1
|
Crowell TA, Ritz J, Zheng L, Naqvi A, Cyktor JC, Puleo J, Clagett B, Lama JR, Kanyama C, Little SJ, Cohn SE, Riddler SA, Collier AC, Heath SL, Tantivitayakul P, Grinsztejn B, Arduino RC, Rooney JF, van Zyl GU, Coombs RW, Fox L, Ananworanich J, Eron JJ, Sieg SF, Mellors JW, Daar ES. Impact of antiretroviral therapy during acute or early HIV infection on virologic and immunologic outcomes: results from a multinational clinical trial. AIDS 2024; 38:1141-1152. [PMID: 38489580 PMCID: PMC11323228 DOI: 10.1097/qad.0000000000003881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
OBJECTIVE To assess how antiretroviral therapy (ART) initiation during acute or early HIV infection (AEHI) affects the viral reservoir and host immune responses. DESIGN Single-arm trial of ART initiation during AEHI at 30 sites in the Americas, Africa, and Asia. METHODS HIV DNA was measured at week 48 of ART in 5 million CD4 + T cells by sensitive qPCR assays targeting HIV gag and pol . Peripheral blood mononuclear cells were stimulated with potential HIV T cell epitope peptide pools consisting of env , gag , nef, and pol peptides and stained for expression of CD3, CD4, CD8, and intracellular cytokines/chemokines. RESULTS From 2017 to 2019, 188 participants initiated ART during Fiebig stages I ( n = 6), II ( n = 43), III ( n = 56), IV ( n = 23), and V ( n = 60). Median age was 27 years (interquartile range 23-38), 27 (14%) participants were female, and 180 (97%) cisgender. Among 154 virally suppressed participants at week 48, 100% had detectable HIV gag or pol DNA. Participants treated during Fiebig I had the lowest HIV DNA levels ( P < 0.001). Week 48 HIV DNA mostly did not correlate with concurrent CD4 + or CD8 + T cell HIV-specific immune responses (rho range -0.11 to +0.19, all P > 0.025). At week 48, the magnitude, but not polyfunctionality, of HIV-specific T cell responses was moderately reduced among participants who initiated ART earliest. CONCLUSION Earlier ART initiation during AEHI reduced but did not eliminate the persistence of HIV-infected cells in blood. These findings explain the rapid viral rebound observed after ART cessation in early-treated individuals with undetectable HIV DNA by less sensitive methods.
Collapse
Affiliation(s)
- Trevor A. Crowell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Justin Ritz
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Zheng
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Asma Naqvi
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Joseph Puleo
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | | | | | - Susan E. Cohn
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | - Roberto C. Arduino
- McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | - Lawrence Fox
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jintanat Ananworanich
- Amsterdam UMC, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Joseph J. Eron
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Eric S. Daar
- Lundquist Institute at Harbor–UCLA Medical Center, Torrance, CA, USA
| | | |
Collapse
|
2
|
Tassaneetrithep B, Phuphuakrat A, Pasomsub E, Bhukhai K, Wongkummool W, Priengprom T, Khamaikawin W, Chaisavaneeyakorn S, Anurathapan U, Apiwattanakul N, Hongeng S. HIV-1 proviral DNA in purified peripheral blood CD34 + stem and progenitor cells in individuals with long-term HAART; paving the way to HIV gene therapy. Heliyon 2024; 10:e26613. [PMID: 38434025 PMCID: PMC10906414 DOI: 10.1016/j.heliyon.2024.e26613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Human immunodeficiency virus (HIV)-1 infection is an important public health problem worldwide. After primary HIV-1 infection, transcribed HIV-1 DNA is integrated into the host genome, serving as a reservoir of the virus and hindering a definite cure. Although highly active antiretroviral therapy suppresses active viral replication, resulting in undetectable levels of HIV RNA in the blood, a viral rebound can be detected after a few weeks of treatment interruption. This supports the concept that there is a stable HIV-1 reservoir in people living with HIV-1. Recently, a few individuals with HIV infection were reported to be probably cured by hematopoietic stem transplantation (HSCT). The underlying mechanism for this success involved transfusion of uninfected hematopoietic stem and progenitor cells (HSPCs) from CCR5-mutated donors who were naturally resistant to HIV infection. Thus, gene editing technology to provide HIV-resistant HSPC has promise in the treatment of HIV infections by HSCT. In this study, we aimed to find HIV-infected individuals likely to achieve a definite cure via gene editing HSCT. We screened for total HIV proviral DNA by Alu PCR in peripheral blood mononuclear cells (PBMCs) of 20 HIV-infected individuals with prolonged viral suppression. We assessed the amount of intact proviral DNA via a modified intact proviral DNA assay (IPDA) in purified peripheral CD34+ HSPCs. PBMCs from all 20 individuals were positive for the gag gene in Alu PCR, and peripheral CD34+ HSPCs were IPDA-negative for six individuals. Our results suggested that these six HIV-infected individuals could be candidates for further studies into the ability of gene editing HSCT to lead to a definite HIV cure.
Collapse
Affiliation(s)
- Boonrat Tassaneetrithep
- Center of Research Excellence in Immunoregulation, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Angsana Phuphuakrat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Thailand
| | | | - Thongkoon Priengprom
- Center of Research Excellence in Immunoregulation, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Wannisa Khamaikawin
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Thailand
| | | | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| |
Collapse
|
3
|
Suzuki K, Levert A, Yeung J, Starr M, Cameron J, Williams R, Rismanto N, Stark T, Druery D, Prasad S, Ferrarini C, Hanafi I, McNally LP, Cunningham P, Liu Z, Ishida T, Huang CS, Oswald V, Evans L, Symonds G, Brew BJ, Zaunders J. HIV-1 viral blips are associated with repeated and increasingly high levels of cell-associated HIV-1 RNA transcriptional activity. AIDS 2021; 35:2095-2103. [PMID: 34148986 PMCID: PMC8505147 DOI: 10.1097/qad.0000000000003001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Some HIV+ patients, virally suppressed on ART, show occasional 'blips' of detectable HIV-1 plasma RNA. We used a new highly sensitive assay of cell-associated HIV-1 RNA to measure transcriptional activity in PBMCs and production of infectious virus from the viral reservoir, in patients with and without 'blips'. DESIGN/METHODS RNA and DNA extracted from cells in 6 ml of peripheral blood, from suppressed patients with one to two 'blip' episodes over the past 2 years of ART (n = 55), or no 'blips' (n = 52), were assayed for HIV-1 RNA transcripts and proviral DNA targeting the highly conserved 'R' region of the LTR. Follow-up samples were also collected. Purified CD4+ T cells were cultured with anti-CD3/CD28/CD2 T-cell activator to amplify transcription and measure replication competent virus. RESULTS HIV-1 RNA transcripts ranged from 1.3 to 5415 copies/106 white blood cells. 'Blip' patients had significantly higher levels vs. without blips (median 192 vs. 49; P = 0.0007), which correlated with: higher levels of inducible transcripts after activation in vitro, sustained higher HIV-1 transcription levels in follow-up samples along with increasing HIV-1 DNA in some, and production of replication-competent HIV-1. CONCLUSION Viral 'blips' are significant reflecting higher transcriptional activity from the reservoir and contribute to the reservoir over time. This sensitive assay can be used in monitoring the size and activity of the HIV-1 reservoir and will be useful in HIV-1 cure strategies.
