1
|
Awad-Igbaria Y, Edelman D, Ianshin E, Abu-Ata S, Shamir A, Bornstein J, Palzur E. Inflammation-induced mast cell-derived nerve growth factor: a key player in chronic vulvar pain? Brain 2025; 148:331-346. [PMID: 39001871 DOI: 10.1093/brain/awae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 07/15/2024] Open
Abstract
Provoked vulvodynia (PV) is characterized by localized chronic vulvar pain. It is associated with a history of recurrent inflammation, mast cell (MC) accumulation and neuronal sprouting in the vulva. However, the mechanism of how vulvar-inflammation promotes neuronal sprouting and gene-expression adaptation in the spinal cord, leading to hypersensitivity and painful sensations, is unknown. Here, we found that vulvar tissue from women with PV (n = 8) is characterized by MC accumulation and neuronal sprouting compared to women without PV (n = 4). In addition, we observed these changes in an animal study of PV. Thus, we found that repeated vulvar zymosan-inflammation challenges lead to long-lasting mechanical and thermal vulvar hypersensitivity, which is mediated by MC accumulation, neuronal sprouting, overexpression of the pain channels (TRPV1 and TRPA1) in vulvar neurons, as well as a long-term increase of gene expression related to neuroplasticity, neuroinflammation and nerve growth factor (NGF) in the spinal cord/dorsal root ganglia (DRG) (L6-S3). However, regulation of the NGF pathway by stabilization of MC activity with ketotifen fumarate (KF) during vulvar inflammation attenuates the local increase of NGF and histamine, as well as the elevated transcription of pro-inflammatory cytokines and NGF pathway in the spinal cord. Additionally, KF treatment during inflammation modulates MC accumulation, neuronal hyperinnervation and overexpression of the TRPV1 and TRPA1 channels in the vulvar neurons, consequently preventing the development of vulvar pain. A thorough examination of the NGF pathway during inflammation revealed that blocking NGF activity by using an NGF-non-peptide-inhibitor (Ro08-2750) regulates the upregulation of genes related to neuroplasticity and the NGF pathway in the spinal cord, as well as modulating neuronal sprouting and overexpression of the pain channels, resulting in a reduced level of vulvar hypersensitivity. On the other hand, stimulation of the NGF pathway in the vulvar promotes neuronal sprouting, overexpression of pain channels and increase of gene expression related to neuroplasticity, neuroinflammation and NGF in the spinal cord, resulting in long-lasting vulvar hypersensitivity. In conclusion, our findings suggest that vulvar allodynia induced by inflammation is mediated by MC accumulation, neuronal sprouting and neuromodulation in the vulvar. Additionally, chronic vulvar pain may involve a long-term adaptation in gene expression in the spinal cord, which probably plays a critical role in central sensitization and pain maintenance. Strikingly, regulating the NGF pathway during the critical period of inflammation prevents vulvar pain development via modulating the neuronal changes in the vestibule and spinal cord, suggesting a fundamental role for the NGF pathway in PV development.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Research Institute of Galilee Medical Center, Nahariya 2201202, Israel
| | - Doron Edelman
- Department of Neurosurgery and Orthopedic Spine Surgery Division, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Elvira Ianshin
- Department of Pathology, Galilee Medical Center, Nahariya 2201202, Israel
| | - Saher Abu-Ata
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko 2412001, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko 2412001, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jacob Bornstein
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Research Institute of Galilee Medical Center, Nahariya 2201202, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, Nahariya 2201202, Israel
| |
Collapse
|
2
|
Starobova H, Alshammari A, Winkler IG, Vetter I. The role of the neuronal microenvironment in sensory function and pain pathophysiology. J Neurochem 2024; 168:3620-3643. [PMID: 36394416 DOI: 10.1111/jnc.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ingrid G Winkler
- Mater Research Institute, The University of Queensland, Queensland, South Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
3
|
Argueta DA, Tran H, Goel Y, Nguyen A, Nguyen J, Kiven SB, Chen C, Abdulla F, Vercellotti GM, Belcher JD, Gupta K. Mast cell extracellular trap formation underlies vascular and neural injury and hyperalgesia in sickle cell disease. Life Sci Alliance 2024; 7:e202402788. [PMID: 39242155 PMCID: PMC11381676 DOI: 10.26508/lsa.202402788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Sickle cell disease (SCD) is the most common inherited monogenetic disorder. Chronic and acute pain are hallmark features of SCD involving neural and vascular injury and inflammation. Mast cells reside in the vicinity of nerve fibers and vasculature, but how they influence these structures remains unknown. We therefore examined the mechanism of mast cell activation in a sickle microenvironment replete with cell-free heme and inflammation. Mast cells exposed to this environment showed an explosion of nuclear contents with the release of citrullinated histones, suggestive of mast cell extracellular trap (MCET) release. MCETs interacted directly with the vasculature and nerve fibers, a cause of vascular and neural injury in sickle cell mice. MCET formation was dependent upon peptidylarginine deiminase 4 (PAD4). Inhibition of PAD4 ameliorated vasoocclusion, chronic and acute hyperalgesia, and inflammation in sickle mice. PAD4 activation may also underlie neutrophil trap formation in SCD, thus providing a novel target to treat the sequelae of vascular and neural injury in SCD.
