1
|
Venkatesh S, Baljinnyam E, Tong M, Kashihara T, Yan L, Liu T, Li H, Xie LH, Nakamura M, Oka SI, Suzuki CK, Fraidenraich D, Sadoshima J. Proteomic analysis of mitochondrial biogenesis in cardiomyocytes differentiated from human induced pluripotent stem cells. Am J Physiol Regul Integr Comp Physiol 2020; 320:R547-R562. [PMID: 33112656 DOI: 10.1152/ajpregu.00207.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria play key roles in the differentiation and maturation of human cardiomyocytes (CMs). As human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold potential in the treatment of heart diseases, we sought to identify key mitochondrial pathways and regulators, which may provide targets for improving cardiac differentiation and maturation. Proteomic analysis was performed on enriched mitochondrial protein extracts isolated from hiPSC-CMs differentiated from dermal fibroblasts (dFCM) and cardiac fibroblasts (cFCM) at time points between 12 and 115 days of differentiation, and from adult and neonatal mouse hearts. Mitochondrial proteins with a twofold change at time points up to 120 days relative to 12 days were subjected to ingenuity pathway analysis (IPA). The highest upregulation was in metabolic pathways for fatty acid oxidation (FAO), the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and branched chain amino acid (BCAA) degradation. The top upstream regulators predicted to be activated were peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1-α), the insulin receptor (IR), and the retinoblastoma protein (Rb1) transcriptional repressor. IPA and immunoblotting showed upregulation of the mitochondrial LonP1 protease-a regulator of mitochondrial proteostasis, energetics, and metabolism. LonP1 knockdown increased FAO in neonatal rat ventricular cardiomyocytes (nRVMs). Our results support the notion that LonP1 upregulation negatively regulates FAO in cardiomyocytes to calibrate the flux between glucose and fatty acid oxidation. We discuss potential mechanisms by which IR, Rb1, and LonP1 regulate the metabolic shift from glycolysis to OXPHOS and FAO. These newly identified factors and pathways may help in optimizing the maturation of iPSC-CMs.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Erdene Baljinnyam
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Mingming Tong
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Toshihide Kashihara
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Lin Yan
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Tong Liu
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Hong Li
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Shin-Ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
2
|
De Gaetano A, Gibellini L, Bianchini E, Borella R, De Biasi S, Nasi M, Boraldi F, Cossarizza A, Pinti M. Impaired Mitochondrial Morphology and Functionality in Lonp1wt/- Mice. J Clin Med 2020; 9:jcm9061783. [PMID: 32521756 PMCID: PMC7355737 DOI: 10.3390/jcm9061783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 01/11/2023] Open
Abstract
LONP1 is a nuclear-encoded mitochondrial protease crucial for organelle homeostasis; mutations of LONP1 have been associated with Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies (CODAS) syndrome. To clarify the role of LONP1 in vivo, we generated a mouse model in which Lonp1 was ablated. The homozygous Lonp−/− mouse was not vital, while the heterozygous Lonp1wt/− showed similar growth rate, weight, length, life-span and histologic features as wild type. Conversely, ultrastructural analysis of heterozygous enterocytes evidenced profound morphological alterations of mitochondria, which appeared increased in number, swollen and larger, with a lower complexity. Embryonic fibroblasts (MEFs) from Lonp1wt/− mice showed a reduced expression of Lonp1 and Tfam, whose expression is regulated by LONP1. Mitochondrial DNA was also reduced, and mitochondria were swollen and larger, albeit at a lesser extent than enterocytes, with a perinuclear distribution. From the functional point of view, mitochondria from heterozygous MEF showed a lower oxygen consumption rate in basal conditions, either in the presence of glucose or galactose, and a reduced expression of mitochondrial complexes than wild type. In conclusion, the presence of one functional copy of the Lonp1 gene leads to impairment of mitochondrial ultrastructure and functions in vivo.
Collapse
Affiliation(s)
- Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (F.B.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.G.); (R.B.); (S.D.B.); (A.C.)
| | - Elena Bianchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.B.); (M.N.)
| | - Rebecca Borella
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.G.); (R.B.); (S.D.B.); (A.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.G.); (R.B.); (S.D.B.); (A.C.)
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.B.); (M.N.)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (F.B.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.G.); (R.B.); (S.D.B.); (A.C.)
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (F.B.)
