1
|
Cheng X, Gao P, Sun L, Tian Y, Zhan P, Liu X. Identification of spirocyclic or phosphate substituted quinolizine derivatives as novel HIV-1 integrase inhibitors: a patent evaluation of WO2016094197A1, WO2016094198A1 and WO2016154527A1. Expert Opin Ther Pat 2017; 27:1277-1286. [PMID: 28749251 DOI: 10.1080/13543776.2017.1360283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Highly active antiretroviral therapy (HAART) has been widely adopted to control the HIV-1 infection successfully. HIV-1 integrase (IN) inhibitors are primary drugs in HAART regimens targeting integration step in the HIV-1 life cycle. However, due to the emergence of viral resistance and cross-resistance amongst drugs, there is a pressing need for new and potent IN inhibitors. This review covers the three patents describing spirocyclic and phosphate substituted quinolizine derivatives as novel HIV-1 IN inhibitors for the discovery of new anti-HIV-1 drug candidates. Areas covered: This review is focused on spirocyclic and phosphate substituted quinolizine derivatives bearing the same metal chelation scaffold as novel HIV-1 IN inhibitors. Expert opinion: Generally, privileged structure-based optimizations have emerged as an effective approach to discover newly antiviral agents. More generally, due to the similar Mg2+ catalytic active centers of endoribonucleases, some divalent metal ion chelators were found to be versatile binders targeting multiple metalloenzymes. Therefore, privileged structure-based scaffold re-evolution is an important tactic to identify new chemotypes, to explore unknown biological activities, or to provide effective ligands for multiple targets by modifying the existing active compounds.
Collapse
Affiliation(s)
- Xiqiang Cheng
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Ping Gao
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Lin Sun
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Ye Tian
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| |
Collapse
|
2
|
Thierry E, Deprez E, Delelis O. Different Pathways Leading to Integrase Inhibitors Resistance. Front Microbiol 2017; 7:2165. [PMID: 28123383 PMCID: PMC5225119 DOI: 10.3389/fmicb.2016.02165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the origin of the INSTI resistance by two different ways. The first one, sustained by a recent report, involves 2-long terminal repeat circles integration and the second one involves expression of accumulated unintegrated viral DNA leading to a basal production of viral particles maintaining the viral information.
Collapse
Affiliation(s)
- Eloïse Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| |
Collapse
|
3
|
Abstract
Recent anecdotal reports of HIV-infected children who received early antiretroviral therapy (ART) and showed sustained control of viral replication even after ART discontinuation have raised the question of whether there is greater intrinsic potential for HIV remission, or even eradication ('cure'), in paediatric infection than in adult infection. This Review describes the influence of early initiation of ART, of immune ontogeny and of maternal factors on the potential for HIV cure in children and discusses the unique immunotherapeutic opportunities and obstacles that paediatric infection may present.
Collapse
Affiliation(s)
- Philip J Goulder
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne 3004, Australia
| | - Ellen M Leitman
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
4
|
Thierry E, Deprez E, Delelis O. Different Pathways Leading to Integrase Inhibitors Resistance. Front Microbiol 2016. [PMID: 28123383 DOI: 10.3389/fmicb.2016.02165/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the origin of the INSTI resistance by two different ways. The first one, sustained by a recent report, involves 2-long terminal repeat circles integration and the second one involves expression of accumulated unintegrated viral DNA leading to a basal production of viral particles maintaining the viral information.
Collapse
Affiliation(s)
- Eloïse Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, Ecole Normale Supérieure de Cachan, Université Paris-Saclay Cachan, France
| |
Collapse
|
5
|
Drug Susceptibility and Viral Fitness of HIV-1 with Integrase Strand Transfer Inhibitor Resistance Substitution Q148R or N155H in Combination with Nucleoside/Nucleotide Reverse Transcriptase Inhibitor Resistance Substitutions. Antimicrob Agents Chemother 2015; 60:757-65. [PMID: 26574015 DOI: 10.1128/aac.02096-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023] Open
Abstract
In clinical trials of coformulated elvitegravir (EVG), cobicistat (COBI), emtricitabine (FTC), and tenofovir disoproxil fumarate (TDF), emergent drug resistance predominantly involved the FTC resistance substitution M184V/I in reverse transcriptase (RT), with or without the tenofovir (TFV) resistance substitution K65R, accompanied by a primary EVG resistance substitution (E92Q, N155H, or Q148R) in integrase (IN). We previously reported that the RT-K65R, RT-M184V, and IN-E92Q substitutions lacked cross-class phenotypic resistance and replicative fitness compensation. As a follow-up, the in vitro characteristics of mutant HIV-1 containing RT-K65R and/or RT-M184V with IN-Q148R or IN-N155H were also evaluated, alone and in combination, for potential interactions. Single mutants displayed reduced susceptibility to their corresponding inhibitor classes, with no cross-class resistance. Viruses with IN-Q148R or IN-N155H exhibited reduced susceptibility to EVG (137- and 40-fold, respectively) that was not affected by the addition of RT-M184V or RT-K65R/M184V. All viruses containing RT-M184V were resistant to FTC (>1,000-fold). Mutants with RT-K65R had reduced susceptibility to TFV (3.3- to 3.6-fold). Without drugs present, the viral fitness of RT and/or IN mutants was diminished relative to that of the wild type in the following genotypic order: wild type > RT-M184V ≥ IN-N155H ≈ IN-Q148R ≥ RT-M184V + IN-N155H ≥ RT-M184V + IN-Q148R ≥ RT-K65R/M184V + IN-Q148R ≈ RT-K65R/M184V + IN-N155H. In the presence of drug concentrations approaching physiologic levels, drug resistance counteracted replication defects, allowing single mutants to outcompete the wild type with one drug present and double mutants to outcompete single mutants with two drugs present. These results suggest that during antiretroviral treatment with multiple drugs, the development of viruses with combinations of resistance substitutions may be favored despite diminished viral fitness.
