1
|
Alexander JP, Mooney SM. Neonatal paw pricking alters adolescent behavior in a sex-dependent manner and sucrose partially remediates the effects. Physiol Behav 2024:114695. [PMID: 39288866 DOI: 10.1016/j.physbeh.2024.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Neonatal exposure to noxious stimuli such as repeated heel lances can cause behavior changes. In the NICU sucrose given prior to procedures attenuates the immediate behavioral response to noxious stimuli but may not ameliorate the long-term consequences, and treatment with 24% sucrose can brain structure and behavior in adult rodents. We used a rat model to determine whether paw pricks during the neonatal period alter social interaction and/or paw withdrawal thresholds (PWT) in adolescence, and if 7% sucrose mitigates these effects. One male and one female pup per litter was assigned to each of six experimental groups (no paw prick (control), 1 paw prick (1PP), or 2PP, ± sucrose). Hind paws were pricked once or twice each day between postnatal day (P)3 and P10. Social behavior and PWT were tested in adolescence using the modified social interaction test and von Frey filaments, respectively. Social behavior was altered in the 2PP group; total time interacting was lower in 2PP rats, primarily due to less time sniffing a play partner. Sucrose did not mitigate effects of paw prick but trended to alter social behaviors in males; it decreased time in contact but increased social motivation (movement toward a play partner). PWTs were higher in 2PP animals, this was not altered by sucrose. Thus, rat pups exposed to paw pricks in the neonatal period have some altered behaviors in adolescence. The nature of the behavioral changes is sex-dependent, but sucrose did not mitigate these changes.
Collapse
Affiliation(s)
- Jennifer P Alexander
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St, Baltimore MD
| | - Sandra M Mooney
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St, Baltimore MD.
| |
Collapse
|
2
|
Norris MR, Kuo CC, Dunn SS, Kim JR, Becker LJ, Borges G, Thang LV, Parker KE, McCall JG. Mu opioid receptors gate the locus coeruleus pain generator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.562785. [PMID: 37961541 PMCID: PMC10634678 DOI: 10.1101/2023.10.20.562785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The locus coeruleus (LC) plays a paradoxical role in chronic pain. Although largely known as a potent source of endogenous analgesia, increasing evidence suggests injury can transform the LC into a chronic pain generator. We sought to clarify the role of this system in pain. Here, we show optogenetic inhibition of LC activity is acutely antinociceptive. Following long-term spared nerve injury, the same LC inhibition is analgesic - further supporting its pain generator function. To identify inhibitory substrates that may naturally serve this function, we turned to endogenous LC mu opioid receptors (LC-MOR). These receptors provide powerful LC inhibition and exogenous activation of LC-MOR is antinociceptive. We therefore hypothesized that endogenous LC-MOR-mediated inhibition is critical to how the LC modulates pain. Using cell type-selective conditional knockout and rescue of LC-MOR receptor signaling, we show these receptors bidirectionally regulate thermal and mechanical hyperalgesia - providing a functional gate on the LC pain generator.
Collapse
Affiliation(s)
- Makenzie R. Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Samantha S. Dunn
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jenny R. Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Léa J. Becker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Gustavo Borges
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Loc V. Thang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Kyle E. Parker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Centeno MV, Alam MS, Haldar K, Apkarian AV. Long-range action of an HDAC inhibitor treats chronic pain in a spared nerve injury rat model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571583. [PMID: 38168166 PMCID: PMC10760082 DOI: 10.1101/2023.12.13.571583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Histone deacetylase inhibitors (HDACi) that modulate epigenetic regulation and are approved for treating rare cancers have, in disease models, also been shown to mitigate neurological conditions, including chronic pain. They are of interest as non-opioid treatments, but achieving long-term efficacy with limited dosing has remained elusive. Here we utilize a triple combination formulation (TCF) comprised of a pan-HDACi vorinostat (Vo at its FDA-approved daily dose of 50mg/Kg), the caging agent 2-hydroxypropyl-β-cyclodextrin (HPBCD) and polyethylene glycol (PEG) known to boost plasma and brain exposure and efficacy of Vo in mice and rats, of various ages, spared nerve injury (SNI) model of chronic neuropathic pain. Administration of the TCF (but not HPBCD and PEG) decreased mechanical allodynia for 4 weeks without antagonizing weight, anxiety, or mobility. This was achieved at less than 1% of the total dose of Vo approved for 4 weeks of tumor treatment and associated with decreased levels of major inflammatory markers and microglia in ipsilateral (but not contralateral) spinal cord regions. A single TCF injection was sufficient for 3-4 weeks of efficacy: this was mirrored in repeat injections, specific for the injured paw and not seen on sham treatment. Pharmacodynamics in an SNI mouse model suggested pain relief was sustained for days to weeks after Vo elimination. Doubling Vo in a single TCF injection proved effectiveness was limited to male rats, where the response amplitude tripled and remained effective for > 2 months, an efficacy that outperforms all currently available chronic pain pharmacotherapies. Together, these data suggest that through pharmacological modulation of Vo, the TCF enables single-dose effectiveness with extended action, reduces long-term HDACi dosage, and presents excellent potential to develop as a non-opioid treatment option for chronic pain.