Collapse
Affiliation(s)
- Kazuo Suzuki
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Angelique Levert
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Julie Yeung
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Mitchell Starr
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Jane Cameron
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Raffaella Williams
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Nikolas Rismanto
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Tayla Stark
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Dylan Druery
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Salzeena Prasad
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Cristina Ferrarini
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Imelda Hanafi
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Leon Patrick McNally
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Philip Cunningham
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Zhixin Liu
- Stats Central, University of New South Wales, Sydney, NSW, Australia
| | | | | | - Velma Oswald
- Clinical Immunology and HIV Medicine, Liverpool Hospital
| | - Louise Evans
- Clinical Immunology and HIV Medicine, Liverpool Hospital
- University of New South Wales
| | | | - Bruce James Brew
- Departments of Neurology and Immunology
- Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, and University of Notre Dame
- Department of HIV Medicine, St Vincent's Hospital
- St Vincent's Clinical School, Delacy Building, University of New South Wales, Sydney, NSW, Australia
| | - John Zaunders
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| |
Collapse
|
4
|
Li S, Zhu J, Su B, Wei H, Chen F, Liu H, Wei J, Yang X, Zhang Q, Xia W, Wu H, He Q, Zhang T. Alteration in Oral Microbiome Among Men Who Have Sex With Men With Acute and Chronic HIV Infection on Antiretroviral Therapy. Front Cell Infect Microbiol 2021; 11:695515. [PMID: 34336719 PMCID: PMC8317457 DOI: 10.3389/fcimb.2021.695515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the antiretroviral therapy (ART), human immunodeficiency virus (HIV)-related oral disease remains a common problem for people living with HIV (PLWH). Evidence suggests that impairment of immune function in HIV infection might lead to the conversion of commensal bacteria to microorganisms with increased pathogenicity. However, limited information is available about alteration in oral microbiome in PLWH on ART. We performed a longitudinal comparative study on men who have sex with men (MSM) with acute HIV infection (n=15), MSM with chronic HIV infection (n=15), and HIV-uninfected MSM controls (n=15). Throat swabs were collected when these subjects were recruited (W0) and 12 weeks after ART treatment (W12) from the patients. Genomic DNAs were extracted and 16S rRNA gene sequencing was performed. Microbiome diversity was significantly decreased in patients with acute and chronic HIV infections compared with those in controls at the sampling time of W0 and the significant difference remained at W12. An increased abundance of unidentified Prevotellaceae was found in patients with acute and chronic HIV infections. Moreover, increased abundances of Prevotella in subjects with acute HIV infection and Streptococcus in subjects with chronic HIV infection were observed. In contrast, greater abundance in Lactobacillus, Rothia, Lautropia, and Bacteroides was found in controls. After effective ART, Bradyrhizobium was enriched in both acute and chronic HIV infections, whereas in controls, Lactobacillus, Rothia, Clostridia, Actinobacteria, and Ruminococcaceae were enriched. In addition, we found that lower CD4+ T-cell counts (<200 cells/mm3) were associated with lower relative abundances of Haemophilus, Actinomyces, unidentified Ruminococcaceae, and Rothia. This study has shown alteration in oral microbiome resulting from HIV infection and ART. The results obtained warrant further studies in a large number of subjects with different ethnics. It might contribute to improved oral health in HIV-infected individuals.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junping Zhu
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huanhuan Wei
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Fei Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Hongshan Liu
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiuyue Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku, Finland
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Mak G, Zaunders JJ, Bailey M, Seddiki N, Rogers G, Leong L, Phan TG, Kelleher AD, Koelsch KK, Boyd MA, Danta M. Preservation of Gastrointestinal Mucosal Barrier Function and Microbiome in Patients With Controlled HIV Infection. Front Immunol 2021; 12:688886. [PMID: 34135912 PMCID: PMC8203413 DOI: 10.3389/fimmu.2021.688886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
Background Despite successful ART in people living with HIV infection (PLHIV) they experience increased morbidity and mortality compared with HIV-negative controls. A dominant paradigm is that gut-associated lymphatic tissue (GALT) destruction at the time of primary HIV infection leads to loss of gut integrity, pathological microbial translocation across the compromised gastrointestinal barrier and, consequently, systemic inflammation. We aimed to identify and measure specific changes in the gastrointestinal barrier that might allow bacterial translocation, and their persistence despite initiation of antiretroviral therapy (ART). Method We conducted a cross-sectional study of the gastrointestinal (GIT) barrier in PLHIV and HIV-uninfected controls (HUC). The GIT barrier was assessed as follows: in vivo mucosal imaging using confocal endomicroscopy (CEM); the immunophenotype of GIT and circulating lymphocytes; the gut microbiome; and plasma inflammation markers Tumour Necrosis Factor-α (TNF-α) and Interleukin-6 (IL-6); and the microbial translocation marker sCD14. Results A cohort of PLHIV who initiated ART early, during primary HIV infection (PHI), n=5), and late (chronic HIV infection (CHI), n=7) infection were evaluated for the differential effects of the stage of ART initiation on the GIT barrier compared with HUC (n=6). We observed a significant decrease in the CD4 T-cell count of CHI patients in the left colon (p=0.03) and a trend to a decrease in the terminal ileum (p=0.13). We did not find evidence of increased epithelial permeability by CEM. No significant differences were found in microbial translocation or inflammatory markers in plasma. In gut biopsies, CD8 T-cells, including resident intraepithelial CD103+ cells, did not show any significant elevation of activation in PLHIV, compared to HUC. The majority of residual circulating activated CD38+HLA-DR+ CD8 T-cells did not exhibit gut-homing integrins α4ß7, suggesting that they did not originate in GALT. A significant reduction in the evenness of species distribution in the microbiome of CHI subjects (p=0.016) was observed, with significantly higher relative abundance of the genus Spirochaeta in PHI subjects (p=0.042). Conclusion These data suggest that substantial, non-specific increases in epithelial permeability may not be the most important mechanism of HIV-associated immune activation in well-controlled HIV-positive patients on antiretroviral therapy. Changes in gut microbiota warrant further study.
Collapse
Affiliation(s)
- Gerald Mak
- St. Vincent's Clinical School, UNSW, Darlinghurst, NSW, Australia
| | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | | | - Nabila Seddiki
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Paris, France
| | - Geraint Rogers
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Faculty of Science, Flinders University, Adelaide, SA, Australia
| | - Lex Leong
- Microbiology and Infectious Diseases, South Australia (SA) Pathology, Adelaide, SA, Australia
| | - Tri Giang Phan
- St. Vincent's Clinical School, UNSW, Darlinghurst, NSW, Australia.,Immunology Division Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | | | - Mark A Boyd
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mark Danta
- St. Vincent's Clinical School, UNSW, Darlinghurst, NSW, Australia.,Department of Gastroenterology, St. Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
6
|
Massanella M, Bender Ignacio RA, Lama JR, Pagliuzza A, Dasgupta S, Alfaro R, Rios J, Ganoza C, Pinto-Santini D, Gilada T, Duerr A, Chomont N. Long-term effects of early antiretroviral initiation on HIV reservoir markers: a longitudinal analysis of the MERLIN clinical study. THE LANCET. MICROBE 2021; 2:e198-e209. [PMID: 35544209 PMCID: PMC8622834 DOI: 10.1016/s2666-5247(21)00010-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/09/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Early antiretroviral therapy (ART) initiation (ie, within 3 months of infection) limits establishment of the HIV reservoir. However, the effect of early ART initiation on the long-term dynamics of the pool of infected cells remains unclear. METHODS In this longitudinal analysis, we included cisgender men who have sex with men (MSM) and transgender women (aged 18-54 years) at high risk for HIV infection, enrolled in the ongoing longitudinal MERLIN study in Peru between Oct 28, 2014, and Nov 8, 2018. Participants were eligible if they had been infected with HIV less than 90 days before enrolment, and if they had cryopreserved peripheral blood mononuclear cell (PBMC) samples. Participants were stratified into three groups on the basis of whether they initiated ART at 30 days or less (acute group), at 31-90 days (early group), or more than 24 weeks (deferred group) after the estimated date of detectable infection. PBMC samples were collected before ART initiation and longitudinally for up to 4 years on ART. The main outcomes were to establish the size of the HIV reservoir before ART initiation and to assess the effect of the timing of ART initiation on the decay of the HIV reservoir over 4 years follow-up. We quantified viral load, and isolated CD4 cells to quantify total HIV DNA, integrated HIV DNA and 2-long terminal repeat circles. Longitudinal analysis of active and inducible HIV reservoirs were measured by quantifying the frequency of CD4 cells producing multiply-spliced HIV RNA ex vivo and after in-vitro stimulation with a tat/rev induced limiting dilution assay (TILDA). A mixed-effects model from the time of ART initiation was used to measure longitudinal decays in viral loads and each HIV reservoir measure in each of the three groups. FINDINGS We included 56 participants in this analysis, all of whom were MSM: 15 were in the acute group, 19 were in the early group, and 22 were in the deferred group. Participants in all three groups had similar levels of all HIV reservoir markers before ART initiation. All participants, including those in the acute group, had a pool of transcriptionally silent HIV-infected cells before ART initiation, as indicated by a substantial increase in TILDA measures upon stimulation. Longitudinal analysis over 4 years of ART revealed a biphasic decay of all HIV persistence markers, with a rapid initial decline followed by a slower decay in all participants. During the first-phase decay, the half-lives of both total and integrated HIV DNA and TILDA measures were significantly shorter in the acute group than in the early and deferred groups. During the second-phase decay, HIV reservoir markers continued to decline only in participants in the acute group. INTERPRETATION Participants who initiated ART within 30 days or less of HIV infection showed a steeper and more sustained decay in HIV reservoir measures, suggesting long-term benefit of acute ART initiation on reservoir clearance. FUNDING The US National Institutes of Health and the Canadian Institutes for Health Research.