- Correspondence: ; Tel.: +39-059-205-5386; Fax: +39-059-205-5426
| |
Collapse
|
3
|
Gibellini L, De Gaetano A, Mandrioli M, Van Tongeren E, Bortolotti CA, Cossarizza A, Pinti M. The biology of Lonp1: More than a mitochondrial protease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:1-61. [PMID: 32475470 DOI: 10.1016/bs.ircmb.2020.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Initially discovered as a protease responsible for degradation of misfolded or damaged proteins, the mitochondrial Lon protease (Lonp1) turned out to be a multifaceted enzyme, that displays at least three different functions (proteolysis, chaperone activity, binding of mtDNA) and that finely regulates several cellular processes, within and without mitochondria. Indeed, LONP1 in humans is ubiquitously expressed, and is involved in regulation of response to oxidative stress and, heat shock, in the maintenance of mtDNA, in the regulation of mitophagy. Furthermore, its proteolytic activity can regulate several biochemical pathways occurring totally or partially within mitochondria, such as TCA cycle, oxidative phosphorylation, steroid and heme biosynthesis and glutamine production. Because of these multiple activities, Lon protease is highly conserved throughout evolution, and mutations occurring in its gene determines severe diseases in humans, including a rare syndrome characterized by Cerebral, Ocular, Dental, Auricular and Skeletal anomalies (CODAS). Finally, alterations of LONP1 regulation in humans can favor tumor progression and aggressiveness, further highlighting the crucial role of this enzyme in mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Van Tongeren
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Andrea Cossarizza
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
4
|
Venkatesh S, Suzuki CK. Cell stress management by the mitochondrial LonP1 protease - Insights into mitigating developmental, oncogenic and cardiac stress. Mitochondrion 2019; 51:46-61. [PMID: 31756517 DOI: 10.1016/j.mito.2019.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022]
Abstract
Mitochondrial LonP1 is an essential stress response protease that mediates mitochondrial proteostasis, metabolism and bioenergetics. Homozygous and compound heterozygous variants in the LONP1 gene encoding the LonP1 protease have recently been shown to cause a diverse spectrum of human pathologies, ranging from classical mitochondrial disease phenotypes, profound neurologic impairment and multi-organ dysfunctions, some of which are uncommon to mitochondrial disorders. In this review, we focus primarily on human LonP1 and discuss findings, which demonstrate its multidimensional roles in maintaining mitochondrial proteostasis and adapting cells to metabolic flux and stress during normal physiology and disease processes. We also discuss emerging roles of LonP1 in responding to developmental, oncogenic and cardiac stress.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
5
|
Gibellini L, Losi L, De Biasi S, Nasi M, Lo Tartaro D, Pecorini S, Patergnani S, Pinton P, De Gaetano A, Carnevale G, Pisciotta A, Mariani F, Roncucci L, Iannone A, Cossarizza A, Pinti M. LonP1 Differently Modulates Mitochondrial Function and Bioenergetics of Primary Versus Metastatic Colon Cancer Cells. Front Oncol 2018; 8:254. [PMID: 30038898 PMCID: PMC6046640 DOI: 10.3389/fonc.2018.00254] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial Lon protease (LonP1) is a multi-function enzyme that regulates mitochondrial functions in several human malignancies, including colorectal cancer (CRC). The mechanism(s) by which LonP1 contributes to colorectal carcinogenesis is not fully understood. We found that silencing LonP1 leads to severe mitochondrial impairment and apoptosis in colon cancer cells. Here, we investigate the role of LonP1 in mitochondrial functions, metabolism, and epithelial-mesenchymal transition (EMT) in colon tumor cells and in metastasis. LonP1 was almost absent in normal mucosa, gradually increased from aberrant crypt foci to adenoma, and was most abundant in CRC. Moreover, LonP1 was preferentially upregulated in colorectal samples with mutated p53 or nuclear β-catenin, and its overexpression led to increased levels of β-catenin and decreased levels of E-cadherin, key proteins in EMT, in vitro. LonP1 upregulation also induced opposite changes in oxidative phosphorylation, glycolysis, and pentose pathway in SW480 primary colon tumor cells when compared to SW620 metastatic colon cancer cells. In conclusion, basal LonP1 expression is essential for normal mitochondrial function, and increased LonP1 levels in SW480 and SW620 cells induce a metabolic shift toward glycolysis, leading to EMT.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Simone Pecorini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Simone Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Anna De Gaetano
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Mariani
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Roncucci
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Iannone
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Franzese O, Barbaccia ML, Bonmassar E, Graziani G. Beneficial and Detrimental Effects of Antiretroviral Therapy on HIV-Associated Immunosenescence. Chemotherapy 2018; 63:64-75. [PMID: 29533947 DOI: 10.1159/000487534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 02/28/2024]
Abstract
Since the introduction of highly active antiretroviral therapy more than 2 decades ago, HIV-related deaths have dramatically decreased and HIV infection has become a chronic disease. Due to the inability of antiretroviral drugs to eradicate the virus, treatment of HIV infection requires a systemic lifelong therapy. However, even when successfully treated, HIV patients still show increased incidence of age-associated co-morbidities compared with uninfected individuals. Virus- induced immunosenescence, a process characterized by a progressive decline of immune system function, contributes to the premature ageing observed in HIV patients. Although antiretroviral therapy has significantly improved both the quality and length of patient lives, the life expectancy of treated patients is still shorter compared with that of uninfected individuals. In particular, while antiretroviral therapy can contrast some features of HIV-associated immunosenescence, several anti-HIV agents may themselves contribute to other aspects of immune ageing. Moreover, older HIV patients tend to have a worse immunological response to the antiviral therapy. In this review we will examine the available evidence on the role of antiretroviral therapy in the control of the main features regulating immunosenescence.
Collapse
|
7
|
Davies JMS, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D, Bulteau AL, Derbré F, Rébillard A, Burstein S, Hirsch E, Kloner RA, Jakowec M, Petzinger G, Sauce D, Sennlaub F, Limon I, Ursini F, Maiorino M, Economides C, Pike CJ, Cohen P, Salvayre AN, Halliday MR, Lundquist AJ, Jakowec NA, Mechta-Grigoriou F, Mericskay M, Mariani J, Li Z, Huang D, Grant E, Forman HJ, Finch CE, Sun PY, Pomatto LCD, Agbulut O, Warburton D, Neri C, Rouis M, Cillard P, Capeau J, Rosenbaum J, Davies KJA. The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 2017; 39:499-550. [PMID: 29270905 PMCID: PMC5745211 DOI: 10.1007/s11357-017-0002-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.