Collapse
Affiliation(s)
- Maria Virginia Centeno
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Md Suhail Alam
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana 46556
| | - Kasturi Haldar
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana 46556
| | - Apkar Vania Apkarian
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
4
|
Norris MR, Dunn SS, Aravamuthan BR, McCall JG. Spared nerve injury causes motor phenotypes unrelated to pain in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548155. [PMID: 37461475 PMCID: PMC10350052 DOI: 10.1101/2023.07.07.548155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Most animal models of neuropathic pain use targeted nerve injuries quantified with motor reflexive measures in response to an applied noxious stimulus. These motor reflexive measures can only accurately represent a pain response if motor function in also intact. The commonly used spared nerve injury (SNI) model, however, damages the tibial and common peroneal nerves that should result in motor phenotypes (i.e., an immobile or "flail" foot) not typically captured in sensory assays. To test the extent of these issues, we used DeepLabCut, a deep learning-based markerless pose estimation tool to quantify spontaneous limb position in C57BL/6J mice during tail suspension following either SNI or sham surgery. Using this granular detail, we identified the expected flail foot-like impairment, but we also found SNI mice hold their injured limb closer to the body midline compared to shams. These phenotypes were not present in the Complete Freunds Adjuvant model of inflammatory pain and were not reversed by multiple analgesics with different mechanisms of action, suggesting these SNI-specific phenotypes are not directly related to pain. Together these results suggest SNI causes previously undescribed phenotypes unrelated to altered sensation that are likely underappreciated while interpreting preclinical pain research outcomes.
Collapse
Affiliation(s)
- Makenzie R. Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha S. Dunn
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Bhooma R. Aravamuthan
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Millecamps M, Sotocinal SG, Austin JS, Stone LS, Mogil JS. Sex-specific effects of neuropathic pain on long-term pain behavior and mortality in mice. Pain 2023; 164:577-586. [PMID: 35916733 DOI: 10.1097/j.pain.0000000000002742] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Human epidemiological studies suggest that chronic pain can increase mortality risk. We investigated whether this was true in mice so that underlying mechanisms might be identified. At 10 weeks of age, C57BL/6 mice of both sexes received sham or spared nerve injury (SNI) surgery producing neuropathic pain. Mice were weighed monthly, tested behaviorally for mechanical and cold sensitivity and guarding behavior every 3 months postsurgery, and otherwise left undisturbed in their cages until death by natural causes. Evidence of pain over the lifespan displayed a strikingly sex-specific pattern. Male mice displayed largely stable mechanical and cold hypersensitivity and guarding at 6 to 30 months post-SNI. By contrast, female mice displayed a biphasic temporal pattern of mechanical hypersensitivity and guarding behavior, with a complete resolution of SNI-induced pain behavior at 6 to 9 months post-SNI followed by the return of pain thereafter. Mouse lifespan was not significantly altered by SNI in either sex nor was frailty as assessed by cage inspection in the last 6 months of life. However, in male mice with SNI, we observe a significant correlation between average lifetime mechanical hypersensitivity and lifespan, such that death occurred sooner in male mice exhibiting more evidence of chronic pain. This relationship was not observed in female SNI mice nor in sham-operated mice of either sex. This experiment is the first to investigate pain behavior over an entire adult lifetime and suggests that biology of relevance to human chronic pain is being ignored by the very short timespans of most extant preclinical pain research.