Collapse
Affiliation(s)
- Marta Massanella
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Javier R Lama
- Asociación Civil Impacta Salud y Educación, Lima, Perú
| | - Amélie Pagliuzza
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Sayan Dasgupta
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Jessica Rios
- Asociación Civil Impacta Salud y Educación, Lima, Perú
| | | | | | - Trupti Gilada
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ann Duerr
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
7
|
Shelton EM, Reeves DB, Bender Ignacio RA. Initiation of Antiretroviral Therapy during Primary HIV Infection: Effects on the Latent HIV Reservoir, Including on Analytic Treatment Interruptions. AIDS Rev 2020; 23:28-39. [PMID: 33105471 PMCID: PMC7987773 DOI: 10.24875/aidsrev.20000001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Antiretroviral therapy (ART) inhibits HIV replication but does not eradicate the latent reservoir. The previous research suggests that earlier ART initiation provides benefit on limiting reservoir size, but timing and extent of this effect remain unclear. Analytic treatment interruption (ATI) may be used to demonstrate HIV remission, but whether early ART also improves likelihood or duration of even temporary virologic remission is unclear. This review seeks to answer both questions. We performed a systematic review and analysis following Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines and included 21 interventional or observational studies with sufficient HIV reservoir outcomes. We also aggregated reservoir outcomes and transformed data into approximate measurements of total HIV DNA per million peripheral blood mononuclear cells and analyzed the correlation between timing of ART initiation and reservoir size. People living with HIV who initiate ART in primary infection maintain smaller reservoirs on suppressive ART than those who initiate treatment during chronic infection. The reduction of reservoir is most pronounced when ART is started within 2 weeks of HIV acquisition. Across studies, we found a moderately strong association between longer time to ART initiation and reservoir size, which was strongest when measured after 1 year on ART (Pearson's r = 0.69, p = 0.0003). After ATI, larger pre-ATI reservoir size predicts shorter time to viral rebound. Early ART may also facilitate long-term control of viremia. Although achieving sustained HIV remission will require further interventions, initiating ART very early in infection could limit the extent of the reservoir and also lead to post-ATI control in rare cases.
Collapse
Affiliation(s)
- Eva M. Shelton
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rachel A. Bender Ignacio
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, USA
| |
Collapse
|
8
|
Masters MC, Krueger KM, Williams JL, Morrison L, Cohn SE. Beyond one pill, once daily: current challenges of antiretroviral therapy management in the United States. Expert Rev Clin Pharmacol 2019; 12:1129-1143. [PMID: 31774001 DOI: 10.1080/17512433.2019.1698946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Modern antiretroviral therapy (ART) has revolutionized HIV treatment. ART regimens are now highly efficacious, well-tolerated, safe, often with one multi-drug pill, once-daily regimens available. However, clinical challenges persist in managing ART in persons with HIV (PWH), such as drug-drug interactions, side effects, pregnancy, co-morbidities, and adherence.Areas Covered: In this review, we discuss the ongoing challenges of ART for adults in the United States. We review the difficulties of initiating ART and maintaining therapy throughout adulthood and discuss new agents and strategies under investigation to address these issues. A PubMed search was utilized to identify relevant publications and guidelines through July 2019.Expert Opinion: Challenges persist in initiation and maintenance of ART. An individual's coexisting medical, social and personal factors must be considered in selecting and continuing ART to ensure safety, tolerability, and efficacy throughout adulthood. Continued development of new therapeutics and novel approaches to ART, such as long acting drugs or dual therapy, are needed to respond to many of these challenges. In addition, future research must address therapeutic disparities for populations historically underrepresented in clinical trials, including women, people aging with HIV, and those with complex comorbidities.
Collapse
Affiliation(s)
- Mary Clare Masters
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karen M Krueger
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Janna L Williams
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lindsay Morrison
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan E Cohn
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Mothe B, Manzardo C, Sanchez-Bernabeu A, Coll P, Morón-López S, Puertas MC, Rosas-Umbert M, Cobarsi P, Escrig R, Perez-Alvarez N, Ruiz I, Rovira C, Meulbroek M, Crook A, Borthwick N, Wee EG, Yang H, Miró JM, Dorrell L, Clotet B, Martinez-Picado J, Brander C, Hanke T. Therapeutic Vaccination Refocuses T-cell Responses Towards Conserved Regions of HIV-1 in Early Treated Individuals (BCN 01 study). EClinicalMedicine 2019; 11:65-80. [PMID: 31312806 PMCID: PMC6610778 DOI: 10.1016/j.eclinm.2019.05.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Strong and broad antiviral T-cell responses targeting vulnerable sites of HIV-1 will likely be a critical component for any effective cure strategy. METHODS BCN01 trial was a phase I, open-label, non-randomized, multicenter study in HIV-1-positive individuals diagnosed and treated during early HIV-1 infection to evaluate two vaccination regimen arms, which differed in the time (8 versus 24 week) between the ChAdV63.HIVconsv prime and MVA.HIVconsv boost vaccinations. The primary outcome was safety. Secondary endpoints included frequencies of vaccine-induced IFN-γ+ CD8+ T cells, in vitro virus-inhibitory capacity, plasma HIV-1 RNA and total CD4+ T-cells associated HIV-1 DNA. (NCT01712425). FINDINGS No differences in safety, peak magnitude or durability of vaccine-induced responses were observed between long and short interval vaccination arms. Grade 1/2 local and systemic post-vaccination events occurred in 22/24 individuals and resolved within 3 days. Weak responses to conserved HIV-1 regions were detected in 50% of the individuals before cART initiation, representing median of less than 10% of their total HIV-1-specific T cells. All participants significantly elevated these subdominant T-cell responses, which after MVA.HIVconsv peaked at median (range) of 938 (73-6,805) IFN-γ SFU/106 PBMC, representing on average 58% of their total anti-HIV-1 T cells. The decay in the size of the HIV-1 reservoir was consistent with the first year of early cART initiation in both arms. INTERPRETATION Heterologous prime-boost vaccination with ChAdV63-MVA/HIVconsv was well-tolerated and refocused pre-cART T-cell responses towards more protective epitopes, in which immune escape is frequently associated with reduced HIV-1 replicative fitness and which are common to most global HIV-1 variants. FUNDING HIVACAT Catalan research program for an HIV vaccine and Fundació Gloria Soler. Vaccine manufacture was jointly funded by the Medical Research Council (MRC) UK and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreements (G0701669. RESEARCH IN CONTEXT Evidence Before this Study: T cells play an important role in the control of HIV infection and may be particularly useful for HIV-1 cure by killing cells with reactivated HIV-1. Evidence is emerging that not all T-cell responses are protective and mainly only those targeting conserved regions of HIV-1 proteins are effective, but typically immunologically subdominant, while those recognizing hypervariable, easy-to-escape immunodominant 'decoys' do not control viremia and do not protect from a loss of CD4 T cells. We pioneered a vaccine strategy focusing T-cell responses on the most conserved regions of the HIV-1 proteome using an immunogen designated HIVconsv. T cells elicited by the HIVconsv vaccines in HIV-uninfected UK and Kenyan adults inhibited in vitro replication of HIV-1 isolates from 4 major global clades A, B, C and D.Added Value of this Study: The present study demonstrated the concept that epitopes subdominant in natural infection, when taken out of the context of the whole HIV-1 proteome and presented to the immune system by a potent simian adenovirus prime-poxvirus MVA boost regimen, can induce strong responses in patients on antiretroviral treatment and efficiently refocus HIV-1-specific T-cells to the protective epitopes delivered by the vaccine.Implications of all the Available Evidence: Nearly all HIV-1 vaccine strategies currently emphasize induction of broadly neutralizing Abs. The HIVconsv vaccine is one of a very few approaches focussing exclusively on elicitation of T cells and, therefore, can complement antibody induction for better prevention and cure. Given the cross-clade reach on the HIVconsv immunogen design, if efficient, the HIVconsv vaccines could be deployed globally. Effective vaccines will likely be a necessary component in combination with other available preventive measures for halting the HIV-1/AIDS epidemic.
Collapse
Affiliation(s)
- Beatriz Mothe
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- Corresponding author at: IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Crta Canyet s/n, 08916, Badalona, Barcelona, Spain.
| | | | | | - Pep Coll
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | | - Miriam Rosas-Umbert
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Patricia Cobarsi
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Roser Escrig
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Núria Perez-Alvarez
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Technical University of Catalonia, Barcelona, Spain
| | - Irene Ruiz
- Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Cristina Rovira
- Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Alison Crook
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Edmund G. Wee
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Hongbing Yang
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jose M. Miró
- Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Lucy Dorrell
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Fundació Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- ICREA, Pg. Luis Companys 23, Barcelona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- ICREA, Pg. Luis Companys 23, Barcelona, Spain
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, UK
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Su H, Cheng Y, Sravanam S, Mathews S, Gorantla S, Poluektova LY, Dash PK, Gendelman HE. Immune Activations and Viral Tissue Compartmentalization During Progressive HIV-1 Infection of Humanized Mice. Front Immunol 2019; 10:340. [PMID: 30873181 PMCID: PMC6403174 DOI: 10.3389/fimmu.2019.00340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type one (HIV-1) tissue compartments are established soon after viral infection. However, the timing in which virus gains a permanent foothold in tissue and the cellular factors that control early viral-immune events are incompletely understood. These are critical events in studies of HIV-1 pathogenesis and in the development of viral reservoirs after antiretroviral therapy. Moreover, factors affecting the permanence of viral-tissue interactions underlie barriers designed to eliminate HIV-1 infection. To this end we investigated the temporal and spatial viral and host factors during HIV-1 seeding of tissue compartments. Two humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ mouse models were employed. In the first, immune deficient mice were reconstituted with human CD34+ cord blood hematopoietic stem cells (HSC) (hu-HSC) and in the second mice were transplanted with adult mature human peripheral lymphocytes (hu-PBL). Both, in measure, reflect relationships between immune activation and viral infection as seen in an infected human host. Following humanization both mice models were infected with HIV-1ADA at 104 50% tissue culture infective doses. Viral nucleic acids and protein and immune cell profiles were assayed in brain, lung, spleen, liver, kidney, lymph nodes, bone marrow, and gut from 3 to 42 days. Peripheral CD4+ T cell loss began at 3 days together with detection of HIV-1 RNA in both mouse models after initiation of HIV-1 infection. HIV-1 was observed in all tested tissues at days 3 and 14 in hu- PBL and HSC mice, respectively. Immune impairment was most prominent in hu-PBL mice. T cell maturation and inflammation factors were linked directly to viral tissue seeding in both mouse models. We conclude that early viral tissue compartmentalization provides a roadmap for investigations into HIV-1 elimination.