Collapse
Affiliation(s)
- Joanna M S Davies
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Josiane Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Bertrand Friguet
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Enrique Cadenas
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rachael Cayce
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Andrew Fishmann
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - David Liao
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon,ENS de Lyon, CNRS, 69364, Lyon Cedex 07, France
| | - Frédéric Derbré
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Amélie Rébillard
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Steven Burstein
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Etienne Hirsch
- INSERM UMR 1127-CNRS UMR 7225, Institut du cerveau et de la moelle épinière-ICM Thérapeutique Expérimentale de la Maladie de Parkinson, Université Pierre et Marie Curie, 75651, Paris Cedex 13, France
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, 91105, USA
| | - Michael Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giselle Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Delphine Sauce
- Chronic infections and Immune ageing, INSERM U1135, Hopital Pitie-Salpetriere, Pierre et Marie Curie University, 75013, Paris, France
| | | | - Isabelle Limon
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Christina Economides
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Neurobiology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anne Negre Salvayre
- Lipid peroxidation, Signalling and Vascular Diseases INSERM U1048, 31432, Toulouse Cedex 4, France
| | - Matthew R Halliday
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Adam J Lundquist
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicolaus A Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Mathias Mericskay
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire-Inserm UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry, Paris, France
| | - Jean Mariani
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Zhenlin Li
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - David Huang
- Department of Radiation Oncology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Ellsworth Grant
- Department of Oncology & Hematology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Henry J Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - David Warburton
- Children's Hospital of Los Angeles, Developmental Biology, Regenerative Medicine and Stem Cell Therapeutics program and the Center for Environmental Impact on Global Health Across the Lifespan at The Saban Research Institute, Los Angeles, CA, 90027, USA
- Department of Pediatrics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Neri
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Mustapha Rouis
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Pierre Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Jacqueline Capeau
- DR Saint-Antoine UMR_S938, UPMC, Inserm Faculté de Médecine, Université Pierre et Marie Curie, 75012, Paris, France
| | - Jean Rosenbaum
- Scientific Service of the Embassy of France in the USA, Consulate General of France in Los Angeles, Los Angeles, CA, 90025, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA.
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
8
|
Tetramethylpyrazine blocks TFAM degradation and up-regulates mitochondrial DNA copy number by interacting with TFAM. Biosci Rep 2017; 37:BSR20170319. [PMID: 28465355 PMCID: PMC5434891 DOI: 10.1042/bsr20170319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/26/2023] Open
Abstract
The natural small molecule compound: 2,3,5,6-tetramethylpyrazine (TMP), is a major component of the Chinese medicine Chuanxiong, which has wide clinical applications in dilating blood vessels, inhibiting platelet aggregation and treating thrombosis. Recent work suggests that TMP is also an antitumour agent. Despite its chemotherapeutic potential, the mechanism(s) underlying TMP action are unknown. Herein, we demonstrate that TMP binds to mitochondrial transcription factor A (TFAM) and blocks its degradation by the mitochondrial Lon protease. TFAM is a key regulator of mtDNA replication, transcription and transmission. Our previous work showed that when TFAM is not bound to DNA, it is rapidly degraded by the ATP-dependent Lon protease, which is essential for mitochondrial proteostasis. In cultured cells, TMP specifically blocks Lon-mediated degradation of TFAM, leading to TFAM accumulation and subsequent up-regulation of mtDNA content in cells with substantially low levels of mtDNA. In vitro protease assays show that TMP does not directly inhibit mitochondrial Lon, rather interacts with TFAM and blocks degradation. Pull-down assays show that biotinylated TMP interacts with TFAM. These findings suggest a novel mechanism whereby TMP stabilizes TFAM and confers resistance to Lon-mediated degradation, thereby promoting mtDNA up-regulation in cells with low mtDNA content.
Collapse
|
9
|
Chirumbolo S, Bjørklund G. PERM Hypothesis: The Fundamental Machinery Able to Elucidate the Role of Xenobiotics and Hormesis in Cell Survival and Homeostasis. Int J Mol Sci 2017; 18:ijms18010165. [PMID: 28098843 PMCID: PMC5297798 DOI: 10.3390/ijms18010165] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
In this article the Proteasome, Endoplasmic Reticulum and Mitochondria (PERM) hypothesis is discussed. The complex machinery made by three homeostatic mechanisms involving the proteasome (P), endoplasmic reticulum (ER) and mitochondria (M) is addressed in order to elucidate the beneficial role of many xenobiotics, either trace metals or phytochemicals, which are spread in the human environment and in dietary habits, exerting their actions on the mechanisms underlying cell survival (apoptosis, cell cycle regulation, DNA repair and turnover, autophagy) and stress response. The "PERM hypothesis" suggests that xenobiotics can modulate this central signaling and the regulatory engine made fundamentally by the ER, mitochondria and proteasome, together with other ancillary components such as peroxisomes, by acting on the energetic balance, redox system and macromolecule turnover. In this context, reactive species and stressors are fundamentally signalling molecules that could act as negative-modulating signals if PERM-mediated control is offline, impaired or dysregulated, as occurs in metabolic syndrome, degenerative disorders, chronic inflammation and cancer. Calcium is an important oscillatory input of this regulation and, in this hypothesis, it might play a role in maintaining the correct rhythm of this PERM modulation, probably chaotic in its nature, and guiding cells to a more drastic decision, such as apoptosis. The commonest effort sustained by cells is to maintain their survival balance and the proterome has the fundamental task of supporting this mechanism. Mild stress is probably the main stimulus in this sense. Hormesis is therefore re-interpreted in the light of this hypothetical model and that experimental evidence arising from flavonoid and hormesis reasearch.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana 8610, Norway.