Collapse
Affiliation(s)
- Magali Millecamps
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Susana G Sotocinal
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | | | - Laura S Stone
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, United States
| | - Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Nothem MA, Wickman JR, Giacometti LL, Barker JM. Effects of ethanol on mechanical allodynia and dynamic weight bearing in male and female mice with spared nerve injury. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:382-394. [PMID: 36521835 PMCID: PMC9992011 DOI: 10.1111/acer.14997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Men and women with chronic pain report increased alcohol use and are more likely to be diagnosed with alcohol use disorder. The relationship between alcohol use and pain is bidirectional. Alcohol is used as an analgesic, but chronic alcohol intake increases pain. Sex differences in the relationship between chronic pain and alcohol are reported in the clinical and preclinical literature, but due to this bidirectional relationship, it is challenging to investigate the mechanisms that contribute to these differences. Thus, animal models of chronic pain are needed to characterize the efficacy of ethanol as an analgesic in males and females. The current experiments tested the hypothesis that ethanol differentially reduces pain behaviors in male and female mice in chronic neuropathic pain. METHODS The spared nerve injury (SNI) model was used to investigate the analgesic effects of multiple doses of ethanol (0.5, 1, 2, g/kg i.p.) in male and female mice using von Frey and dynamic weight-bearing (DWB) assays. RESULTS In both male and female mice, SNI led to robust allodynia and shifts in dynamic weight bearing. In male SNI mice, all three doses of ethanol fully reversed mechanical allodynia and shifts in DWB. In SNI females, only the highest dose (2.0 g/kg) was fully antiallodynic in the von Frey assay, while shifts in weight bearing were reversed at the 1.0 and 2.0 g/kg doses. The differences between male and females were not due to lower blood ethanol concentrations in female mice. CONCLUSION These data indicate that while ethanol has antiallodynic and antinociceptive effects in male and female mice, the doses and time course of these effects are distinct. Studies investigating the relationship between pain and ethanol exposure in mice should consider sex as a key variable. These data also inform reported sex differences in rodent models of chronic pain and in chronic pain patients.
Collapse
Affiliation(s)
- Mitchell A Nothem
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - Jason R Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
- Graduate Program in Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| |
Collapse
|
7
|
Singh SP, Guindon J, Mody PH, Ashworth G, Kopel J, Chilakapati S, Adogwa O, Neugebauer V, Burton MD. Pain and aging: A unique challenge in neuroinflammation and behavior. Mol Pain 2023; 19:17448069231203090. [PMID: 37684099 PMCID: PMC10552461 DOI: 10.1177/17448069231203090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic pain is one of the most common, costly, and potentially debilitating health issues facing older adults, with attributable costs exceeding $600 billion annually. The prevalence of pain in humans increases with advancing age. Yet, the contributions of sex differences, age-related chronic inflammation, and changes in neuroplasticity to the overall experience of pain are less clear, given that opposing processes in aging interact. This review article examines and summarizes pre-clinical research and clinical data on chronic pain among older adults to identify knowledge gaps and provide the base for future research and clinical practice. We provide evidence to suggest that neurodegenerative conditions engender a loss of neural plasticity involved in pain response, whereas low-grade inflammation in aging increases CNS sensitization but decreases PNS sensitivity. Insights from preclinical studies are needed to answer mechanistic questions. However, the selection of appropriate aging models presents a challenge that has resulted in conflicting data regarding pain processing and behavioral outcomes that are difficult to translate to humans.
Collapse
Affiliation(s)
- Shishu Pal Singh
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Josee Guindon
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Prapti H Mody
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Gabriela Ashworth
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jonathan Kopel
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sai Chilakapati
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Owoicho Adogwa
- Department of Neurosurgery, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Volker Neugebauer
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
8
|
Calderon-Rivera A, Gomez K, Loya-López S, Wijeratne EK, Stratton H, Tang C, Duran P, Masterson K, Alsbiei O, Gunatilaka AL, Khanna R. Betulinic acid analogs inhibit N- and T-type voltage-gated calcium channels to attenuate nerve-injury associated neuropathic and formalin models of pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100116. [PMID: 36687466 PMCID: PMC9853350 DOI: 10.1016/j.ynpai.2023.100116] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Over the past three decades, there has been a significant growth in the use of natural products, with approximately 80% of individuals using them for some aspect of primary healthcare. Our laboratories have identified and studied natural compounds with analgesic effects from dry land plants or their associated fungus during the past ten years. Here, we isolated and characterized thirteen betulin analogs and fifteen betulinic acid analogs for their capacity to prevent calcium influx brought on by depolarization in sensory neurons. The in vitro inhibition of voltage-gated calcium channels by the top drugs was then assessed using whole cell patch clamp electrophysiology. In vivo experiments, conducted at two sites, evaluated the best compound in acute and tonic, neuropathic, inflammatory, post-operative and visceral models of pain. We found that the betulinic acid analog 8 inhibited calcium influx in rat dorsal root ganglion neurons by inhibiting N- (CaV2.2) and T- (CaV3) type voltage-gated calcium channels. Moreover, intrathecal delivery of analog 8 had analgesic activity in both spared nerve injury model of neuropathic pain and acute and tonic pain induced by formalin. The results presented herein highlight the potential antinociceptive properties of betulinic acid analog 8 and set the stage for the development of novel non-opioid pain therapeutics based on the triterpenoid scaffold of betulinic acid.