Collapse
Affiliation(s)
- Donovan A Argueta
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Huy Tran
- Division of Hematology, Oncology, and Transplantation, School of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Yugal Goel
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Aithanh Nguyen
- Division of Hematology, Oncology, and Transplantation, School of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Julia Nguyen
- Division of Hematology, Oncology, and Transplantation, School of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Stacy B Kiven
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Chunsheng Chen
- Division of Hematology, Oncology, and Transplantation, School of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Fuad Abdulla
- Division of Hematology, Oncology, and Transplantation, School of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Gregory M Vercellotti
- Division of Hematology, Oncology, and Transplantation, School of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - John D Belcher
- Division of Hematology, Oncology, and Transplantation, School of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Kalpna Gupta
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Division of Hematology, Oncology, and Transplantation, School of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
4
|
de Souza S, Laumet S, Inyang KE, Hua H, Sim J, Folger JK, Moeser AJ, Laumet G. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606617. [PMID: 39211156 PMCID: PMC11361099 DOI: 10.1101/2024.08.05.606617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Immune cells play a critical role in the transition from acute to chronic pain. However, the role of mast cells in pain remains under-investigated. Here, we demonstrated that the resolution of inflammatory pain is markedly delayed in mast-cell-deficient mice. In response to Complete Freund Adjuvant (CFA), mast-cell-deficient mice showed greater levels of nitric oxide and altered cytokine/chemokine profile in inflamed skin in both sexes. In Wild-Type (WT) mice, the number of mast cell and mast cell-derived chymases; chymase 1 (CMA1) and mast cell protease 4 (MCPT4) increased in the inflamed skin. Inhibiting chymase enzymatic activity delayed the resolution of inflammatory pain. Consistently, local pharmacological administration of recombinant CMA1 and MCPT4 promoted the resolution of pain hypersensitivity and attenuated the upregulation of cytokines and chemokines under inflammation. We identified CCL9 as a target of MCPT4. Inhibition of CCL9 promoted recruitment of CD206 + myeloid cells and alleviated inflammatory pain. Our work reveals a new role of mast cell-derived chymases in preventing the transition from acute to chronic pain and suggests new therapeutic avenues for the treatment of inflammatory pain. Summary Mast cell-derived chymases play an unexpected role in the resolution of inflammatory pain and regulate the immune response. Graphical abstract
Collapse
|
5
|
Brum EDS, Fialho MFP, Becker G, Nogueira CW, Oliveira SM. Involvement of peripheral mast cells in a fibromyalgia model in mice. Eur J Pharmacol 2024; 967:176385. [PMID: 38311276 DOI: 10.1016/j.ejphar.2024.176385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Fibromyalgia is a painful disorder of unknown aetiology that presents activation and recruitment of innate immune cells, including mast cells. Efforts have been made to understand its pathogenesis to manage it better. Thus, we explored the involvement of peripheral mast cells in an experimental model of fibromyalgia induced by reserpine. Reserpine (1 mg/kg) was subcutaneously (s.c.) injected once daily in the back of male Swiss mice for three consecutive days. We analysed mechanical and cold allodynia, muscle fatigue and number of mast cell in plantar tissue. The fibromyalgia induction produced mast cell infiltration (i.e., mastocytosis) in the mice's plantar tissue. The depletion of mast cell mediators with the compound 48/80 (0.5-4 mg/kg, intraperitoneal (i.p.)) or the mast cell membrane stabilizer ketotifen fumarate (10 mg/kg, oral route (p.o.) widely (80-90 %) and extensively (from 1 up to 10 days) prevented reserpine-induced mechanical and cold allodynia and muscle fatigue. Compound 48/80 also prevented the