Collapse
Affiliation(s)
- Hang Su
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yan Cheng
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sruthi Sravanam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
11
|
Warren JA, Clutton G, Goonetilleke N. Harnessing CD8 + T Cells Under HIV Antiretroviral Therapy. Front Immunol 2019; 10:291. [PMID: 30863403 PMCID: PMC6400228 DOI: 10.3389/fimmu.2019.00291] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Antiretroviral therapy (ART) has transformed HIV from a fatal disease to a chronic condition. In recent years there has been considerable interest in strategies to enable HIV-infected individuals to cease ART without viral rebound, either by purging all cells infected harboring replication-competent virus (HIV eradication), or by boosting immune responses to allow durable suppression of virus without rebound (HIV remission). Both of these approaches may need to harness HIV-specific CD8+ T cells to eliminate infected cells and/or prevent viral spread. In untreated infection, both HIV-specific and total CD8+ T cells are dysfunctional. Here, we review our current understanding of both global and HIV-specific CD8+ T cell immunity in HIV-infected individuals with durably suppressed viral load under ART, and its implications for HIV cure, eradication or remission. Overall, the literature indicates significant normalization of global T cell parameters, including CD4/8 ratio, activation status, and telomere length. Global characteristics of CD8+ T cells from HIV+ART+ individuals align more closely with those of HIV-seronegative individuals than of viremic HIV-infected individuals. However, markers of senescence remain elevated, leading to the hypothesis that immune aging is accelerated in HIV-infected individuals on ART. This phenomenon could have implications for attempts to prime de novo, or boost existing HIV-specific CD8+ T cell responses. A major challenge for both HIV cure and remission strategies is to elicit HIV-specific CD8+ T cell responses superior to that elicited by natural infection in terms of response kinetics, magnitude, breadth, viral suppressive capacity, and tissue localization. Addressing these issues will be critical to the success of HIV cure and remission attempts.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Bekele Y, Lakshmikanth T, Chen Y, Mikes J, Nasi A, Petkov S, Hejdeman B, Brodin P, Chiodi F. Mass cytometry identifies distinct CD4+ T cell clusters distinguishing HIV-1-infected patients according to antiretroviral therapy initiation. JCI Insight 2019; 4:125442. [PMID: 30728327 DOI: 10.1172/jci.insight.125442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/20/2018] [Indexed: 01/13/2023] Open
Abstract
Recent guidelines recommend antiretroviral therapy (ART) to be administered as early as possible during HIV-1 infection. Few studies addressed the immunological benefit of commencing ART during the acute phase of infection. We used mass cytometry to characterize blood CD4+ T cells from HIV-1-infected patients who initiated ART during acute or chronic phase of infection. Using this method, we analyzed a large number of markers on millions of individual immune cells. The results revealed that CD4+ T cell clusters with high expression of CD27, CD28, CD127, and CD44, whose function involves T cell migration to inflamed tissues and survival, are more abundant in healthy controls and patients initiating ART during the acute phase; on the contrary, CD4+ T cell clusters in patients initiating ART during the chronic phase had reduced expression of these markers. The results are suggestive of a better preserved immune function in HIV-1-infected patients initiating ART during acute infection.
Collapse
Affiliation(s)
- Yonas Bekele
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, and
| | - Tadepally Lakshmikanth
- Science for Life Laboratory, Division of Clinical Pediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Yang Chen
- Science for Life Laboratory, Division of Clinical Pediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jaromir Mikes
- Science for Life Laboratory, Division of Clinical Pediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Aikaterini Nasi
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, and
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, and
| | - Bo Hejdeman
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, and Unit of Infectious Diseases, Venhälsan, Södersjukhuset, Stockholm, Sweden
| | - Petter Brodin
- Science for Life Laboratory, Division of Clinical Pediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Newborn Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, and
| |
Collapse
|
13
|
Hey-Nguyen WJ, Bailey M, Xu Y, Suzuki K, Van Bockel D, Finlayson R, Leigh Brown A, Carr A, Cooper DA, Kelleher AD, Koelsch KK, Zaunders JJ. HIV-1 DNA Is Maintained in Antigen-Specific CD4+ T Cell Subsets in Patients on Long-Term Antiretroviral Therapy Regardless of Recurrent Antigen Exposure. AIDS Res Hum Retroviruses 2019; 35:112-120. [PMID: 30511878 DOI: 10.1089/aid.2018.0235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Memory CD4+ T cells (mCD4s) containing integrated HIV DNA are considered the main barrier to a cure for HIV infection. Here, we analyzed HIV DNA reservoirs in antigen-specific subsets of mCDs to delineate the mechanisms by which HIV reservoirs persist during antiretroviral therapy (ART). HIV Gag, cytomegalovirus (CMV), and tetanus toxoid (TT)-specific mCD4s were isolated from peripheral blood samples obtained from 11 individual subjects, 2-11 years after commencing ART. Antigen-specific mCD4s were identified by the sensitive OX40 assay and purified by cell sorting. Total HIV DNA levels were quantified by real-time PCR, and clonal viral sequences generated from mCD4 subsets and pre-ART plasma samples. Quantitative results and sequence analysis were restricted to five and three study participants, respectively, which was likely due to the low frequency of the antigen-specific mCD4s and relatively low HIV DNA proviral loads. Median HIV Gag-, CMV-, and TT-specific mCD4s were 0.61%, 2.46%, and 0.78% of total mCD4s, and they contained a median of 2.50, 2.38, and 2.55 log10 copies of HIV DNA per 106 cells, respectively. HIV DNA sequences were derived from antigen-specific mCD4s clustered with sequences derived from pre-ART plasma samples. There was a trend toward increased viral diversity in clonal viral sequences derived from CMV-specific mCD4s relative to TT-specific mCD4s. Despite limitations, this study provides direct evidence that HIV reservoirs persist in memory CD4+ T cell subsets maintained by homeostatic proliferation (TT) and adds to growing evidence against viral evolution during ART. Similar future studies require techniques that sample diverse HIV reservoirs and with improved sensitivity.