| |
Collapse
|
10
|
Bota DA, Davies KJA. Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 2016; 100:188-198. [PMID: 27387767 PMCID: PMC5183306 DOI: 10.1016/j.freeradbiomed.2016.06.031] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
Abstract
The Mitochondrial Lon protease, also called LonP1 is a product of the nuclear gene LONP1. Lon is a major regulator of mitochondrial metabolism and response to free radical damage, as well as an essential factor for the maintenance and repair of mitochondrial DNA. Lon is an ATP-stimulated protease that cycles between being bound (at the inner surface of the inner mitochondrial membrane) to the mitochondrial genome, and being released into the mitochondrial matrix where it can degrade matrix proteins. At least three different roles or functions have been ascribed to Lon: 1) Proteolytic digestion of oxidized proteins and the turnover of specific essential mitochondrial enzymes such as aconitase, TFAM, and StAR; 2) Mitochondrial (mt)DNA-binding protein, involved in mtDNA replication and mitogenesis; and 3) Protein chaperone, interacting with the Hsp60-mtHsp70 complex. LONP1 orthologs have been studied in bacteria, yeast, flies, worms, and mammals, evincing the widespread importance of the gene, as well as its remarkable evolutionary conservation. In recent years, we have witnessed a significant increase in knowledge regarding Lon's involvement in physiological functions, as well as in an expanding array of human disorders, including cancer, neurodegeneration, heart disease, and stroke. In addition, Lon appears to have a significant role in the aging process. A number of mitochondrial diseases have now been identified whose mechanisms involve various degrees of Lon dysfunction. In this paper we review current knowledge of Lon's function, under normal conditions, and we propose a new classification of human diseases characterized by a either over-expression or decline or loss of function of Lon. Lon has also been implicated in human aging, and we review the data currently available as well as speculating about possible interactions of aging and disease. Finally, we also discuss Lon as potential therapeutic target in human disease.
Collapse
Affiliation(s)
- Daniela A Bota
- Department of Neurology and Chao Family Comprehensive Cancer Center, UC Irvine School of Medicine, 200 S. Manchester Ave., Suite 206, Orange, CA 92868, USA.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, Los Angeles, CA 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
11
|
Nagiah S, Phulukdaree A, Chuturgoon AA. Lon protease and eiF2α are involved in acute, but not prolonged, antiretroviral induced stress response in HepG2 cells. Chem Biol Interact 2016; 252:82-6. [PMID: 27041070 DOI: 10.1016/j.cbi.2016.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/26/2016] [Accepted: 03/20/2016] [Indexed: 11/28/2022]
Abstract
Lon protease, an ATP dependent mitochondrial protease, is important in mitochondrial protein maintenance. Disruption of protein homeostasis and mitochondrial dysfunction is associated with lipodystrophy, metabolic syndrome and accelerated aging, and are commonly observed in patients on long term antiretroviral therapy. Sirtuin 3 (SIRT3) is a post-translational regulator of Lon and regulates antioxidant response. We previously showed the nucleoside analogues (NRTIs), Zidovudine (AZT; 7.1 μM), Stavudine (d4T; 4 μM), and Tenofovir (TFV; 1.2 μM) induced oxidative stress and mitochondrial dysfunction in human hepatoma (HepG2) cells at 24 h (h) and 120 h. We conducted a mitochondrial proteomic assessment of homeostasis in the same model, using the same NRTIs. Protein expression of Lon, SIRT3, heat shock protein (HSP) 60, phospho-eukaryotic translation initiation factor 2α (p-eIF2α; Ser51) and phospho-c-jun N-terminal kinase (p-JNK; Thr183/Tyr185) were quantified by western blots. The data showed all stress responses were significantly increased in HepG2 cells by all antiretroviral drugs at 24 h (p < 0.0001); however, at 120 h, a significant depletion in the ATP-dependent proteins Lon (p = 0.00013) and HSP60 (p < 0.0001) was observed. Proteins initiated by endoplasmic reticulum stress: p-eIF2α (p = 0.001) and p-JNK (p = 0.0029), were significantly reduced following prolonged treatment. SIRT3 was maintained at elevated levels in the treated cells following prolonged exposure (p < 0.001). We conclude that the ATP dependent proteins are more relevant to acute toxicity, while SIRT3 confers protection over prolonged periods of toxicity.
Collapse
Affiliation(s)
- Savania Nagiah
- 3rd Floor George Campbell Building, Discipline of Medical Biochemistry, Howard College, University of KwaZulu Natal, King George Avenue, Durban, 4041, South Africa.
| | - Alisa Phulukdaree
- Department of Physiology, School of Medicine, Prinshof Campus, Dr Savage Road, 0083, Prinshof, Pretoria, Gauteng, South Africa.