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - E.M. Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Harrison Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Kyleigh Masterson
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Omar Alsbiei
- NYU Pain Research Center, New York University, New York, NY, United States
| | - A.A. Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| |
Collapse
|
9
|
Takeda I, Yoshihara K, Cheung DL, Kobayashi T, Agetsuma M, Tsuda M, Eto K, Koizumi S, Wake H, Moorhouse AJ, Nabekura J. Controlled activation of cortical astrocytes modulates neuropathic pain-like behaviour. Nat Commun 2022; 13:4100. [PMID: 35835747 PMCID: PMC9283422 DOI: 10.1038/s41467-022-31773-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic pain is a major public health problem that currently lacks effective treatment options. Here, a method that can modulate chronic pain-like behaviour induced by nerve injury in mice is described. By combining a transient nerve block to inhibit noxious afferent input from injured peripheral nerves, with concurrent activation of astrocytes in the somatosensory cortex (S1) by either low intensity transcranial direct current stimulation (tDCS) or via the chemogenetic DREADD system, we could reverse allodynia-like behaviour previously established by partial sciatic nerve ligation (PSL). Such activation of astrocytes initiated spine plasticity to reduce those synapses formed shortly after PSL. This reversal from allodynia-like behaviour persisted well beyond the active treatment period. Thus, our study demonstrates a robust and potentially translational approach for modulating pain, that capitalizes on the interplay between noxious afferents, sensitized central neuronal circuits, and astrocyte-activation induced synaptic plasticity. Astrocytes may contribute to synaptic remodelling in the cortex in chronic pain states. Here the authors describe modulation of astrocyte activity to drive circuit reorganization in somatosensory cortex in mice, along with peripheral nerve block, which could be a potential therapeutic approach for the treatment of chronic pain.
Collapse
Affiliation(s)
- Ikuko Takeda
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy and Molecular Cell Biology Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kohei Yoshihara
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Dennis L Cheung
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tomoko Kobayashi
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kei Eto
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Japan.,Center of Optical Scattering Image Science Department of Systems Science, Kobe University, Kobe, Japan
| | - Andrew J Moorhouse
- Department of Physiology, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan. .,Graduate School of Medicine, Nagoya University, Nagoya, Japan. .,Department of Physiological Sciences, Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan.
| |
Collapse
|
10
|
Muralidharan A, Sotocinal SG, Yousefpour N, Akkurt N, Lima LV, Tansley S, Parisien M, Wang C, Austin JS, Ham B, Dutra GM, Rousseau P, Maldonado-Bouchard S, Clark T, Rosen SF, Majeed MR, Silva O, Nejade R, Li X, Donayre Pimentel S, Nielsen CS, Neely GG, Autexier C, Diatchenko L, Ribeiro-da-Silva A, Mogil JS. Long-term male-specific chronic pain via telomere- and p53‑mediated spinal cord cellular senescence. J Clin Invest 2022; 132:e151817. [PMID: 35426375 PMCID: PMC9012275 DOI: 10.1172/jci151817] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Mice with experimental nerve damage can display long‑lasting neuropathic pain behavior. We show here that 4 months and later after nerve injury, male but not female mice displayed telomere length (TL) reduction and p53‑mediated cellular senescence in the spinal cord, resulting in maintenance of pain and associated with decreased lifespan. Nerve injury increased the number of p53‑positive spinal cord neurons, astrocytes, and microglia, but only in microglia was the increase male‑specific, matching a robust sex specificity of TL reduction in this cell type, which has been previously implicated in male‑specific pain processing. Pain hypersensitivity was reversed by repeated intrathecal administration of a p53‑specific senolytic peptide, only in male mice and only many months after injury. Analysis of UK Biobank data revealed sex-specific relevance of this pathway in humans, featuring male‑specific genetic association of the human p53 locus (TP53) with chronic pain and a male-specific effect of chronic pain on mortality. Our findings demonstrate the existence of a biological mechanism maintaining pain behavior, at least in males, occurring much later than the time span of virtually all extant preclinical studies.