Collapse
|
6
|
Fandrick KR, Li W, Zhang Y, Tang W, Gao J, Rodriguez S, Patel ND, Reeves DC, Wu JP, Sanyal S, Gonnella N, Qu B, Haddad N, Lorenz JC, Sidhu K, Wang J, Ma S, Grinberg N, Lee H, Tsantrizos Y, Poupart MA, Busacca CA, Yee NK, Lu BZ, Senanayake CH. Concise and Practical Asymmetric Synthesis of a Challenging Atropisomeric HIV Integrase Inhibitor. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Fandrick KR, Li W, Zhang Y, Tang W, Gao J, Rodriguez S, Patel ND, Reeves DC, Wu JP, Sanyal S, Gonnella N, Qu B, Haddad N, Lorenz JC, Sidhu K, Wang J, Ma S, Grinberg N, Lee H, Tsantrizos Y, Poupart MA, Busacca CA, Yee NK, Lu BZ, Senanayake CH. Concise and Practical Asymmetric Synthesis of a Challenging Atropisomeric HIV Integrase Inhibitor. Angew Chem Int Ed Engl 2015; 54:7144-8. [DOI: 10.1002/anie.201501575] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 11/08/2022]
|
8
|
Reduced viral fitness and lack of cross-class resistance with integrase strand transfer inhibitor and nucleoside reverse transcriptase inhibitor resistance mutations. Antimicrob Agents Chemother 2015; 59:3441-9. [PMID: 25824231 DOI: 10.1128/aac.00040-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/24/2015] [Indexed: 01/26/2023] Open
Abstract
The most common pattern of emergent resistance in the phase III clinical trials of coformulated elvitegravir (EVG)-cobicistat (COBI)-emtricitabine (FTC)-tenofovir disoproxil fumarate (TDF) was the EVG resistance substitution E92Q in integrase (IN) with the FTC resistance substitution M184V in reverse transcriptase (RT), with or without the tenofovir (TFV) resistance substitution K65R. In this study, the effect of these IN and RT substitutions alone and in combination in the same genome on susceptibility to antiretroviral inhibitors and viral replication fitness was characterized. Single resistance substitutions (E92Q in IN [IN-E92Q], M184V in RT [RT-M184V], and K65R in RT [RT-K65R]) specifically affected susceptibility to the corresponding inhibitor classes, with no cross-class resistance observed. The IN-E92Q mutant displayed reduced susceptibility to EVG (50-fold), which was not impacted by the addition of RT-M184V or RT-K65R/M184V. Viruses containing RT-M184V had high-level resistance to FTC (>1,000-fold) that was not affected by the addition of IN-E92Q or RT-K65R. During pairwise growth competitions, each substitution contributed to decreased viral fitness, with the RT-K65R/M184V + IN-E92Q triple mutant being the least fit in the absence of drug. In the presence of drug concentrations approaching physiologic levels, however, drug resistance offset the replication defects, resulting in single mutants outcompeting the wild type with one drug present, and double and triple mutants outcompeting single mutants with two drugs present. Taken together, these results suggest that the reduced replication fitness and phenotypic resistance associated with RT and IN resistance substitutions are independent and additive. In the presence of multiple drugs, viral growth is favored for viruses with multiple substitutions, despite the presence of fitness defects.
Collapse
|
9
|
Design and synthesis of N-methylpyrimidone derivatives as HIV-1 integrase inhibitors. Bioorg Med Chem 2015; 23:735-41. [PMID: 25618597 DOI: 10.1016/j.bmc.2014.12.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/25/2014] [Accepted: 12/26/2014] [Indexed: 01/23/2023]
Abstract
A series of novel β-diketo derivatives which combined the virtues of dihydroxypyrimidine carboxamide derived from the evolution of DKA and polyhydroxylated aromatics moieties, were designed and synthesized as potential HIV-1 integrase (IN) inhibitors and evaluated their inhibition to the strand transfer process of HIV-1 integrase and anti-HIV-1 activity. The result indicates that 3,4,5-trihydroxylated aromatic derivatives exhibit good inhibition to HIV-1 integrase, but dihydroxylated aromatic derivatives appear little inhibition to HIV-1 integrase. In addition, the preliminary structure-activity relationship (SAR) of these new derivatives was rationalized by docking studies.
Collapse
|
10
|
HIV-2 integrase polymorphisms and longitudinal genotypic analysis of HIV-2 infected patients failing a raltegravir-containing regimen. PLoS One 2014; 9:e92747. [PMID: 24681625 PMCID: PMC3969368 DOI: 10.1371/journal.pone.0092747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients.