Collapse
Affiliation(s)
- William J. Hey-Nguyen
- The Kirby Institute, UNSW Australia, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital Sydney, Sydney, Australia
| | - Michelle Bailey
- The Kirby Institute, UNSW Australia, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital Sydney, Sydney, Australia
| | - Yin Xu
- The Kirby Institute, UNSW Australia, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital Sydney, Sydney, Australia
| | - Kazuo Suzuki
- The Kirby Institute, UNSW Australia, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital Sydney, Sydney, Australia
- St. Vincent's Hospital Sydney, Sydney, Australia
| | - David Van Bockel
- The Kirby Institute, UNSW Australia, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital Sydney, Sydney, Australia
- St. Vincent's Hospital Sydney, Sydney, Australia
| | - Robert Finlayson
- The Kirby Institute, UNSW Australia, Sydney, Australia
- Taylor Square Private Clinic, Sydney, Australia
| | - Andrew Leigh Brown
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Carr
- St. Vincent's Hospital Sydney, Sydney, Australia
| | - David A. Cooper
- The Kirby Institute, UNSW Australia, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital Sydney, Sydney, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, UNSW Australia, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital Sydney, Sydney, Australia
- St. Vincent's Hospital Sydney, Sydney, Australia
| | - Kersten K. Koelsch
- The Kirby Institute, UNSW Australia, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital Sydney, Sydney, Australia
- St. Vincent's Hospital Sydney, Sydney, Australia
| | - John J. Zaunders
- The Kirby Institute, UNSW Australia, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital Sydney, Sydney, Australia
- St. Vincent's Hospital Sydney, Sydney, Australia
| |
Collapse
|
14
|
Ngo Bell EC, Vandenhende MA, Caldato S, Saunier A, Bellecave P, Tumiotto C, Avettand-Fenoel V, Hessamfar M, Morlat P, Bonnet F. High decay of blood HIV reservoir when tenofovir/emtricitabine/elvitegravir/cobicistat is initiated during the acute primary HIV infection. J Antimicrob Chemother 2018; 72:2681-2683. [PMID: 28582509 DOI: 10.1093/jac/dkx166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Elisabeth Carolle Ngo Bell
- CHU de Bordeaux, Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint André, 33000 Bordeaux, France
| | - Marie-Anne Vandenhende
- CHU de Bordeaux, Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint André, 33000 Bordeaux, France
| | - Sabrina Caldato
- CHU de Bordeaux, Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint André, 33000 Bordeaux, France
| | - Aurélie Saunier
- CHU de Bordeaux, Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint André, 33000 Bordeaux, France
| | - Pantxika Bellecave
- CHU de Bordeaux, Laboratoire de Virologie, Hôpital Pellegrin, 33000 Bordeaux, France
| | - Camille Tumiotto
- CHU de Bordeaux, Laboratoire de Virologie, Hôpital Pellegrin, 33000 Bordeaux, France
| | - Véronique Avettand-Fenoel
- APHP Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France.,Université Paris-Descartes Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
| | - Mojgan Hessamfar
- CHU de Bordeaux, Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint André, 33000 Bordeaux, France
| | - Philippe Morlat
- CHU de Bordeaux, Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint André, 33000 Bordeaux, France
| | - Fabrice Bonnet
- CHU de Bordeaux, Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint André, 33000 Bordeaux, France
| |
Collapse
|
15
|
Selik RM, Linley L. Viral Loads Within 6 Weeks After Diagnosis of HIV Infection in Early and Later Stages: Observational Study Using National Surveillance Data. JMIR Public Health Surveill 2018; 4:e10770. [PMID: 30401660 PMCID: PMC6246969 DOI: 10.2196/10770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Early (including acute) HIV infection is associated with viral loads higher than those in later stages. OBJECTIVE This study aimed to examine the association between acute infection and viral loads near the time of diagnosis using data reported to the US National HIV Surveillance System. METHODS We analyzed data on infections diagnosed in 2012-2016 and reported through December 2017. Diagnosis and staging were based on the 2014 US surveillance case definition for HIV infection. We divided early HIV-1 infection (stage 0) into two subcategories. Subcategory 0α: a negative or indeterminate HIV-1 antibody test was ≤60 days after the first confirmed positive HIV-1 test or a negative or indeterminate antibody test or qualitative HIV-1 nucleic acid test (NAT) was ≤180 days before the first positive test, the latter being a NAT or detectable viral load. Subcategory 0β: a negative or indeterminate antibody or qualitative NAT was ≤180 days before the first positive test, the latter being an HIV antibody or antigen/antibody test. We compared median earliest viral loads for each stage and subcategory in each of the first 6 weeks after diagnosis using only the earliest viral load for each individual. RESULTS Of 203,392 infections, 56.69% (115,297/203,392) were reported with a quantified earliest viral load within 6 weeks after diagnosis and criteria sufficient to determine the stage at diagnosis. Among 5081 infections at stage 0, the median earliest viral load fell from 694,000 copies/mL in week 1 to 125,022 in week 2 and 43,473 by week 6. Among 30,910 infections in stage 1, the median earliest viral load ranged 15,412-17,495. Among 42,784 infections in stage 2, the median viral load declined from 44,973 in week 1 to 38,497 in week 6. Among 36,522 infections in stage 3 (AIDS), the median viral load dropped from 205,862 in week 1 to 119,000 in week 6. The median earliest viral load in stage 0 subcategory 0α fell from 1,344,590 copies/mL in week 1 to 362,467 in week 2 and 47,320 in week 6, while that in subcategory 0β was 70,114 copies/mL in week 1 and then 32,033 to 44,067 in weeks 2-6. The median viral load in subcategory 0α was higher than that in subcategory 0β in each of the first 6 weeks after diagnosis (P<.001). CONCLUSIONS In the 1st week after diagnosis, viral loads in early infections are generally several times higher than those in later stages at diagnosis. By the 3rd week, however, most are lower than those in stage 3. High viral loads in early infection are much more common in subcategory 0α than in subcategory 0β, consistent with 0α comprising mostly acute infections and 0β comprising mostly postacute early infections. These findings may inform the prioritization of interventions for prevention.
Collapse
Affiliation(s)
- Richard M Selik
- Division of HIV/AIDS and Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Laurie Linley
- Division of HIV/AIDS and Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
16
|
Kumar NA, van der Sluis RM, Mota T, Pascoe R, Evans VA, Lewin SR, Cameron PU. Myeloid Dendritic Cells Induce HIV Latency in Proliferating CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1468-1477. [PMID: 30030324 DOI: 10.4049/jimmunol.1701233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 06/27/2018] [Indexed: 02/04/2023]
Abstract
HIV latency occurs predominantly in long-lived resting CD4+ T cells; however, latent infection also occurs in T cell subsets, including proliferating CD4+ T cells. We compared the establishment and maintenance of latent infection in nonproliferating and proliferating human CD4+ T cells cocultured with syngeneic myeloid dendritic cells (mDC). Resting CD4+ T cells were labeled with the proliferation dye eFluor 670 and cultured alone or with mDC, plasmacytoid dendritic cells, or monocytes in the presence of staphylococcal enterotoxin B (SEB). Cells were cultured for 24 h and infected with CCR5-tropic enhanced GFP (EGFP) reporter HIV. Five days postinfection, nonproductively infected EGFP- CD4+ T cells that were either nonproliferating (eFluor 670hi) or proliferating (eFluor 670lo) were sorted and cultured for an additional 7 d (day 12) with IL-7 and antiretrovirals. At day 5 postinfection, sorted, nonproductively infected T cells were stimulated with anti-CD3/CD28, and induced expression of EGFP was measured to determine the frequency of latent infection. Integrated HIV in these cells was confirmed using quantitative PCR. By these criteria, latent infection was detected at day 5 and 12 in proliferating T cells cocultured with mDC and monocytes but not plasmacytoid dendritic cells, where CD4+ T cells at day 12 were poor. At day 5 postinfection, nonproliferating T cells expressing SEB-specific TCR Vβ-17 were enriched in latent infection compared with non-SEB-specific TCR Vβ-8.1. Together, these data show that both nonproliferating and proliferating CD4+ T cells can harbor latent infection during SEB-stimulated T cell proliferation and that the establishment of HIV latency in nonproliferating T cells is linked to expression of specific TCR that respond to SEB.
Collapse
Affiliation(s)
- Nitasha A Kumar
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia
| | - Renee M van der Sluis
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia
| | - Talia Mota
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia
| | - Rachel Pascoe
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia
| | - Vanessa A Evans
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3004, Australia; and.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia; .,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3004, Australia; and.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| |
Collapse
|
17
|
Martin GE, Pace M, Thornhill JP, Phetsouphanh C, Meyerowitz J, Gossez M, Brown H, Olejniczak N, Lwanga J, Ramjee G, Kaleebu P, Porter K, Willberg CB, Klenerman P, Nwokolo N, Fox J, Fidler S, Frater J. CD32-Expressing CD4 T Cells Are Phenotypically Diverse and Can Contain Proviral HIV DNA. Front Immunol 2018; 9:928. [PMID: 29780387 PMCID: PMC5946760 DOI: 10.3389/fimmu.2018.00928] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Efforts to both characterize and eradicate the HIV reservoir have been limited by the rarity of latently infected cells and the absence of a specific denoting biomarker. CD32a (FcγRIIa) has been proposed to be a marker for an enriched CD4 T cell HIV reservoir, but this finding remains controversial. Here, we explore the expression of CD32 on CD3+CD4+ cells in participants from two primary HIV infection studies and identify at least three distinct phenotypes (CD32low, CD32+CD14+, and CD32high). Of note, CD4 negative enrichment kits remove the majority of CD4+CD32+ T cells, potentially skewing subsequent analyses if used. CD32high CD4 T cells had higher levels of HLA-DR and HIV co-receptor expression than other subsets, compatible with their being more susceptible to infection. Surprisingly, they also expressed high levels of CD20, TCRαβ, IgD, and IgM (but not IgG), markers for both T cells and naïve B cells. Compared with other populations, CD32low cells had a more differentiated memory phenotype and high levels of immune checkpoint receptors, programmed death receptor-1 (PD-1), Tim-3, and TIGIT. Within all three CD3+CD4+CD32+ phenotypes, cells could be identified in infected participants, which contained HIV DNA. CD32 expression on CD4 T cells did not correlate with HIV DNA or cell-associated HIV RNA (both surrogate measures of overall reservoir size) or predict time to rebound viremia following treatment interruption, suggesting that it is not a dominant biomarker for HIV persistence. Our data suggest that while CD32+ T cells can be infected with HIV, CD32 is not a specific marker of the reservoir although it might identify a population of HIV enriched cells in certain situations.
