates were less than 10 % for most criteria; however, a deviation unacceptable rate of more than 20 % was computed for the planning target volume minimum dose compliance criterion. Dose parameters for the target volume were very close for the IMRT and PSPT plans. However, the PSPT plans led to lower dose values for normal structures. The dose parameters in which PSPT plans resulted in lower values than IMRT plans were: lung V5Gy (%) (34.4 in PSPT and 47.2 in IMRT); maximum spinal cord dose (31.7 Gy in PSPT and 43.5 Gy in IMRT); heart V5Gy (%) (19 in PSPT and 47 in IMRT); heart V30Gy (%) (11 in PSPT and 19 in IMRT); heart V45Gy (%) (7.8 in PSPT and 12.1 in IMRT); heart V50% (Gy) (7.1 in PSPT and 9.8 in IMRT) and mean heart dose (7.7 Gy in PSPT and 14.9 Gy in IMRT). Conclusions The revised RTOG 1308 dosimetric compliance criteria are feasible and achievable.
Collapse
Affiliation(s)
- Tawfik Giaddui
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Wenzhou Chen
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jialu Yu
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Liyong Lin
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Yutao U T Gong
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | - Kevin Moore
- University of California, San Diego, CA, USA
| | - Elizabeth O'Meara
- Imaging and Radiation Oncology Core (IROC) Philadelphia-RT QA Center, Philadelphia, PA, USA
| | - Jennifer Presley
- Imaging and Radiation Oncology Core (IROC) Philadelphia-RT QA Center, Philadelphia, PA, USA
| | | | | | - James Galvin
- Imaging and Radiation Oncology Core (IROC) Philadelphia-RT QA Center, Philadelphia, PA, USA
| | - Ying Xiao
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Veiga C, Janssens G, Teng CL, Baudier T, Hotoiu L, McClelland JR, Royle G, Lin L, Yin L, Metz J, Solberg TD, Tochner Z, Simone CB, McDonough J, Kevin Teo BK. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer. Int J Radiat Oncol Biol Phys 2016; 95:549-559. [DOI: 10.1016/j.ijrobp.2016.01.055] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/25/2022]
|
46
|
Simone CB, Burri SH, Heinzerling JH. Novel radiotherapy approaches for lung cancer: combining radiation therapy with targeted and immunotherapies. Transl Lung Cancer Res 2015; 4:545-52. [PMID: 26629423 DOI: 10.3978/j.issn.2218-6751.2015.10.05] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Targeted therapies and immunotherapies have quickly become fixtures in the treatment armamentarium for metastatic non-small cell lung cancer (NSCLC). Targeted therapies directed against epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) translocations, and ROS-1 rearrangements have demonstrated improved progression free survival (PFS) and, in selected populations, improved overall survival (OS) compared with cytotoxic chemotherapy. Immunotherapies, including checkpoint inhibitor monoclonal antibodies against programmed death receptor 1 (PD-1) and programmed death ligand 1 (PD-L1), have now also demonstrated improved survival compared with chemotherapy. The use of these novel systemic agents in non-metastatic patient populations and in combination with radiation therapy is not well defined. As radiation therapy has become more effective and more conformal with fewer toxicities, it has increasingly been used in the oligometastatic or oligoprogression setting. This has allowed improvement in PFS and potentially OS, and in the oligoprogressive setting may overcome acquired drug resistance of a specific lesion(s) to allow patients to remain on their targeted therapies. Molecularly targeted therapies and immunotherapies for patients with metastatic NSCLC have demonstrated much success. Advances in radiation therapy and stereotactic body radiotherapy, radiation therapy have led to combination strategies with targeted therapies among patients with lung cancer. Radiation therapy has also been combined with immunotherapies predominantly in the metastatic setting. In the metastatic population, radiation therapy has the ability to provide durable local control and also augment the immune response of systemic agents, which may lead to an abscopal effect of immune-mediated tumor response in disease sites outside of the radiation field in select patients.
Collapse
Affiliation(s)
- Charles B Simone
- 1 Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA ; 2 Department of Radiation Oncology, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC, USA
| | - Stuart H Burri
- 1 Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA ; 2 Department of Radiation Oncology, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC, USA
| | - John H Heinzerling
- 1 Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA ; 2 Department of Radiation Oncology, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC, USA
| |
Collapse
|
47
|
Kim SB, Bozeman RG, Kaisani A, Kim W, Zhang L, Richardson JA, Wright WE, Shay JW. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses. Oncogene 2015; 35:3365-75. [PMID: 26477319 PMCID: PMC4837107 DOI: 10.1038/onc.2015.395] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022]
Abstract
Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA.
Collapse
Affiliation(s)
- S B Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R G Bozeman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A Kaisani
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - L Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J A Richardson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Applications of Fluorodeoxyglucose PET/Computed Tomography in the Assessment and Prediction of Radiation Therapy–related Complications. PET Clin 2015; 10:555-71. [DOI: 10.1016/j.cpet.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Simone CB, Berman AT, Jabbour SK. Harnessing the potential synergy of combining radiation therapy and immunotherapy for thoracic malignancies. Transl Lung Cancer Res 2007; 6:109-112. [PMID: 28529893 DOI: 10.21037/tlcr.2017.04.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Abigail T Berman
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
50
|
Alley EW, Katz SI, Cengel KA, Simone CB. Immunotherapy and radiation therapy for malignant pleural mesothelioma. Transl Lung Cancer Res 2007; 6:212-219. [PMID: 28529903 DOI: 10.21037/tlcr.2017.04.01] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a particularly aggressive thoracic malignancy with limited survival following combination chemotherapy. As a result, there has been increased interested in immunotherapy for mesothelioma, both in the first-line and salvage settings. Early investigations of interleukin-2 (IL-2) and interferon alfa-2a/b have been limited by modest response rates and toxicity, whereas cytokine gene therapy is currently being investigated and shows early promise. The most prominent class of immunotherapies to be trialed with mesothelioma in the past half-decade has been immune checkpoint inhibitors (CPI). Early results are encouraging, particularly for agents targeting the PD-1/PD-L1 pathways. With the increasing recognition of the immune potential of mesothelioma, interest in the immunomodulatory properties of radiation therapy has emerged. The combination of immunotherapy and radiation therapy may allow for complimentary immunologic effects that can enhance antitumor response. This article reviews the existing literature on the efficacy of immunotherapy for MPM, describes the rationale for combining immunotherapy with radiation therapy, and discusses early literature on this treatment combination.
Collapse
Affiliation(s)
- Evan W Alley
- Hematology and Oncology Division, Penn Presbyterian Medical Center, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Sharyn I Katz
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Keith A Cengel
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|