Collapse
|
11
|
Abstract
HIV integrase (IN) catalyzes the insertion into the genome of the infected human cell of viral DNA produced by the retrotranscription process. The discovery of raltegravir validated the existence of the IN, which is a new target in the field of anti-HIV drug research. The mechanism of catalysis of IN is depicted, and the characteristics of the inhibitors of the catalytic site of this viral enzyme are reported. The role played by the resistance is elucidated, as well as the possibility of bypassing this problem. New approaches to block the integration process are depicted as future perspectives, such as development of allosteric IN inhibitors, dual inhibitors targeting both IN and other enzymes, inhibitors of enzymes that activate IN, activators of IN activity, as well as a gene therapy approach.
Collapse
Affiliation(s)
- Roberto Di Santo
- Dipartimento
di Chimica e
Tecnologie del Farmaco, Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, P.le Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
12
|
Resistance mutations outside the integrase coding region have an effect on human immunodeficiency virus replicative fitness but do not affect its susceptibility to integrase strand transfer inhibitors. PLoS One 2013; 8:e65631. [PMID: 23776513 PMCID: PMC3679210 DOI: 10.1371/journal.pone.0065631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
Most studies describing phenotypic resistance to integrase strand transfer inhibitors have analyzed viruses carrying only patient-derived HIV-1 integrase genes (INT-recombinant viruses). However, to date, many of the patients on INSTI-based treatment regimes, such as raltegravir (RAL), elvitegravir (EVG), and dolutegravir (DTG) are infected with multidrug-resistant HIV-1 strains. Here we analyzed the effect of drug resistance mutations in Gag (p2/NCp7/p1/p6), protease (PR), reverse transcriptase (RT), and integrase (IN) coding regions on susceptibility to INSTIs and viral replicative fitness using a novel HIV-1 phenotyping assay. Initial characterization based on site-directed mutant INSTI-resistant viruses confirmed the effect of a series of INSTI mutations on reduced susceptibility to EVG and RAL and viral replicative fitness (0.6% to 99% relative to the HIV-1NL4-3 control). Two sets of recombinant viruses containing a 3,428-bp gag-p2/NCp7/p1/p6/pol-PR/RT/IN (p2-INT) or a 1,088 bp integrase (INT) patient-derived fragment were constructed from plasma samples obtained from 27 virologic failure patients participating in a 48-week dose-ranging study of elvitegravir, GS-US-183-0105. A strong correlation was observed when susceptibility to EVG and RAL was assayed using p2-INT- vs. INT-recombinant viruses (Pearson coefficient correlation 0.869 and 0.918, P<0.0001 for EVG and RAL, respectively), demonstrating that mutations in the protease and RT have limited effect on susceptibility to these INSTIs. On the other hand, the replicative fitness of viruses harboring drug resistance mutations in PR, RT, and IN was generally impaired compared to viruses carrying only INSTI-resistance mutations. Thus, in the absence of drug pressure, drug resistance mutations in the PR and RT contribute to decrease the replicative fitness of the virus already impaired by mutations in the integrase. The use of recombinant viruses containing most or all HIV-1 regions targeted by antiretroviral drugs might be essential to understand the collective effect of epistatic interactions in multidrug-resistant viruses.
Collapse
|
13
|
Abstract
Integrase (IN) is a clinically validated target for the treatment of human immunodeficiency virus infections and raltegravir exhibits remarkable clinical activity. The next most advanced IN inhibitor is elvitegravir. However, mutant viruses lead to treatment failure and mutations within the IN coding sequence appear to confer cross-resistance. The characterization of those mutations is critical for the development of second generation IN inhibitors to overcome resistance. This review focuses on IN resistance based on structural and biochemical data, and on the role of the IN flexible loop i.e., between residues G140-G149 in drug action and resistance.
Collapse
Affiliation(s)
| | | | | | - Yves Pommier
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-496-5944; Fax: +1-301-402-0752
| |
Collapse
|
14
|
Winters MA, Lloyd RM, Shafer RW, Kozal MJ, Miller MD, Holodniy M. Development of elvitegravir resistance and linkage of integrase inhibitor mutations with protease and reverse transcriptase resistance mutations. PLoS One 2012; 7:e40514. [PMID: 22815755 PMCID: PMC3399858 DOI: 10.1371/journal.pone.0040514] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/12/2012] [Indexed: 12/04/2022] Open
Abstract
Failure of antiretroviral regimens containing elvitegravir (EVG) and raltegravir (RAL) can result in the appearance of integrase inhibitor (INI) drug-resistance mutations (DRMs). While several INI DRMs have been identified, the evolution of EVG DRMs and the linkage of these DRMs with protease inhibitor (PI) and reverse transcriptase inhibitor (RTI) DRMs have not been studied at the clonal level. We examined the development of INI DRMs in 10 patients failing EVG-containing regimens over time, and the linkage of INI DRMs with PI and RTI DRMs in these patients plus 6 RAL-treated patients. A one-step RT-nested PCR protocol was used to generate a 2.7 kB amplicon that included the PR, RT, and IN coding region, and standard cloning and sequencing techniques were used to determine DRMs in 1,277 clones (mean 21 clones per time point). Results showed all patients had multiple PI, NRTI, and/or NNRTI DRMs at baseline, but no primary INI DRM. EVG-treated patients developed from 2 to 6 strains with different primary INI DRMs as early as 2 weeks after initiation of treatment, predominantly as single mutations. The prevalence of these strains fluctuated and new strains, and/or strains with new combinations of INI DRMs, developed over time. Final failure samples (weeks 14 to 48) typically showed a dominant strain with multiple mutations or N155H alone. Single N155H or multiple mutations were also observed in RAL-treated patients at virologic failure. All patient strains showed evidence of INI DRM co-located with single or multiple PI and/or RTI DRMs on the same viral strand. Our study shows that EVG treatment can select for a number of distinct INI-resistant strains whose prevalence fluctuates over time. Continued appearance of new INI DRMs after initial INI failure suggests a potent, highly dynamic selection of INI resistant strains that is unaffected by co-location with PI and RTI DRMs.