Collapse
Affiliation(s)
- Genevieve E Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Chansavath Phetsouphanh
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Morgane Gossez
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalia Olejniczak
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Julianne Lwanga
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Gita Ramjee
- HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa
| | | | - Kholoud Porter
- Research Department of Infection and Population Health, University College London, London, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Nneka Nwokolo
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Murray JM, Zaunders J, Emery S, Cooper DA, Hey-Nguyen WJ, Koelsch KK, Kelleher AD. HIV dynamics linked to memory CD4+ T cell homeostasis. PLoS One 2017; 12:e0186101. [PMID: 29049331 PMCID: PMC5648138 DOI: 10.1371/journal.pone.0186101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022] Open
Abstract
The dynamics of latent HIV is linked to infection and clearance of resting memory CD4+ T cells. Infection also resides within activated, non-dividing memory cells and can be impacted by antigen-driven and homeostatic proliferation despite suppressive antiretroviral therapy (ART). We investigated whether plasma viral level (pVL) and HIV DNA dynamics could be explained by HIV’s impact on memory CD4+ T cell homeostasis. Median total, 2-LTR and integrated HIV DNA levels per μL of peripheral blood, for 8 primary (PHI) and 8 chronic HIV infected (CHI) individuals enrolled on a raltegravir (RAL) based regimen, exhibited greatest changes over the 1st year of ART. Dynamics slowed over the following 2 years so that total HIV DNA levels were equivalent to reported values for individuals after 10 years of ART. The mathematical model reproduced the multiphasic dynamics of pVL, and levels of total, 2-LTR and integrated HIV DNA in both PHI and CHI over 3 years of ART. Under these simulations, residual viremia originated from reactivated latently infected cells where most of these cells arose from clonal expansion within the resting phenotype. Since virion production from clonally expanded cells will not be affected by antiretroviral drugs, simulations of ART intensification had little impact on pVL. HIV DNA decay over the first year of ART followed the loss of activated memory cells (120 day half-life) while the 5.9 year half-life of total HIV DNA after this point mirrored the slower decay of resting memory cells. Simulations had difficulty reproducing the fast early HIV DNA dynamics, including 2-LTR levels peaking at week 12, and the later slow loss of total and 2-LTR HIV DNA, suggesting some ongoing infection. In summary, our modelling indicates that much of the dynamical behavior of HIV can be explained by its impact on memory CD4+ T cell homeostasis.
Collapse
Affiliation(s)
- John M. Murray
- School of Mathematics and Statistics, UNSW Australia, Sydney, NSW, Australia
- * E-mail:
| | - John Zaunders
- St Vincent's Hospital, Sydney, Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - Sean Emery
- The Kirby Institute, University of New South Wales, Sydney, NSW Australia
| | - David A. Cooper
- The Kirby Institute, University of New South Wales, Sydney, NSW Australia
| | | | - Kersten K. Koelsch
- The Kirby Institute, University of New South Wales, Sydney, NSW Australia
| | | |
Collapse
|
19
|
Abstract
Supplemental Digital Content is available in the text Objective(s): An HIV cure will impose aviraemia that is sustained following the withdrawal of antiretroviral therapy (ART). Understanding the efficacy of novel interventions aimed at curing HIV requires characterization of both natural viral control and the effect of ART on viral control after treatment interruption. Design: Analysis of transient viral control in recent seroconverters in the Short Pulse AntiRetroviral Therapy at Acute Seroconversion trial. Methods: We compared untreated and treated HIV seroconverters (n = 292) and identified periods of control (plasma HIV RNA < 400 copies/ml for ≥16 weeks off therapy) in 7.9% of ART-naive participants, and in 12.0% overall. HIV DNA was measured by qPCR, and HIV-specific CD8+ responses were measured by enzyme-linked immunosorbent spot assay (ELISpot). T-cell activation and exhaustion were measured by flow cytometry. Results: At baseline, future controllers had lower HIV DNA, lower plasma HIV RNA, higher CD4+ : CD8+ ratios (all P < 0.001) and higher CD4+ cell counts (P < 0.05) than noncontrollers. Among controllers, the only difference between the untreated and those who received ART was higher baseline HIV RNA in the latter (P = 0.003), supporting an added ART effect. Conclusion: Consideration of spontaneous remission in untreated individuals will be critical to avoid overestimating the effect size of new interventions used in HIV cure studies.
Collapse
|
20
|
Oliveira MF, Chaillon A, Nakazawa M, Vargas M, Letendre SL, Strain MC, Ellis RJ, Morris S, Little SJ, Smith DM, Gianella S. Early Antiretroviral Therapy Is Associated with Lower HIV DNA Molecular Diversity and Lower Inflammation in Cerebrospinal Fluid but Does Not Prevent the Establishment of Compartmentalized HIV DNA Populations. PLoS Pathog 2017; 13:e1006112. [PMID: 28046096 PMCID: PMC5266327 DOI: 10.1371/journal.ppat.1006112] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 01/25/2017] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
Even when antiretroviral therapy (ART) is started early after infection, HIV DNA might persist in the central nervous system (CNS), possibly contributing to inflammation, brain damage and neurocognitive impairment. Paired blood and cerebrospinal fluid (CSF) were collected from 16 HIV-infected individuals on suppressive ART: 9 participants started ART <4 months of the estimated date of infection (EDI) ("early ART"), and 7 participants started ART >14 months after EDI ("late ART"). For each participant, neurocognitive functioning was measured by Global Deficit Score (GDS). HIV DNA levels were measured in peripheral blood mononuclear cells (PBMCs) and CSF cell pellets by droplet digital (dd)PCR. Soluble markers of inflammation (sCD163, IL-6, MCP-1, TNF-α) and neuronal damage (neurofilament light [NFL]) were measured in blood and CSF supernatant by immunoassays. HIV-1 partial C2V3 env deep sequencing data (Roche 454) were obtained for 8 paired PBMC and CSF specimens and used for phylogenetic and compartmentalization analysis. Median exposure to ART at the time of sampling was 2.6 years (IQR: 2.2-3.7) and did not differ between groups. We observed that early ART was significantly associated with lower molecular diversity of HIV DNA in CSF (p<0.05), and lower IL-6 levels in CSF (p = 0.02), but no difference for GDS, NFL, or HIV DNA detectability compared to late ART. Compartmentalization of HIV DNA populations between CSF and blood was detected in 6 out of 8 participants with available paired HIV DNA sequences (2 from early and 4 from late ART group). Phylogenetic analysis confirmed the presence of monophyletic HIV DNA populations within the CSF in 7 participants, and the same population was repeatedly sampled over a 5 months period in one participant with longitudinal sampling. Such compartmentalized provirus in the CNS needs to be considered for the design of future eradication strategies and might contribute to the neuropathogenesis of HIV.
Collapse
Affiliation(s)
- Michelli F. Oliveira
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Masato Nakazawa
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Milenka Vargas
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Scott L. Letendre
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- HIV Neurobehavioral Research Center, San Diego, California, United States of America
| | - Matthew C. Strain
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ronald J. Ellis
- HIV Neurobehavioral Research Center, San Diego, California, United States of America
- Departments of Neurosciences and Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Sheldon Morris
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Susan J. Little
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Sara Gianella
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
21
|
Achieving HIV-1 Control through RNA-Directed Gene Regulation. Genes (Basel) 2016; 7:genes7120119. [PMID: 27941595 PMCID: PMC5192495 DOI: 10.3390/genes7120119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
HIV-1 infection has been transformed by combined anti-retroviral therapy (ART), changing a universally fatal infection into a controllable infection. However, major obstacles for an HIV-1 cure exist. The HIV latent reservoir, which exists in resting CD4+ T cells, is not impacted by ART, and can reactivate when ART is interrupted or ceased. Additionally, multi-drug resistance can arise. One alternate approach to conventional HIV-1 drug treatment that is being explored involves gene therapies utilizing RNA-directed gene regulation. Commonly known as RNA interference (RNAi), short interfering RNA (siRNA) induce gene silencing in conserved biological pathways, which require a high degree of sequence specificity. This review will provide an overview of the silencing pathways, the current RNAi technologies being developed for HIV-1 gene therapy, current clinical trials, and the challenges faced in progressing these treatments into clinical trials.
Collapse
|
22
|
Monitoring Integration over Time Supports a Role for Cytotoxic T Lymphocytes and Ongoing Replication as Determinants of Reservoir Size. J Virol 2016; 90:10436-10445. [PMID: 27630237 DOI: 10.1128/jvi.00242-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/15/2016] [Indexed: 01/30/2023] Open
Abstract
The dynamics of HIV reservoir accumulation off antiretroviral therapy (ART) is underexplored. Levels of integrated HIV DNA in peripheral blood mononuclear cells (PBMCs) were longitudinally monitored before and after antiviral therapy. HIV integration increased over time in both elite controllers (ECs; n = 8) and noncontrollers (NCs; n = 6) before ART, whereas integration remained stable in patients on ART (n = 4). The median annual fold change was higher in NCs than in ECs and negatively correlated with CD4/CD8 T-cell ratio. Cytotoxic T lymphocyte (CTL) function as assessed by infected CD4 T-cell elimination (ICE) and granzyme B activity did not significantly change over time in ECs, suggesting that the gradual increase in integrated HIV DNA observed in ECs was not a result of progressive loss of immune-mediated control. Also, acutely infected (n = 7) but not chronically infected (n = 6) patients exhibited a significant drop in integrated HIV DNA 12 months after ART initiation. In conclusion, in the absence of ART, integrated HIV accumulates over time both in NCs and in ECs, at variable individual rates. Starting ART early in infection leads to a greater drop in integrated HIV DNA than does initiating treatment after years of infection. The increase in integrated HIV DNA over time suggests that early treatment may be of benefit in limiting HIV reservoirs. IMPORTANCE The establishment of a latent reservoir represents a barrier to cure among HIV-infected individuals. The dynamics of HIV reservoir accumulation over time in patients before antiviral therapy is underexplored, in large part because it is difficult to accurately and reproducibly measure the size of HIV reservoir in this setting. In our study, we compared the dynamics of integrated HIV DNA over time in ECs and NCs before and after ART was initiated. We found that integrated HIV DNA levels progressively increase over time in the absence of ART, but with a higher, albeit variable, rate in NCs compared to ECs. In addition, integrated HIV DNA declines more dramatically when ART is initiated in acute rather than chronic HIV infection, suggesting important differences between acute and chronic infection. Our study highlights the role of HIV replication and CTL control in reservoir accumulation in sanctuary sites and why ART appears to be more effective in acute infection.