reserpine-induced mastocytosis. Finally, we demonstrated that PAR-2, 5-HT2A, 5-HT3, H1, NK1 and MrgprB2 receptors, expressed in neuronal or mast cells, seem crucial to mediate fibromyalgia-related cardinal symptoms since antagonists or inhibitors of these receptors (gabexate (10 mg/kg, s.c.), ENMD-1068 (10 mg/kg, i.p.), ketanserin (1 mg/kg, i.p.), ondansetron (1 mg/kg, p.o.), promethazine (1 mg/kg, i.p.), and L733,060 (5 mg/kg, s.c.), respectively) transiently reversed the reserpine-induced allodynia and fatigue. The results indicate that mast cells mediate painful and fatigue behaviours in this fibromyalgia model, representing potential therapy targets to treat fibromyalgia syndrome.
Collapse
Affiliation(s)
- Evelyne da Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristina Wayne Nogueira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Quinn AM. Complex Presentations, Identification and Treatment of Mast Cell Activation Syndrome and Associated Conditions: A Case Report. Integr Med (Encinitas) 2023; 22:36-41. [PMID: 37752934 PMCID: PMC10519234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Mast Cell Activation Syndrome (MCAS) is only a recently recognized, multisystem disorder that has been historically underrecognized due its estimated high prevalence. Recognition, testing, and treatment all pose unique challenges to condition management. The condition warrants more concern due to its prevalence and under recognition. Of equal importance in this case is the overlap seen between conditions such as MCAS, gastric dysmotility often manifesting as small intestine bacterial overgrowth (SIBO), dysautonomia, joint hypermobility disorders such as hypermobile Ehlers Danlos Syndrome (h-EDS) or other hypermobility spectrum disorders (HSD), and autoimmunity. This case involves a 42 year-old female who initially presented to the clinic for chronic SIBO and associated gastrointestinal complaints. Upon further examination into the patient's history and unique presentation as visits progressed, important factors affecting treatment considerations were discovered. The patient was ultimately deemed to have other associated conditions including a mast cell-mediated disorder as well as joint hypermobility due to her response to antihistamine and mast cell stabilizing agents. Final outcomes include immense improvement upon mast cell stabilization with ketotifen, and remission of SIBO with low-dose naltrexone (LDN). Although the patient did not undergo testing beyond a serum tryptase test, this case represents the importance of careful history taking and the role of clinical suspicion on patient outcomes.
Collapse
Affiliation(s)
- Alexandra M. Quinn
- Northeastern University, Boston, Massachusetts, National University of Natural Medicine (NUNM) Health Centers, Portland, Oregon
| |
Collapse
|
7
|
Liu W, Peng J, Wu Y, Ye Z, Zong Z, Wu R, Li H. Immune and inflammatory mechanisms and therapeutic targets of gout: An update. Int Immunopharmacol 2023; 121:110466. [PMID: 37311355 DOI: 10.1016/j.intimp.2023.110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Gout is an autoimmune disease characterized by acute or chronic inflammation and damage to bone joints induced due to the precipitation of monosodium urate (MSU) crystals. In recent years, with the continuous development of animal models and ongoing clinical investigations, more immune cells and inflammatory factors have been found to play roles in gouty inflammation. The inflammatory network involved in gout has been discovered, providing a new perspective from which to develop targeted therapy for gouty inflammation. Studies have shown that neutrophil macrophages and T lymphocytes play important roles in the pathogenesis and resolution of gout, and some inflammatory cytokines, such as those in the interleukin-1 (IL-1) family, have been shown to play anti-inflammatory or proinflammatory roles in gouty inflammation, but the mechanisms underlying their roles are unclear. In this review, we explore the roles of inflammatory cytokines, inflammasomes and immune cells in the course of gout development and the research status of therapeutic drugs used for inflammation to provide insights into future targeted therapy for gouty inflammation and the direction of gout pathogenesis research.