Collapse
Affiliation(s)
- Mark A Winters
- AIDS Research Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America.
| | | | | | | | | | | |
Collapse
|
15
|
Rodriguez-Plata MT, Urrutia A, Cardinaud S, Buzón MJ, Izquierdo-Useros N, Prado JG, Puertas MC, Erkizia I, Coulon PG, Cedeño S, Clotet B, Moris A, Martinez-Picado J. HIV-1 capture and antigen presentation by dendritic cells: enhanced viral capture does not correlate with better T cell activation. THE JOURNAL OF IMMUNOLOGY 2012; 188:6036-45. [PMID: 22581857 DOI: 10.4049/jimmunol.1200267] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During HIV-1 infection, dendritic cells (DC) facilitate dissemination of HIV-1 while trying to trigger adaptive antiviral immune responses. We examined whether increased HIV-1 capture in DC matured with LPS results in more efficient Ag presentation to HIV-1-specific CD4(+) and CD8(+) T cells. To block the DC-mediated trans-infection of HIV-1 and maximize Ag loading, we also evaluated a noninfectious integrase-deficient HIV-1 isolate, HIV(NL4-3ΔIN). We showed that higher viral capture of DC did not guarantee better Ag presentation or T cell activation. Greater HIV(NL4-3) uptake by fully LPS-matured DC resulted in higher viral transmission to target cells but poorer stimulation of HIV-1-specific CD4(+) and CD8(+) T cells. Conversely, maturation of DC with LPS during, but not before, viral loading enhanced both HLA-I and HLA-II HIV-1-derived Ag presentation. In contrast, DC maturation with the clinical-grade mixture consisting of IL-1β, TNF-α, IL-6, and PGE(2) during viral uptake only stimulated HIV-1-specific CD8(+) T cells. Hence, DC maturation state, activation stimulus, and time lag between DC maturation and Ag loading impact HIV-1 capture and virus Ag presentation. Our results demonstrate a dissociation between the capacity to capture HIV-1 and to present viral Ags. Integrase-deficient HIV(NL4-3ΔIN) was also efficiently captured and presented by DC through the HLA-I and HLA-II pathways but in the absence of viral dissemination. HIV(NL4-3ΔIN) seems to be an attractive candidate to be explored. These results provide new insights into DC biology and have implications in the optimization of DC-based immunotherapy against HIV-1 infection.
Collapse
Affiliation(s)
- Maria T Rodriguez-Plata
- Institut de Recerca de la SIDA IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Uncommon pathways of immune escape attenuate HIV-1 integrase replication capacity. J Virol 2012; 86:6913-23. [PMID: 22496233 DOI: 10.1128/jvi.07133-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An attenuation of the HIV-1 replication capacity (RC) has been observed for immune-mediated escape mutations in Gag restricted by protective HLA alleles. However, the extent to which escape mutations affect other viral proteins during natural infection is not well understood. We generated recombinant viruses encoding plasma HIV-1 RNA integrase sequences from antiretroviral-naïve individuals with early (n = 88) and chronic (n = 304) infections and measured the in vitro RC of each. In contrast to data from previous studies of Gag, we observed little evidence that host HLA allele expression was associated with integrase RC. A modest negative correlation was observed between the number of HLA-B-associated integrase polymorphisms and RC in chronic infection (R = -0.2; P = 0.003); however, this effect was not driven by mutations restricted by protective HLA alleles. Notably, the integrase variants S119R, G163E, and I220L, which represent uncommon polymorphisms associated with HLA-C*05, -A*33, and -B*52, respectively, correlated with lower RC (all q < 0.2). We identified a novel C*05-restricted epitope (HTDNGSNF(114-121)) that likely contributes to the selection of the S119R variant, the polymorphism most significantly associated with lower RC in patient sequences. An NL4-3 mutant encoding the S119R polymorphism displayed a ~35%-reduced function that was rescued by a single compensatory mutation of A91E. Together, these data indicate that substantial HLA-driven attenuation of integrase is not a general phenomenon during HIV-1 adaptation to host immunity. However, uncommon polymorphisms selected by HLA alleles that are not conventionally regarded to be protective may be associated with impaired protein function. Vulnerable epitopes in integrase might therefore be considered for future vaccine strategies.