Collapse
|
23
|
Immune activation during acute HIV infection and the impact of early antiretroviral therapy. Curr Opin HIV AIDS 2016; 11:163-72. [PMID: 26599167 DOI: 10.1097/coh.0000000000000228] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to outline recent data pertaining to mechanisms of immune activation in acute infection and describe new developments that seek to determine if early antiretroviral treatment can mitigate chronic immune activation. RECENT FINDINGS Following the detection of HIV RNA, highly activated CD8 T cells expand and peak approximately 2 weeks following peak viral load whereas levels of proinflammatory soluble markers coincide with a rise in viral load. Immune activation during acute infection is driven by many factors including pyroptosis, replicative capacity of the infecting virus, and loss of Th17 cells within the gut. Early antiretroviral therapy (ART), particularly if initiated in Fiebig I (HIV IgM-), preserved mucosal CD4 T cells, possibly preventing the release of microbial products associated with immune activation. Viral reservoirs were restricted by the early initiation of ART, and heightened systemic immune activation was partially prevented compared with chronic HIV infection. A strong correlation was found between the size of the viral reservoir and cellular immune activation. SUMMARY The timing of immune activation during acute infection occurs shortly after exposure. Recent studies demonstrated that ART mitigates inflammatory responses, preserves CD4 T cells, and limits reservoir seeding if provided early in acute HIV infection.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The development of serious non-AIDS-related pathologies typically associated with aging, and the premature immune aging that characterizes HIV-1-infected patients, even with suppressive antiretroviral therapy, have raised increasing concerns in recent years. Deciphering the causes of these phenomena is key for our understanding of HIV pathogenesis and for the clinical care of patients living with the virus. RECENT FINDINGS An important basis for the immune parallels between HIV infection and aging lies in the exhaustion of the lymphopoietic capacity of infected individuals, which eventually affects all compartments of the immune system. The alleged cause for these immune alterations, and the onset of age-related comorbidities, is the systemic chronic immune activation that is established in patients. However, there is a multiplicity of contributors to this immune activation. SUMMARY Our understanding of the precise link between immune activation and aging in HIV infection is complicated by the influence of coinfections and life style factors. Developing rational interventions to reduce the hyper-inflammatory status of HIV-1-infected patients requires a clearer delineation of the factors contributing to the increased levels of systemic immune activation.
Collapse
|
25
|
Zaunders J, Danta M, Bailey M, Mak G, Marks K, Seddiki N, Xu Y, Templeton DJ, Cooper DA, Boyd MA, Kelleher AD, Koelsch KK. CD4 + T Follicular Helper and IgA + B Cell Numbers in Gut Biopsies from HIV-Infected Subjects on Antiretroviral Therapy Are Similar to HIV-Uninfected Individuals. Front Immunol 2016; 7:438. [PMID: 27822211 PMCID: PMC5075890 DOI: 10.3389/fimmu.2016.00438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/04/2016] [Indexed: 01/09/2023] Open
Abstract
Background Disruption of gastrointestinal tract epithelial and immune barriers contribute to microbial translocation, systemic inflammation, and progression of HIV-1 infection. Antiretroviral therapy (ART) may lead to reconstitution of CD4+ T cells in gut-associated lymphoid tissue (GALT), but its impact on humoral immunity within GALT is unclear. Therefore, we studied CD4+ subsets, including T follicular helper cells (Tfh), as well as resident B cells that have switched to IgA production, in gut biopsies, from HIV+ subjects on suppressive ART compared to HIV-negative controls (HNC). Methods Twenty-three HIV+ subjects on ART and 22 HNC undergoing colonoscopy were recruited to the study. Single-cell suspensions were prepared from biopsies from left colon (LC), right colon (RC), and terminal ileum (TI). T and B lymphocyte subsets, as well as EpCAM+ epithelial cells, were accurately enumerated by flow cytometry, using counting beads. Results No significant differences in the number of recovered epithelial cells were observed between the two subject groups. However, the median TI CD4+ T cell count/106 epithelial cells was 2.4-fold lower in HIV+ subjects versus HNC (19,679 versus 47,504 cells; p = 0.02). Similarly, median LC CD4+ T cell counts were reduced in HIV+ subjects (8,358 versus 18,577; p = 0.03) but were not reduced in RC. Importantly, we found no significant differences in Tfh or IgA+ B cell counts at either site between HIV+ subjects and HNC. Further analysis showed no difference in CD4+, Tfh, or IgA+ B cell counts between subjects who commenced ART in primary compared to chronic HIV-1 infection. Despite the decrease in total CD4 T cells, we could not identify a selective decrease of other key subsets of CD4+ T cells, including CCR5+ cells, CD127+ long-term memory cells, CD103+ tissue-resident cells, or CD161+ cells (surrogate marker for Th17), but there was a slight increase in the proportion of T regulatory cells. Conclusion While there were lower absolute CD4+ counts in the TI and LC in HIV+ subjects on ART, they were not associated with significantly reduced Tfh cell counts or IgA+ B cells, suggesting that this important vanguard of adaptive immune defense against luminal microbial products is normalized following ART.
Collapse
Affiliation(s)
- John Zaunders
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia; The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Mark Danta
- St Vincent's Hospital, Clinical School , Sydney, NSW , Australia
| | - Michelle Bailey
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| | - Gerald Mak
- St Vincent's Hospital, Clinical School , Sydney, NSW , Australia
| | - Katherine Marks
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital , Sydney, NSW , Australia
| | - Nabila Seddiki
- Equipe 16, INSERM U955, Créteil, France; Faculté de médecine, Université Paris Est, Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Yin Xu
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| | - David J Templeton
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia; RPA Sexual Health, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David A Cooper
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia; The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Mark A Boyd
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| | - Anthony D Kelleher
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia; The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Kersten K Koelsch
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
26
|
Optimal control therapy and vaccination for special HIV-1 model with delay. Theory Biosci 2016; 135:217-230. [PMID: 27488866 DOI: 10.1007/s12064-016-0234-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
Abstract
In this paper, we consider a four dimensional model of the human immunodeficiency virus-1 (HIV-1) with delay, which is an extension of some three dimensional models. We approach the treatment problem by adding two controllers to the system for inhibiting viral production. The optimal controller [Formula: see text] is considered for vaccine and [Formula: see text] for the drug. The Pontryagin maximum principle with delay is used to characterize these optimal controls. At the end, numerical results are presented to illustrate the optimal solutions. The validity of the model was confirmed by proper semi-quantitative simulation of some clinical data. The model was used to predict the possible beneficial effects of vaccine and anti-retroviral drug administration in HIV-1 disease.
Collapse
|
27
|
Imamichi H, Dewar RL, Adelsberger JW, Rehm CA, O'Doherty U, Paxinos EE, Fauci AS, Lane HC. Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc Natl Acad Sci U S A 2016; 113:8783-8. [PMID: 27432972 PMCID: PMC4978246 DOI: 10.1073/pnas.1609057113] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite years of plasma HIV-RNA levels <40 copies per milliliter during combination antiretroviral therapy (cART), the majority of HIV-infected patients exhibit persistent seropositivity to HIV-1 and evidence of immune activation. These patients also show persistence of proviruses of HIV-1 in circulating peripheral blood mononuclear cells. Many of these proviruses have been characterized as defective and thus thought to contribute little to HIV-1 pathogenesis. By combining 5'LTR-to-3'LTR single-genome amplification and direct amplicon sequencing, we have identified the presence of "defective" proviruses capable of transcribing novel unspliced HIV-RNA (usHIV-RNA) species in patients at all stages of HIV-1 infection. Although these novel usHIV-RNA transcripts had exon structures that were different from those of the known spliced HIV-RNA variants, they maintained translationally competent ORFs, involving elements of gag, pol, env, rev, and nef to encode a series of novel HIV-1 chimeric proteins. These novel usHIV-RNAs were detected in five of five patients, including four of four patients with prolonged viral suppression of HIV-RNA levels <40 copies per milliliter for more than 6 y. Our findings suggest that the persistent defective proviruses of HIV-1 are not "silent," but rather may contribute to HIV-1 pathogenesis by stimulating host-defense pathways that target foreign nucleic acids and proteins.