Collapse
Affiliation(s)
- Wenji Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Jie Peng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Yixin Wu
- Queen Mary College of Nanchang University, 330006 Nanchang, China
| | - Zuxiang Ye
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, 330006 Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China.
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China.
| |
Collapse
|
8
|
Amani H, Soltani Khaboushan A, Terwindt GM, Tafakhori A. Glia Signaling and Brain Microenvironment in Migraine. Mol Neurobiol 2023; 60:3911-3934. [PMID: 36995514 DOI: 10.1007/s12035-023-03300-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
Migraine is a complicated neurological disorder affecting 6% of men and 18% of women worldwide. Various mechanisms, including neuroinflammation, oxidative stress, altered mitochondrial function, neurotransmitter disturbances, cortical hyperexcitability, genetic factors, and endocrine system problems, are responsible for migraine. However, these mechanisms have not completely delineated the pathophysiology behind migraine, and they should be further studied. The brain microenvironment comprises neurons, glial cells, and vascular structures with complex interactions. Disruption of the brain microenvironment is the main culprit behind various neurological disorders. Neuron-glia crosstalk contributes to hyperalgesia in migraine. In the brain, microenvironment and related peripheral regulatory circuits, microglia, astrocytes, and satellite cells are necessary for proper function. These are the most important cells that could induce migraine headaches by disturbing the balance of the neurotransmitters in the nervous system. Neuroinflammation and oxidative stress are the prominent reactions glial cells drive during migraine. Understanding the role of cellular and molecular components of the brain microenvironment on the major neurotransmitters engaged in migraine pathophysiology facilitates the development of new therapeutic approaches with higher effectiveness for migraine headaches. Investigating the role of the brain microenvironment and neuroinflammation in migraine may help decipher its pathophysiology and provide an opportunity to develop novel therapeutic approaches for its management. This review aims to discuss the neuron-glia interactions in the brain microenvironment during migraine and their potential role as a therapeutic target for the treatment of migraine.
Collapse
Affiliation(s)
- Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Soltani Khaboushan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Imam Khomeini Hospital, Keshavarz Blvd., Tehran, Iran.
| |
Collapse
|
9
|
Ye F, Lv J, Shen X, Zhang J, Zong Y, Zhu C, Yang Y, Jia K, Jiang Y, Tang Z. Rutin ameliorates inflammatory pain by inhibiting P2X7 receptor in mast cells. J Physiol Biochem 2022:10.1007/s13105-022-00938-w. [DOI: 10.1007/s13105-022-00938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
|
10
|
Awad-Igbaria Y, Dadon S, Shamir A, Livoff A, Shlapobersky M, Bornstein J, Palzur E. Characterization of Early Inflammatory Events Leading to Provoked Vulvodynia Development in Rats. J Inflamm Res 2022; 15:3901-3923. [PMID: 35845089 PMCID: PMC9286136 DOI: 10.2147/jir.s367193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Provoked vulvodynia (PV) is the main cause of vulvar pain and dyspareunia. The etiology of PV has not yet been elucidated. However, PV is associated with a history of recurrent inflammation, and its often accompanied by increases in the numbers of mast cells (MCs) and sensory hyperinnervation in the vulva. Therefore, this study aimed to examine the role of MCs and the early inflammatory events in the development of chronic vulvar pain in a rat model of PV. Methods Mechanical and thermal vulvar sensitivity was measured for 5 months following zymosan vulvar challenges. Vulvar changes in glutamate and nerve growth factor (NGF) were analyzed using ELISA. Immunofluorescence (IF) staining of the vulvar section after 20, 81, and 160 days of the zymosan challenge were performed to test MCs accumulation, hyperinnervation, and expression of pain channels (transient receptor potential vanilloid/ankyrin-1-TRPV1 & TRPA1) in vulvar neurons. Changes in the development