Collapse
|
17
|
Dalmau J, Codoñer FM, Erkizia I, Pino M, Pou C, Paredes R, Clotet B, Martinez-Picado J, Prado JG. In-depth characterization of viral isolates from plasma and cells compared with plasma circulating quasispecies in early HIV-1 infection. PLoS One 2012; 7:e32714. [PMID: 22393441 PMCID: PMC3290612 DOI: 10.1371/journal.pone.0032714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/30/2012] [Indexed: 11/20/2022] Open
Abstract
Background The use of in vitro models to unravel the phenotypic characteristics of circulating viral variants is key to understanding HIV-1 pathogenesis but limited by the availability of primary viral isolates from biological samples. However, overall in vivo genetic variability of HIV-1 within a subject may not be reflected in the viable viral population obtained after isolation. Although several studies have tried to determine whether viral populations expanded in vitro are representative of in vivo findings, the answer remains unclear due to the reduced number of clonal sequences analyzed or samples compared. In order to overcome previous experimental limitations, here we applied Deep Pyrosequencing (DPS) technology in combination with phenotypic experiments to analyze and compare with unprecedented detail the composition of viral isolates and in vivo quasispecies. Methodology/Principal Findings We amplified by DPS HIV-1 genomic regions covering gag, protease, integrase and env-V3 to characterize paired isolates from plasma and peripheral blood mononuclear cells and compare them with total plasma viral RNA in four recently HIV-1 infected subjects. Our study demonstrated the presence of unique haplotypes scattered between sample types with conservation of major variants. In addition, no differences in intra- and inter-population encoded protein variability were found between the different types of isolates or when these were compared to plasma viral RNA within subjects. Additionally, in vitro experiments demonstrated phenotypic similarities in terms of replicative capacity and co-receptor usage between viral isolates and plasma viral RNA. Conclusion This study is the first in-depth comparison and characterization of viral isolates from different sources and plasma circulating quasispecies using DPS in recently HIV-1 infected subjects. Our data supports the use of primary isolates regardless of their plasma or cellular origin to define genetic variability and biological traits of circulating HIV-1 quasispecies.
Collapse
Affiliation(s)
- Judith Dalmau
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Francisco M. Codoñer
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Lifesequencing SL, Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Itziar Erkizia
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Maria Pino
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Christian Pou
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Roger Paredes
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Fundació Lluita contra la SIDA, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Fundació Lluita contra la SIDA, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (JMP); (JGP)
| | - Julia G. Prado
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- * E-mail: (JMP); (JGP)
| |
Collapse
|
18
|
Garrido C, de Mendoza C, Álvarez E, García F, Morello J, Garcia S, Ribera E, Rodríguez-Novoa S, Gutierrez F, Soriano, on behalf of the SinRES Te V. Plasma raltegravir exposure influences the antiviral activity and selection of resistance mutations. AIDS Res Hum Retroviruses 2012; 28:156-64. [PMID: 21457126 DOI: 10.1089/aid.2010.0370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Raltegravir (RAL) resistance is associated with the selection of integrase mutations at positions 92, 143, 148, and/or 155. A substantial proportion of RAL failures, however, occurs in the absence of these changes. An examination of RAL plasma concentrations may help in interpreting this observation. All early RAL virological failures seen at 22 clinics in Spain during 2009 were identified. HIV integrase sequences and RAL plasma trough concentrations (C(t)) were examined. A total of 106 patients experiencing virological failure on RAL were identified. Only the earliest sample on failure was examined. Integrase sequences could be obtained for 89 (84%), of whom 30 (33.7%) depicted primary RAL resistance mutations (15 N155H, eight Q148H/R, three Y143R, one E92Q, and three more than one of them). Another nine (10.1%) patients showed only secondary changes. The remaining 50 RAL early failures (56.2%) did not select any integrase change. RAL C(t) could be measured in 66 patients at failure and in 21 of them before failure. In a control group of 37 patients with viral suppression on RAL, detectable plasma levels were seen in all cases, with greater median RAL C(t) than in failures, either at the time of viral rebound (p<0.001) or before it (p=0.055). Moreover, median C(t) at the time of failure was greater in patients selecting primary RAL resistance mutations than in the rest of the failures (p<0.001). Undetectable RAL C(t) was seen only in patients failing RAL without integrase resistance mutations (64.1% of them). RAL failures in the absence of integrase resistance mutations mainly reflect poor drug compliance.
Collapse
Affiliation(s)
- Carolina Garrido
- Infectious Diseases Department, Hospital Carlos III, Madrid, Spain
| | | | - Elena Álvarez
- Infectious Diseases Department, Hospital Carlos III, Madrid, Spain
| | - Federico García
- Microbiology Department, Hospital Clínico Universitario San Cecilio, Granada, Spain
| | - Judit Morello
- Infectious Diseases Department, Hospital Carlos III, Madrid, Spain
| | - Silvia Garcia
- Microbiology Department, Hospital La Paz, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Combined antiretroviral therapy and immune pressure lead to in vivo HIV-1 recombination with ancestral viral genomes. J Acquir Immune Defic Syndr 2011; 57:109-17. [PMID: 21372727 DOI: 10.1097/qai.0b013e318215ab0a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies on drug interruption have provided new insights on the adaptive evolution of rebounding HIV-1 during antiretroviral pressure. We investigated the origin of new viral variants after discontinuation of protease (PR) inhibitors as a treatment remained exclusively based on reverse transcriptase inhibitors, and whether drug susceptibility, viral fitness, and neutralizing antibodies could be major driving forces for the evolution of virus populations. METHODS The study comprised 3 treatment-experienced subjects. Phylogenetic analysis of the PR, reverse transcriptase, and the viral envelope were carried out to ascertain the origin of the new viral variants with samples obtained over a 10-year period before and after a PR inhibitor withdrawal. In addition, drug susceptibility, replication capacity, and neutralization assays were performed. RESULTS New viral variants from all 3 subjects were derived through recombination with ancestral quasispecies. Computerized recombination models confirmed these results. Recombination was demonstrated by increased replication capacity, decreased drug susceptibility, and neutralization of ancestral virus envelope by contemporaneous plasma samples. CONCLUSIONS These findings demonstrate the relevance of HIV-1 reservoirs in adaptive evolution throughout recombination in response to selective pressure, such as antiretroviral therapy and immune responses. This result might assist in the design of new treatment strategies for patients experiencing treatment failure.