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu Natal, Durban, South Africa; 3rd Floor George Campbell Building, Discipline of Medical Biochemistry, Howard College, University of KwaZulu Natal, King George Avenue, Durban, 4041, South Africa.
| |
Collapse
|
12
|
Pinti M, Gibellini L, Liu Y, Xu S, Lu B, Cossarizza A. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci 2015; 72:4807-24. [PMID: 26363553 PMCID: PMC11113732 DOI: 10.1007/s00018-015-2039-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
Lon protease is a nuclear DNA-encoded mitochondrial enzyme highly conserved throughout evolution, involved in the degradation of damaged and oxidized proteins of the mitochondrial matrix, in the correct folding of proteins imported in mitochondria, and in the maintenance of mitochondrial DNA. Lon expression is induced by various stimuli, including hypoxia and reactive oxygen species, and provides protection against cell stress. Lon down-regulation is associated with ageing and with cell senescence, while up-regulation is observed in tumour cells, and is correlated with a more aggressive phenotype of cancer. Lon up-regulation contributes to metabolic reprogramming observed in cancer, favours the switch from a respiratory to a glycolytic metabolism, helping cancer cell survival in the tumour microenvironment, and contributes to epithelial to mesenchymal transition. Silencing of Lon, or pharmacological inhibition of its activity, causes cell death in various cancer cells. Thus, Lon can be included in the growing class of proteins that are not responsible for oncogenic transformation, but that are essential for survival and proliferation of cancer cells, and that can be considered as a new target for development of anticancer drugs.
Collapse
Affiliation(s)
- Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy.
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Yongzhang Liu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shan Xu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Bin Lu
- School of Life Sciences, Institute of Biophysics, Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
Liu Y, Lan L, Huang K, Wang R, Xu C, Shi Y, Wu X, Wu Z, Zhang J, Chen L, Wang L, Yu X, Zhu H, Lu B. Inhibition of Lon blocks cell proliferation, enhances chemosensitivity by promoting apoptosis and decreases cellular bioenergetics of bladder cancer: potential roles of Lon as a prognostic marker and therapeutic target in baldder cancer. Oncotarget 2015; 5:11209-24. [PMID: 25526030 PMCID: PMC4294382 DOI: 10.18632/oncotarget.2026] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022] Open
Abstract
ATP-dependent Lon protease within mitochondrial matrix contributes to the degradation of abnormal proteins. The oxidative or hypoxic stress which represents the stress phenotype of cancer leads to up-regulation of Lon. However, the role of Lon in bladder cancer remains undefined. Here, we found that Lon expression in bladder cancer tissues was significantly higher than those in noncancerous tissues; down-regulation of Lon in bladder cancer cells significantly blocked cancer cell proliferation via suppression c-Jun N-terminal kinase (JNK) phosphorylation due to decreased reactive oxygen species (ROS) production and enhanced the sensitivity of bladder cancer cells to chemotherapeutic agents by promoting apoptosis. We further found that Lon down-regulation in bladder cancer cells decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using extracellular flux analyzer. The tissue microarray (TMA) results showed that high expression of Lon was related to the T and TNM stage, as well as histological grade of bladder cancer patients. We also demonstrated that Lon was an independent prognostic factor for overall survival of bladder cancer. Taken together, our data suggest that Lon could serve as a potential diagnostic biomarker and therapeutic target for treatment of bladder cancer, as well as for prediction of the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linhua Lan
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongrong Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cuicui Xu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Shi
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyi Wu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhi Wu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiliang Zhang
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Chen
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Wang
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Yu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haibo Zhu
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
Different origin of adipogenic stem cells influences the response to antiretroviral drugs. Exp Cell Res 2015; 337:160-9. [PMID: 26238601 DOI: 10.1016/j.yexcr.2015.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022]
Abstract
Lipodystrophy (LD) is a main side effect of antiretroviral therapy for HIV infection, and can be provoked by nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs). LD exists in different forms, characterized by fat loss, accumulation, or both, but its pathogenesis is still unclear. In particular, few data exist concerning the effects of antiretroviral drugs on adipocyte differentiation. Adipose tissue can arise either from mesenchymal stem cells (MSCs), that include bone marrow-derived MSCs (hBM-MSCs), or from ectodermal stem cells, that include dental pulp stem cells (hDPSCs). To analyze whether the embryonal origin of adipocytes might impact the occurrence of different phenotypes in LD, we quantified the effects of several antiretroviral drugs on the adipogenic differentiation of hBM-MSCs and hDPSCs. hBM-MSCs and hDPSCs were isolated from healthy donors. Cells were treated with 10 and 50 μM stavudine (d4T), efavirenz (EFV), atazanavir (ATV), ritonavir (RTV), and ATV-boosted RTV. Viability and adipogenesis were evaluated by staining with propidium iodide, oil red, and adipoRed; mRNA levels of genes involved in adipocyte differentiation, i.e. CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), and in adipocyte functions, i.e. fatty acid synthase (FASN), fatty acid binding protein-4 (FABP4), perilipin-1 (PLIN1) and 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2), were quantified by real time PCR. We found that ATV, RTV, EFV, and ATV-boosted RTV, but not d4T, caused massive cell death in both cell types. EFV and d4T affected the accumulation of lipid droplets and induced changes in mRNA levels of genes involved in adipocyte functions in hBM-MSCs, while RTV and ATV had little effects. All drugs stimulated the accumulation of lipid droplets in hDPSCs. Thus, the adipogenic differentiation of human stem cells can be influenced by antiretroviral drugs, and depends, at least in part, on their embryonal origin.