Collapse
Affiliation(s)
- Arjun Muralidharan
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | | | | | - Nur Akkurt
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Lucas V. Lima
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Shannon Tansley
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | | - Chengyang Wang
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | | - Boram Ham
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | | - Philippe Rousseau
- Bloomfield Centre for Research in Aging, McGill University, Montreal, Quebec, Canada
| | | | - Teleri Clark
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Sarah F. Rosen
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Mariam R. Majeed
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Olivia Silva
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Rachel Nejade
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Xinyu Li
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | | | - Christopher S. Nielsen
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
| | - G. Gregory Neely
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, McGill University, Montreal, Quebec, Canada
| | | | | | - Jeffrey S. Mogil
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Sadler KE, Mogil JS, Stucky CL. Innovations and advances in modelling and measuring pain in animals. Nat Rev Neurosci 2022; 23:70-85. [PMID: 34837072 PMCID: PMC9098196 DOI: 10.1038/s41583-021-00536-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Best practices in preclinical algesiometry (pain behaviour testing) have shifted over the past decade as a result of technological advancements, the continued dearth of translational progress and the emphasis that funding institutions and journals have placed on rigour and reproducibility. Here we describe the changing trends in research methods by analysing the methods reported in preclinical pain publications from the past 40 years, with a focus on the last 5 years. We also discuss how the status quo may be hampering translational success. This discussion is centred on four fundamental decisions that apply to every pain behaviour experiment: choice of subject (model organism), choice of assay (pain-inducing injury), laboratory environment and choice of outcome measures. Finally, we discuss how human tissues, which are increasingly accessible, can be used to validate the translatability of targets and mechanisms identified in animal pain models.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey S Mogil
- Department of Psychology, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Abstract
Pain is an immense clinical and societal challenge, and the key to understanding and treating it is variability. Robust interindividual differences are consistently observed in pain sensitivity, susceptibility to developing painful disorders, and response to analgesic manipulations. This review examines the causes of this variability, including both organismic and environmental sources. Chronic pain development is a textbook example of a gene-environment interaction, requiring both chance initiating events (e.g., trauma, infection) and more immutable risk factors. The focus is on genetic factors, since twin studies have determined that a plurality of the variance likely derives from inherited genetic variants, but sex, age, ethnicity, personality variables, and environmental factors are also considered.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Departments of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada;
| |
Collapse
|
13
|
Fullerton EF, Rubaharan M, Karom MC, Hanberry RI, Murphy AZ. Advanced age attenuates the antihyperalgesic effect of morphine and decreases μ-opioid receptor expression and binding in the rat midbrain periaqueductal gray in male and female rats. Neurobiol Aging 2021; 98:78-87. [PMID: 33249376 PMCID: PMC8673746 DOI: 10.1016/j.neurobiolaging.2020.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/23/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
The present study investigated the impact of advanced age on morphine modulation of persistent inflammatory pain in male and female rats. The impact of age, sex, and pain on μ-opioid receptor (MOR) expression and binding in the ventrolateral periaqueductal gray (vlPAG) was also examined using immunohistochemistry and receptor autoradiography. Intraplantar administration of complete Freund's adjuvant induced comparable levels of edema and hyperalgesia in adult (2-3 mos) and aged (16-18 mos) male and female rats. Morphine potency was highest in adult males, with a greater than two-fold increase in morphine EC50 observed in adult versus aged males (3.83 mg/kg vs. 10.16 mg/kg). Adult and aged female rats also exhibited significantly higher EC50 values (7.76 mg/kg and 8.74 mg/kg, respectively) than adult males. The upward shift in EC50 from adult to aged males was paralleled by a reduction in vlPAG MOR expression and binding. The observed age-related reductions in morphine potency and vlPAG MOR expression and binding have significant implications in pain management in the aged population.
Collapse
Affiliation(s)
- Evan F Fullerton
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Mary C Karom
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Mogil JS, Pang DSJ, Silva Dutra GG, Chambers CT. The development and use of facial grimace scales for pain measurement in animals. Neurosci Biobehav Rev 2020; 116:480-493. [PMID: 32682741 DOI: 10.1016/j.neubiorev.2020.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
The measurement of pain in animals is surprisingly complex, and remains a critical issue in veterinary care and biomedical research. Based on the known utility of pain measurement via facial expression in verbal and especially non-verbal human populations, "grimace scales" were first developed a decade ago for use in rodents and now exist for 10 different mammalian species. This review details the background context, historical development, features (including duration), psychometric properties, modulatory factors, and impact of animal grimace scales for pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada.
| | - Daniel S J Pang
- Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gabrielle Guanaes Silva Dutra
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada
| | | |
Collapse
|