Collapse
|
20
|
Affiliation(s)
- Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
| | | | | |
Collapse
|
21
|
Abstract
HIV-1 integrase (IN) is indispensable for HIV-1 replication and has become a validated target for developing anti-AIDS agents. In two decades of development of IN inhibition-based anti-HIV therapeutics, a significant number of compounds were identified as IN inhibitors, but only some of them showed antiviral activity. This article reviews a number of patented HIV-1 IN inhibitors, especially those that possess high selectivity for the strand transfer reaction. These compounds generally have a polar coplanar moiety, which is assumed to chelate two magnesium ions in the binding site. Resistance to those compounds, when given to patients, can develop as a result of IN mutations. We refer to those compounds as authentic IN inhibitors. Continued drug development has so far delivered one authentic IN inhibitor to the market (raltegravir in 2007). Current and future attention will be focused on the development of novel authentic IN inhibitors with the goal of overcoming viral resistance.
Collapse
|
22
|
Huang M, Grant GH, Richards WG. Binding modes of diketo-acid inhibitors of HIV-1 integrase: a comparative molecular dynamics simulation study. J Mol Graph Model 2011; 29:956-64. [PMID: 21531158 PMCID: PMC3101338 DOI: 10.1016/j.jmgm.2011.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 11/18/2022]
Abstract
HIV-1 integrase (IN) has become an attractive target since drug resistance against HIV-1 reverse transcriptase (RT) and protease (PR) has appeared. Diketo acid (DKA) inhibitors are potent and selective inhibitors of HIV-1 IN: however the action mechanism is not well understood. Here, to study the inhibition mechanism of DKAs we performed 10 ns comparative molecular dynamics simulations on HIV-1 IN bound with three most representative DKA inhibitors: Shionogi inhibitor, S-1360 and two Merck inhibitors L-731,988 and L-708,906. Our simulations show that the acidic part of S-1360 formed salt bridge and cation-π interactions with Lys159. In addition, the catalytic Glu152 in S-1360 was pushed away from the active site to form an ion-pair interaction with Arg199. The Merck inhibitors can maintain either one or both of these ion-pair interaction features. The difference in potencies of the DKA inhibitors is thus attributed to the different binding modes at the catalytic site. Such structural information at atomic level, not only demonstrates the action modes of DKA inhibitors but also provides a novel starting point for structural-based design of HIV-1 IN inhibitors.
Collapse
Affiliation(s)
- Meilan Huang
- School of Chemistry and Chemical Engineering, David Keir Building, Queens University Belfast, Stranmillis Road, Belfast BT95AG, UK.
| | | | | |
Collapse
|
23
|
Brenner BG, Lowe M, Moisi D, Hardy I, Gagnon S, Charest H, Baril JG, Wainberg MA, Roger M. Subtype diversity associated with the development of HIV-1 resistance to integrase inhibitors. J Med Virol 2011; 83:751-9. [PMID: 21360548 DOI: 10.1002/jmv.22047] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2011] [Indexed: 11/08/2022]
Abstract
We used genotypic and phylogenetic analysis to determine integrase diversity among subtypes, and studied natural polymorphisms and mutations implicated in resistance to integrase inhibitors (INI) in treatment-naïve persons (n = 220) and -experienced individuals (n = 24). Phylogenetics revealed 7 and 10% inter-subtype diversity in the integrase and reverse transcriptase (RT)/protease regions, respectively. Integrase sequencing identified a novel A/B recombinant in which all viruses in a male-sex-male (MSM) transmission cluster (n = 12) appeared to possess subtype B in integrase and subtype A in the remainder of the pol region. Natural variations and signature polymorphisms were observed at codon positions 140, 148, 151, 157, and 160 among HIV subtypes. These variations predicted higher genetic barriers to G140S and G140C in subtypes C, CRF02_AG, and A/CRF01_AE, as well as higher genetic barriers toward acquisition of V151I in subtypes CRF02_AG and A/CRF01_AE. The E157Q and E160Q mutational motif was observed in 35% of INI-naïve patients harboring subtype C infections, indicating intra-subtype variations. Thirteen patients failed raltegravir (RAL)-containing regimens within 8 ± 1 months, in association with the major Q148K/R/H and G140A/S (n = 8/24) or N155H (n = 5/24) mutational pathways. Of note, the remaining patients on RAL regimens for 14 ± 3 months harbored no or only minor integrase mutations/polymorphisms (T66I, T97A, H114P, S119P, A124S, G163R, I203M, R263K). These results demonstrate the importance of understanding subtype variability in the development of resistance to INIs.