Collapse
|
15
|
Cerletti M, Paggi RA, Guevara CR, Poetsch A, De Castro RE. Global role of the membrane protease LonB in Archaea: Potential protease targets revealed by quantitative proteome analysis of a lonB mutant in Haloferax volcanii. J Proteomics 2015; 121:1-14. [PMID: 25829260 DOI: 10.1016/j.jprot.2015.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The membrane-associated LonB protease is essential for viability in Haloferax volcanii, however, the cellular processes affected by this protease in archaea are unknown. In this study, the impact of a lon conditional mutation (down-regulation) on H. volcanii physiology was examined by comparing proteomes of parental and mutant cells using shotgun proteomics. A total of 1778 proteins were identified (44% of H. volcanii predicted proteome) and 142 changed significantly in amount (≥2 fold). Of these, 66 were augmented in response to Lon deficiency suggesting they could be Lon substrates. The "Lon subproteome" included soluble and predicted membrane proteins expected to participate in diverse cellular processes. The dramatic stabilization of phytoene synthase (57 fold) in concert with overpigmentation of lon mutant cells suggests that Lon controls carotenogenesis in H. volcanii. Several hypothetical proteins, which may reveal novel functions and/or be involved in adaptation to extreme environments, were notably increased (300 fold). This study, which represents the first proteome examination of a Lon deficient archaeal cell, shows that Lon has a strong impact on H. volcanii physiology evidencing the cellular processes controlled by this protease in Archaea. Additionally, this work provides a platform for the discovery of novel targets of Lon proteases. BIOLOGICAL SIGNIFICANCE The proteome of a Lon-deficient archaeal cell was examined for the first time showing that Lon has a strong impact on H. volcanii physiology and evidencing the proteins and cellular processes controlled by this protease in Archaea. This work will facilitate future investigations aiming to address Lon function in archaea and provides a platform for the discovery of endogenous targets of the archaeal-type Lon as well as novel targets/processes regulated by Lon proteases. This knowledge will advance the understanding on archaeal physiology and the biological function of membrane proteases in microorganisms.
Collapse
Affiliation(s)
- Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250 4to nivel, Mar del Plata (7600), Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250 4to nivel, Mar del Plata (7600), Argentina
| | | | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Rosana E De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250 4to nivel, Mar del Plata (7600), Argentina.
| |
Collapse
|
16
|
Polo M, Alegre F, Funes HA, Blas-Garcia A, Victor VM, Esplugues JV, Apostolova N. Mitochondrial (dys)function - a factor underlying the variability of efavirenz-induced hepatotoxicity? Br J Pharmacol 2015; 172:1713-27. [PMID: 25411110 DOI: 10.1111/bph.13018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The non-nucleoside analogue reverse transcriptase inhibitor efavirenz is associated with hepatic toxicity and metabolic disturbances. Although the mechanisms involved are not clear, recent evidence has pinpointed a specific mitochondrial action of efavirenz accompanied by the induction of an endoplasmic reticulum (ER) stress/unfolded protein response in human hepatic cells. The aim of this study was to further investigate the involvement of this organelle by evaluating efavirenz's effects in cells lacking functional mitochondria (rho°) and comparing them with those of the typical mitotoxic agent rotenone, a standard complex I inhibitor, and the ER stress inducer thapsigargin. EXPERIMENTAL APPROACH Hep3B rho(+) and rho° cells were treated with clinically relevant concentrations of efavirenz, then mitochondrial function and cytotoxicity were studied using standard cell biology techniques. KEY RESULTS Efavirenz-treated rho° cells exhibited a substantial reduction in parameters indicative of mitochondrial interference, such as increased superoxide production, mitochondrial mass/morphology alterations and enhanced expression of LONP, a highly conserved mitochondrial protease. In line with these results, the cytotoxic effect (cell number, chromatin condensation, cell cycle alterations and induction of apoptosis) of efavirenz was less pronounced in Hep3B respiration-depleted cells than in wild-type cells. The effect of efavirenz was both similar and different from those of two distinct mitochondrial stressors, thapsigargin and rotenone. CONCLUSIONS AND IMPLICATIONS Cells lacking normal mitochondria (rho°) are less vulnerable to efavirenz. Our results provide further evidence that the hepatic damage induced by efavirenz involves acute interference with mitochondria and extend our knowledge of the response of mitochondria/ER to a stress stimulus.