of vulvar pain were evaluated following the administration of the MCs stabilizer ketotifen fumarate (KF) during zymosan vulvar challenges. Results Zymosan-challenged rats developed significant mechanical and thermal vulvar sensitivity that persisted for over 160 days after the zymosan challenge. During inflammation, increased local concentrations of NGF and glutamate and a robust increase in MCs degranulation were observed in zymosan-challenged rats. In addition, zymosan-challenged rats displayed sensory hyperinnervation and an increase in the expression of TRPV1 and TRPA1. Treatment with KF attenuated the upregulated level of NGF during inflammation, modulated the neuronal modifications, reduced MCs accumulation, and enhanced mechanical hypersensitivity after repeated inflammation challenges. Conclusion The present findings suggest that vulvar hypersensitivity is mediated by MCs accumulation, nerve growth, and neuromodulation of TRPV1 and TRPA1. Hence, KF treatment during the critical period of inflammation contributes to preventing chronic vulvar pain development.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Shilo Dadon
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alejandro Livoff
- Pathology Department, Barzilai University Medical Center, Ashkelon, Israel
| | - Mark Shlapobersky
- Pathology Department, Barzilai University Medical Center, Ashkelon, Israel
| | - Jacob Bornstein
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Eilam Palzur
- The Research Institute of Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
11
|
Huang Z, Sharma M, Dave A, Yang Y, Chen ZS, Radhakrishnan R. The Antifibrotic and the Anticarcinogenic Activity of Capsaicin in Hot Chili Pepper in Relation to Oral Submucous Fibrosis. Front Pharmacol 2022; 13:888280. [PMID: 35600864 PMCID: PMC9114457 DOI: 10.3389/fphar.2022.888280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
A burning sensation on eating spicy foods purportedly supports the role of capsaicin, an active component of chili peppers, in the etiology of oral submucous fibrosis (OSF). Although the mast cell mediators and activated P2X receptors induce a constant burning sensation through an ATP-dependent mechanism, it is the activation of the transient receptor potential vanilloid 1 (TRPV-1) receptor by capsaicin that aggravates it. The molecular basis for the burning pain in OSF is thus attributable to the activation of TRPV1. There is overwhelming evidence that confirms capsaicin has more of a protective role in attenuating fibrosis and is potentially therapeutic in reversing conditions linked to collagen accumulation. The activation of TRPV-1 by capsaicin increases intracellular calcium ([Ca2+]i), upregulates AMP-activated protein kinase (AMPK) and Sirtuin-1 (SIRT-1), to enrich endothelium-dependent vasodilation via endothelial nitric oxide synthase (eNOS). The induction of vasodilation induces antifibrotic effects by alleviating hypoxia. The antifibrotic effects of capsaicin are mediated through the upregulation of antioxidant enzymes, downregulation of inflammatory genes and suppression of new collagen fibril formation. Capsaicin also demonstrates an anticarcinogenic effect by upregulating the cytotoxic T cells and downregulating regulatory T cells through the inhibition of angiogenesis and promotion of apoptosis. Judicious administration of capsaicin with an appropriate delivery mechanism may have therapeutic benefits in reducing pain sensation, rendering antifibrotic effects, and preventing the malignant transformation of OSF. This paper provides an overview of the molecular basis of capsaicin and its therapeutic application as an antifibrotic and anticarcinogenic agent for the treatment of OSF.
Collapse
Affiliation(s)
- Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mohit Sharma
- Department of Oral Pathology, SGT Dental College Hospital and Research Institute, Gurugram, India
| | - Aparna Dave
- Department of Oral Pathology, SGT Dental College Hospital and Research Institute, Gurugram, India
| | - Yuqi Yang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States,*Correspondence: Zhe-Sheng Chen, ; Raghu Radhakrishnan,
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, India,*Correspondence: Zhe-Sheng Chen, ; Raghu Radhakrishnan,
| |
Collapse
|