Collapse
Affiliation(s)
- Bluma G Brenner
- McGill AIDS Centre, Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
IMPORTANCE OF THE FIELD Integrase inhibitors are the newest class of antiretroviral agents developed to treat HIV-1 infection. Raltegravir (RAL), the only integrase inhibitor (INI) currently approved for the treatment of HIV-infected patients, has proven to be a potent and well-tolerated antiretroviral (ARV) agent. It is currently approved and used for the treatment of both ARV-experienced and ARV-naive patients. Nevertheless, the relatively low genetic barrier for resistance of RAL encourages the search for new INIs with different mechanisms of actions and resistance profiles. AREAS COVERED IN THIS REVIEW Here we review the data available about INI that are currently being tested in clinical trials or are in preclinical development: elvitegravir (EVG), S/GSK1349572, S/GSK1265744 and LEDGINs. We focus on their clinical efficacy, pharmacokinetic, safety and resistance profiles. WHAT THE READER WILL GAIN Up-to-date overview on the currently available, clinically relevant INIs and promising preclinical inhibitors at all phases of development. TAKE HOME MESSAGE Integrase inhibitors represent the newest therapeutic class available to treat HIV-1 infection. There are a variety of compounds either available in the clinic (RAL), advancing to Phase III trials (EVG), or in earlier phases of development. Taken together, this class offers new treatment options for the HIV-infected individual.
Collapse
Affiliation(s)
- Nicole Prada
- Aaron Diamond AIDS Research Center, 455 First Ave., 7th floor, New York, NY 10016, USA
| | | |
Collapse
|
25
|
Canducci F, Barda B, Ceresola E, Spagnuolo V, Sampaolo M, Boeri E, Nozza S, Cossarin F, Galli A, Gianotti N, Castagna A, Lazzarin A, Clementi M. Evolution patterns of raltegravir-resistant mutations after integrase inhibitor interruption. Clin Microbiol Infect 2010; 17:928-34. [PMID: 20854427 DOI: 10.1111/j.1469-0691.2010.03375.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this study was to address the evolution of human immunodeficiency virus type 1 (HIV-1) mutations resistant to the integrase inhibitor raltegravir after drug interruption. Thirteen HIV-1 infected patients undergoing virological failure due to the selection of raltegravir-resistant variants, who had interrupted raltegravir treatment, were enrolled. For all patients, the virological failure was associated with the selection of variants, with mutations conferring resistance to all of the drugs present in their regimens. Patients were prospectively monitored at baseline (raltegravir interruption) and every 4-24 weeks for clinical, virological and immunological parameters, including HIV-1 viraemia, CD4(+) T-cell counts, and sequence analysis of the HIV-1 integrase sequence. Reversion to the wild-type HIV-1 integrase sequence genotype was observed between 4 and 36 weeks after raltegravir withdrawal in eight out of the 13 patients. Reversion was not observed in three patients. In two patients, reversion was partial at week 24 from raltegravir interruption. These results highlight that in eight out of 13 patients under treatment with raltegravir and experiencing a virological failure, HIV-1 variants harbouring mutations associated with raltegravir resistance become undetectable after drug interruption within a few weeks (in some cases, very rapidly). This occurs under different therapy regimens and in patients receiving 3TC mono-therapy. In the other patients, complete reversion of the integrase sequence is not observed, and either primary or secondary resistance mutations are fixed in the replication competent viral population in vivo also for long time, suggesting that other factors may influence this dynamic process.
Collapse
Affiliation(s)
- F Canducci
- Laboratorio di Microbiologia e Virologia, Università Vita-Salute San Raffaele, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Codoñer FM, Pou C, Thielen A, García F, Delgado R, Dalmau D, Santos JR, Buzón MJ, Martínez-Picado J, Alvarez-Tejado M, Clotet B, Ruiz L, Paredes R. Dynamic escape of pre-existing raltegravir-resistant HIV-1 from raltegravir selection pressure. Antiviral Res 2010; 88:281-6. [PMID: 20883724 DOI: 10.1016/j.antiviral.2010.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 11/18/2022]
Abstract
Using quantitative deep HIV-1 sequencing in a subject who developed virological failure to deep salvage therapy with raltegravir, we found that most Q148R and N155H mutants detected at the time of virological failure originated from pre-existing minority Q148R and N155H variants through independent evolutionary clusters. Double 148R+N155H mutants were also detected in 1.7% of viruses at virological failure in association with E138K and/or G163R. Our findings illustrate the ability of HIV-1 to escape from suboptimal antiretroviral drug pressure through selection of pre-existing drug-resistant mutants, underscoring the importance of using fully active antiretroviral regimens to treat all HIV-1-infected subjects.