Collapse
Affiliation(s)
- M Polo
- Departamento de Farmacología, Facultad de Medicina, Universitat de Valencia, Valencia, Spain; FISABIO-Hospital Universitario Dr Peset, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Gibellini L, Pinti M, Beretti F, Pierri CL, Onofrio A, Riccio M, Carnevale G, De Biasi S, Nasi M, Torelli F, Boraldi F, De Pol A, Cossarizza A. Sirtuin 3 interacts with Lon protease and regulates its acetylation status. Mitochondrion 2014; 18:76-81. [DOI: 10.1016/j.mito.2014.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
|
18
|
Gibellini L, Pinti M, Boraldi F, Giorgio V, Bernardi P, Bartolomeo R, Nasi M, De Biasi S, Missiroli S, Carnevale G, Losi L, Tesei A, Pinton P, Quaglino D, Cossarizza A. Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB J 2014; 28:5122-35. [DOI: 10.1096/fj.14-255869] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lara Gibellini
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Marcello Pinti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Federica Boraldi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - Paolo Bernardi
- Department of Biomedical SciencesUniversity of PadovaPaduaItaly
| | - Regina Bartolomeo
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sonia Missiroli
- Department of Morphology, Surgery, and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Lorena Losi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Anna Tesei
- Biosciences LaboratoryIRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)MeldolaItaly
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Daniela Quaglino
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Dipartimento Sperimentale Interaziendale, Campus San LazzaroUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| |
Collapse
|
19
|
Abstract
To highlight differences between early-onset and adult mitochondrial depletion syndromes (MDS) concerning etiology and genetic background, pathogenesis, phenotype, clinical presentation and their outcome. MDSs most frequently occur in neonates, infants, or juveniles and more rarely in adolescents or adults. Mutated genes phenotypically presenting with adult-onset MDS include POLG1, TK2, TyMP, RRM2B, or PEO1/twinkle. Adult MDS manifest similarly to early-onset MDS, as myopathy, encephalo-myopathy, hepato-cerebral syndrome, or with chronic progressive external ophthalmoplegia (CPEO), fatigue, or only minimal muscular manifestations. Diagnostic work-up or treatment is not at variance from early-onset cases. Histological examination of muscle may be normal but biochemical investigations may reveal multiple respiratory chain defects. The outcome appears to be more favorable in adult than in early-onset forms. Mitochondrial depletion syndromes is not only a condition of neonates, infants, or juveniles but rarely also occurs in adults, presenting with minimal manifestations or manifestations like in the early-onset forms. Outcome of adult-onset MDS appears more favorable than early-onset MDS.
Collapse
|
20
|
Ngo JK, Pomatto LCD, Davies KJA. Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biol 2013; 1:258-64. [PMID: 24024159 PMCID: PMC3757690 DOI: 10.1016/j.redox.2013.01.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/30/2022] Open
Abstract
The elimination of oxidatively modified proteins is a crucial process in maintaining cellular homeostasis, especially during stress. Mitochondria are protein-dense, high traffic compartments, whose polypeptides are constantly exposed to superoxide, hydrogen peroxide, and other reactive species, generated by 'electron leakage' from the respiratory chain. The level of oxidative stress to mitochondrial proteins is not constant, but instead varies greatly with numerous metabolic and environmental factors. Oxidized mitochondrial proteins must be removed rapidly (by proteolytic degradation) or they will aggregate, cross-link, and cause toxicity. The Lon Protease is a key enzyme in the degradation of oxidized proteins within the mitochondrial matrix. Under conditions of acute stress Lon is highly inducible, possibly with the oxidant acting as the signal inducer, thereby providing increased protection. It seems that under chronic stress conditions, however, Lon levels actually decline. Lon levels also decline with age and with senescence, and senescent cells even lose the ability to induce Lon during acute stress. We propose that the regulation of Lon is biphasic, in that it is up-regulated during transient stress and down-regulated during chronic stress and aging, and we suggest that the loss of Lon responsiveness may be a significant factor in aging, and in age-related diseases.
Collapse
Key Words
- 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis
- AAA, ATPases associated with diverse cellular activities
- Aco1, Aconitase 1
- Adaptation
- CDDO, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid
- CDDO-Me, methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate
- COX, cytochrome c oxidase
- COX4-1, cytochrome c oxidase subunit IV isoform 1
- COX4-2, cytochrome c oxidase subunit IV isoform 2
- Ccp1, mitochondrial cytochrome-c peroxidase
- Clp, caseinolytic protease
- ClpP, core catalytic protease unit
- ERAD, endoplasmic reticulum-associated degradation
- FRDA, Friedreich's ataxia
- Fe/S, iron/SULFUR
- HAART, highly active antiretroviral therapy
- HIF-1, hypoxia inducible factor-1
- HSP104, heat shock protein 104
- HSP60, heat shock protein 60
- Hormesis
- HsIVU, bacterial ATP-dependent protease
- Lon Protease
- MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
- MPPβ, mitochondrial processing peptidase beta subunit
- Mitochondria
- NRF-2, nuclear factor (erythroid-derived 2)-like 2
- Nfκb, nuclear factor kappa-light-chain-enhancer of activated B csells
- Oxidative stress
- PRSS15, LON gene