Collapse
Affiliation(s)
- Hiromi Imamichi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Robin L Dewar
- Clinical Services Program, Applied and Development Research Directorate, Leidos Biomedical Research, Inc., Frederick, MD 21072
| | - Joseph W Adelsberger
- Clinical Services Program, Applied and Development Research Directorate, Leidos Biomedical Research, Inc., Frederick, MD 21072
| | - Catherine A Rehm
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Ellen E Paxinos
- Applications and Collaborations, Pacific Biosciences, Menlo Park, CA 94025
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| | - H Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Deleage C, Schuetz A, Alvord WG, Johnston L, Hao XP, Morcock DR, Rerknimitr R, Fletcher JL, Puttamaswin S, Phanuphak N, Dewar R, McCune JM, Sereti I, Robb M, Kim JH, Schacker TW, Hunt P, Lifson JD, Ananworanich J, Estes JD. Impact of early cART in the gut during acute HIV infection. JCI Insight 2016; 1:e87065. [PMID: 27446990 PMCID: PMC4951101 DOI: 10.1172/jci.insight.87065] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/19/2016] [Indexed: 01/03/2023] Open
Abstract
Early after HIV infection there is substantial depletion of CD4+ T cells in the gastrointestinal (GI) tract lamina propria (LP), with associated epithelial barrier damage, leading to microbial translocation and systemic inflammation and immune activation. In this study, we analyzed these early events in the GI tract in a cohort of Thai acute HIV-infected patients and determined the effect of early combination antiretroviral treatment (cART). HIV-uninfected and chronically and acutely HIV-infected patients at different Fiebig stages (I-V) underwent colonic biopsies and then received cART. Immunohistochemistry and quantitative image analysis were performed on cross-sectional and longitudinal colon biopsy specimens (day 0 to week 96) to measure GI tract damage (infiltration of polymorphonuclear cells), inflammation (M×1, TNF-α), immune activation (Ki-67), and the CD4+ T cell population in the LP. The magnitude of GI tract damage, immune activation, and inflammation was significantly increased, with significantly depleted CD4+ T cells in the LP in all acutely infected groups prior to cART compared with HIV-uninfected control participants. While most patients treated during acute infection resolved GI tract inflammation and immune activation back to baseline levels after 24 weeks of cART, most acutely infected participants did not restore their CD4+ T cells after 96 weeks of cART.
Collapse
Affiliation(s)
- Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Alexandra Schuetz
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - W. Gregory Alvord
- Statistical Consulting, Data Management Services Inc., Frederick, Maryland, USA
| | - Leslie Johnston
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Xing-Pei Hao
- Pathology and Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - David R. Morcock
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | | | - James L.K. Fletcher
- SEARCH, Bangkok, Thailand
- Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Suwanna Puttamaswin
- SEARCH, Bangkok, Thailand
- Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Nittaya Phanuphak
- SEARCH, Bangkok, Thailand
- Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Robin Dewar
- Virus Isolation and Serology Laboratory, Applied and Developmental Research Directorate, Science Applications International Corp., Frederick Inc. National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland, USA
| | - Joseph M. McCune
- Division of Experimental Medicine, Department of Medicine, UCSF, San Francisco, California, USA
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Merlin Robb
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jerome H. Kim
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- SEARCH, Bangkok, Thailand
- International Vaccine Institute, Seoul, South Korea
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter Hunt
- Positive Health Program, Department of Medicine, UCSF, San Francisco, California, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- SEARCH, Bangkok, Thailand
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | | |
Collapse
|
29
|
Depincé-Berger AE, Vergnon-Miszczycha D, Girard A, Frésard A, Botelho-Nevers E, Lambert C, Del Tedesco E, Genin C, Pozzetto B, Lucht F, Roblin X, Bourlet T, Paul S. Major influence of CD4 count at the initiation of cART on viral and immunological reservoir constitution in HIV-1 infected patients. Retrovirology 2016; 13:44. [PMID: 27363286 PMCID: PMC4929778 DOI: 10.1186/s12977-016-0278-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/20/2016] [Indexed: 02/01/2023] Open
Abstract
Background A persistent immune activation is observed in gut during HIV-1 infection, which is not completely reversed by a combined antiretroviral therapy (cART). The impact of the time of cART initiation may highly influence the size of the viral reservoir and the ratio of CD4+/CD8+ T cells in the gut. In this study, we analyzed the characteristics of HIV rectal reservoir of long-term treated patients, regarding their blood CD4+ T cells count at the time of cART initiation. Results Twenty-four consenting men were enrolled: 9 exhibiting a CD4+ T cells count >350/mm3 (“high-level CD4 group”) and 15 < 350/mm3 (“low-level CD4 group”) in blood, at the start of cART. An immunophenotypical analysis of T and B cells subpopulations was performed in blood and rectal biopsies. HIV cell-associated DNA loads and qualitative intra-cellular RNA were determined in both compartments. The ratio of CD4+/CD8+ T cells was significantly decreased in the blood but not in the rectum of the “low-level CD4 group” of patients. The alteration in β7+ CD4+ T cells homing was higher in this group and was correlated to a low ratio of CD4+/CD8+ T cells in blood. An initiation of cART in men exhibiting a low-level CD4 count was also associated with an alteration of B cells maturation. HIV blood and gut DNA reservoirs were significantly lower in the “high-level CD4 group” of men. A high HIV DNA level was associated to a detectable intracellular HIV RNA in rectum. Conclusions An early initiation of cART could significantly preserve gut immunity and limit the viral reservoir constitution. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0278-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Emmanuelle Depincé-Berger
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Laboratoire d'Immunologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Delphine Vergnon-Miszczycha
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Service de Maladies Infectieuses et Tropicales, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Alexandre Girard
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France
| | - Anne Frésard
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Elisabeth Botelho-Nevers
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Service de Maladies Infectieuses et Tropicales, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Claude Lambert
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Laboratoire d'Immunologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Emilie Del Tedesco
- Service d'Hépato-Gastroentérologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Christian Genin
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Laboratoire d'Immunologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Bruno Pozzetto
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Service des Agents Infectieux et d'Hygiène, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Frédéric Lucht
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Service de Maladies Infectieuses et Tropicales, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Xavier Roblin
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Service d'Hépato-Gastroentérologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Thomas Bourlet
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France. .,Service des Agents Infectieux et d'Hygiène, Centre Hospitalo-Universitaire, Saint-Étienne, France.
| | - Stéphane Paul
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Laboratoire d'Immunologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| |
Collapse
|
30
|
Michelini Z, Galluzzo CM, Pirillo MF, Francisci D, Degli Antoni A, Vivarelli A, Ladisa N, Cirioni O, Weimer LE, Fragola V, Cara A, Floridia M, Baroncelli S. HIV-1 DNA dynamics and variations in HIV-1 DNA protease and reverse transcriptase sequences in multidrug-resistant patients during successful raltegravir-based therapy. J Med Virol 2016; 88:2115-2124. [PMID: 27197719 DOI: 10.1002/jmv.24581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 01/04/2023]
Abstract
There is limited information on the variations of HIV-1 DNA mutation profile in reverse transcriptase (RT) and protease (PR) genes during suppressive antiretroviral treatment (plasma HIV-1 RNA continuously <50 copies/ml) with raltegravir (RAL)-based regimens in patients with baseline RT/PR resistant HIV. Twelve multidrug resistant (RT: 12/12, PR: 8/12) HIV-infected patients were followed during effectively suppressive RAL-based therapy. Total and integrated HIV-1 DNA were assessed by real time PCR at baseline and every 6 months. Ultrasensitive (threshold: 2.5 copies/ml) plasma HIV-1 RNA and genotypic analysis of RT and PR in proviral DNA were performed at baseline and at 24 months. Half of the patients had full viral suppression (plasma HIV-RNA < 2.5 copies/ml) at month 12. Total HIV-1 DNA declined significantly after 12 months of therapy (from 249.2 to 145.7 copies/106 cells, P = 0.023), and remained stable until 24 months, when total HIV-1 DNA levels raised, concomitantly with a less stringent suppression of HIV-1 RNA (81.8% of patients with >2.5 copies/ml). Integrated HIV-1 DNA did not show fluctuations during the study period. Sequencing of the PR and RT regions from HIV-1 DNA revealed changes in the resistance mutation profile in five patients. Total HIV-1 DNA declined after the introduction of RAL-based therapy, with a rebound after 2 years. No changes were observed in levels of integrated DNA, suggesting limited effect on archived HIV. The RT and PR sequence changes in archived HIV-1 DNA suggest that variation of the mutation profile can occur even in the absence of detectable HIV-1 RNA. J. Med. Virol. 88:2115-2124, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zuleika Michelini
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Clementina Maria Galluzzo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Franca Pirillo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Daniela Francisci
- Division of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Anna Degli Antoni
- Department of Infectious Diseases and Hepatology, Azienda Ospedaliera di Parma, Parma, Italy
| | | | | | - Oscar Cirioni
- Clinic of Infectious Diseases, Ospedali Riuniti, Marche Polytechnic University, Ancona, Italy
| | - Liliana Elena Weimer
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Fragola
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Cara
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Floridia
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Baroncelli
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
31
|
Ananworanich J, Chomont N, Fletcher JL, Pinyakorn S, Schuetz A, Sereti I, Rerknimitr R, Dewar R, Kroon E, Vandergeeten C, Trichavaroj R, Chomchey N, Chalermchai T, Michael NL, Kim JH, Phanuphak P, Phanuphak N. Markers of HIV reservoir size and immune activation after treatment in acute HIV infection with and without raltegravir and maraviroc intensification. J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30482-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|