Collapse
|
27
|
Ceccherini-Silberstein F, Malet I, Fabeni L, Dimonte S, Svicher V, D'Arrigo R, Artese A, Costa G, Bono S, Alcaro S, d'Arminio Monforte A, Katlama C, Calvez V, Antinori A, Marcelin AG, Perno CF. Specific HIV-1 integrase polymorphisms change their prevalence in untreated versus antiretroviral-treated HIV-1-infected patients, all naive to integrase inhibitors. J Antimicrob Chemother 2010; 65:2305-18. [DOI: 10.1093/jac/dkq326] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Levin A, Hayouka Z, Friedler A, Loyter A. Peptides derived from the HIV-1 integrase promote HIV-1 infection and multi-integration of viral cDNA in LEDGF/p75-knockdown cells. Virol J 2010; 7:177. [PMID: 20678206 PMCID: PMC2924314 DOI: 10.1186/1743-422x-7-177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/02/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The presence of the cellular Lens Epithelium Derived Growth Factor p75 (LEDGF/p75) protein is essential for integration of the Human immunodeficiency virus type 1 (HIV-1) cDNA and for efficient virus production. In the absence of LEDGF/p75 very little integration and virus production can be detected, as was demonstrated using LEDGF/p75-knockdown cells. RESULTS Here we show that the failure to infect LEDGF/p75-knockdown cells has another reason aside from the lack of LEDGF/p75. It is also due to inhibition of the viral integrase (IN) enzymatic activity by an early expressed viral Rev protein. The formation of an inhibitory Rev-IN complex in virus-infected cells can be disrupted by the addition of three IN-derived, cell-permeable peptides, designated INr (IN derived-Rev interacting peptides) and INS (IN derived-integrase stimulatory peptide). The results of the present work confirm previous results showing that HIV-1 fails to infect LEDGF/p75-knockdown cells. However, in the presence of INrs and INS peptides, relatively high levels of viral cDNA integration as well as productive virus infection were obtained following infection by a wild type (WT) HIV-1 of LEDGF/p75-knockdown cells. CONCLUSIONS It appears that the lack of integration observed in HIV-1 infected LEDGF/p75-knockdown cells is due mainly to the inhibitory effect of Rev following the formation of a Rev-IN complex. Disruption of this inhibitory complex leads to productive infection in those cells.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
29
|
Reigadas S, Anies G, Masquelier B, Calmels C, Stuyver LJ, Parissi V, Fleury H, Andreola ML. The HIV-1 integrase mutations Y143C/R are an alternative pathway for resistance to Raltegravir and impact the enzyme functions. PLoS One 2010; 5:e10311. [PMID: 20436677 PMCID: PMC2859942 DOI: 10.1371/journal.pone.0010311] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 03/28/2010] [Indexed: 11/21/2022] Open
Abstract
Resistance to HIV-1 integrase (IN) inhibitor raltegravir (RAL), is encoded by mutations in the IN region of the pol gene. The emergence of the N155H mutation was replaced by a pattern including the Y143R/C/H mutations in three patients with anti-HIV treatment failure. Cloning analysis of the IN gene showed an independent selection of the mutations at loci 155 and 143. Characterization of the phenotypic evolution showed that the switch from N155H to Y143C/R was linked to an increase in resistance to RAL. Wild-type (WT) IN and IN with mutations Y143C or Y143R were assayed in vitro in 3′end-processing, strand transfer and concerted integration assays. Activities of mutants were moderately impaired for 3′end-processing and severely affected for strand transfer. Concerted integration assay demonstrated a decrease in mutant activities using an uncleaved substrate. With 3′end-processing assay, IC50 were 0.4 µM, 0.9 µM (FC = 2.25) and 1.2 µM (FC = 3) for WT, IN Y143C and IN Y143R, respectively. An FC of 2 was observed only for IN Y143R in the strand transfer assay. In concerted integration, integrases were less sensitive to RAL than in ST or 3′P but mutants were more resistant to RAL than WT.
Collapse
Affiliation(s)
- Sandrine Reigadas
- Laboratoire de Virologie, CHU de Bordeaux, EA 2968, Université Victor Segalen, Bordeaux, France
| | - Guerric Anies
- Laboratoire de Virologie, CHU de Bordeaux, EA 2968, Université Victor Segalen, Bordeaux, France
| | - Bernard Masquelier
- Laboratoire de Virologie, CHU de Bordeaux, EA 2968, Université Victor Segalen, Bordeaux, France
| | | | | | | | - Herve Fleury
- Laboratoire de Virologie, CHU de Bordeaux, EA 2968, Université Victor Segalen, Bordeaux, France
| | | |
Collapse
|
30
|
|
31
|
Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 2010; 464:232-6. [PMID: 20118915 PMCID: PMC2837123 DOI: 10.1038/nature08784] [Citation(s) in RCA: 547] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 01/06/2010] [Indexed: 12/16/2022]
Abstract
Integrase is an essential retroviral enzyme that binds both termini of linear viral DNA and inserts them into a host cell chromosome. The structure of full-length retroviral integrase, either separately or in complex with DNA, has been lacking. Furthermore, although clinically useful inhibitors of HIV integrase have been developed, their mechanism of action remains speculative. Here we present a crystal structure of full-length integrase from the prototype foamy virus in complex with its cognate DNA. The structure shows the organization of the retroviral intasome comprising an integrase tetramer tightly associated with a pair of viral DNA ends. All three canonical integrase structural domains are involved in extensive protein-DNA and protein-protein interactions. The binding of strand-transfer inhibitors displaces the reactive viral DNA end from the active site, disarming the viral nucleoprotein complex. Our findings define the structural basis of retroviral DNA integration, and will allow modelling of the HIV-1 intasome to aid in the development of antiretroviral drugs.
Collapse
|