- Pim1, ATP-dependent Lon protease from yeast
- Protease La, ATP-dependent protease
- Protein degradation and oxidation
- Prx1, mitochondrial peroxiredoxin 1
- SLLVY-AMC, N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin
- SOD, cytosolic superoxide dismutase
- SOD2, mitochondrial superoxide dismutase 2
- SPG13, hereditary spastic paraplegia
- WI-38, human lung fibroblast
- Yjl200c, mitochondrial aconitase isozyme
Collapse
Affiliation(s)
- Jenny K Ngo
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|
21
|
Zidovudine/lamivudine but not nevirapine in combination with lopinavir/ritonavir decreases subcutaneous adipose tissue mitochondrial DNA. AIDS 2012; 26:2165-74. [PMID: 22874517 DOI: 10.1097/qad.0b013e328358b279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE No randomized study has prospectively followed subcutaneous adipose tissue mitochondrial DNA (mtDNA) changes when starting thymidine nucleoside reverse transcriptase inhibitors (tNRTIs). DESIGN The Metabolic Effects of DIfferent CLasses of AntiretroviralS study randomized HIV-positive, treatment-naive male participants to start lopinavir/ritonavir (LPVr) with either zidovudine/lamivudine (ZDV/3TC) or nevirapine (NVP). METHODS Regional body fat was assessed by dual energy x-ray absorptiometry and abdominal computed tomography at months 0, 3, 12, 24 and 36. In a molecular substudy, subcutaneous adipose tissue (SAT) biopsies were taken, with mtDNA quantified by quantitative PCR. Data were analyzed using repeated measures linear regression analyses. RESULTS Of 50 participants recruited (23 to LPVr/ZDV/3TC), 48 started therapy, and 37 participants (19 on LPVr/ZDV/3TC) enrolled in the substudy. At 36 months, the LPVr/ZDV/3TC group had significantly lower limb fat [6.4 kg (0.26) versus 7.3 kg (0.31), P = 0.017] and a trend toward lower abdominal SAT compared to the LPVr/NVP group [131 cm (6.86) versus 146 cm (6.33), P = 0.097]. Over 36 months, mtDNA declined in the LPVr/ZDV/3TC group [mtDNA region 1: -190 (95) copies/cell, P = 0.053, region 2: -269 (106) copies/cell, P = 0.016] but not within the LPVr/NVP group [region 1: +28 (99) copies/cell, P = 0.78, region 2: +51 (111) copies/cell, P = 0.65, between-group difference P < 0.01 for both measurements]. mtDNA was significantly lower in the LPVr/ZDV/3TC group at 36 months. CONCLUSION This is the first randomized study to prospectively demonstrate reductions in SAT mtDNA in patients initiating ZDV/3TC-containing antiretroviral therapy (ART) but not in those initiating nucleoside reverse transcriptase inhibitor-sparing ART containing NVP and protease inhibitor. That reductions in SAT mtDNA were also accompanied by lower limb fat suggests that use of ART not containing ZDV/3TC may help prevent development of peripheral lipoatrophy.
Collapse
|
22
|
Abstract
BACKGROUND The association between HAART and lipodystrophy is well established, but lipodystrophy pathogenesis is still poorly understood. Drugs, and in particular protease inhibitors, accumulate in adipose tissue affecting adipocyte physiology and gene expression by several mechanisms. Recent studies have identified autophagy as another process affected by these classes of drugs, but no studies have been performed in adipose cells. METHODS SW872 preadipocytic human cell line was used to evaluate changes induced by amprenavir (APV), ritonavir (RTV), or atazanavir (ATV), all used at 10-200 μmol/l. A subline was stably transfected with murine stem cell virus (pMSCV)-enhanced green fluorescent protein (EGFP)-LC3 plasmid (to obtain a fluorescent LC3 protein) and treated with ATV at different doses. The distribution of LC3 and the colocalization of mitochondria, lysosome, and autophagosome were assessed by confocal microscopy. Transmission electron microscopy of ATV-treated cells was also performed. The cellular content of lysosomes was assessed using Lysotracker Green; apoptosis was evaluated by annexin V/propidium iodide staining, and mitochondrial superoxide anion (mtO2) was analyzed by mitoSOX red. Lysosomes, apoptosis, and mtO2 were studied by flow cytometry and multispectral imaging flow cytometry. RESULTS In SW872 cells, RTV caused massive apoptosis, more than autophagy, whereas APV was almost ineffective. ATV induced both apoptosis (high doses) and autophagy (low doses). ATV-treated cells displayed LC3-specific punctae, suggesting the formation of autophagosomes that enclosed mitochondria, as revealed by electron microscopy. At low doses, ATV promoted mitochondrial superoxide generation, whereas at high doses, it induced mitochondrial membrane depolarization. CONCLUSION Autophagy/mitophagy can be considered a mechanism triggered by ATV in SW872 preadipocytes.
Collapse
|
23
|
Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK. Multitasking in the mitochondrion by the ATP-dependent Lon protease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:56-66. [PMID: 22119779 DOI: 10.1016/j.bbamcr.2011.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/30/2011] [Accepted: 11/06/2011] [Indexed: 01/13/2023]
Abstract
The AAA(+) Lon protease is a soluble single-ringed homo-oligomer, which represents the most streamlined operational unit mediating ATP-dependent proteolysis. Despite its simplicity, the architecture of Lon proteases exhibits a species-specific diversity. Homology modeling provides insights into the structural features that distinguish bacterial and human Lon proteases as hexameric complexes from yeast Lon, which is uniquely heptameric. The best-understood functions of mitochondrial Lon are linked to maintaining proteostasis under normal metabolic conditions, and preventing proteotoxicity during environmental and cellular stress. An intriguing property of human Lon is its specific binding to G-quadruplex DNA, and its association with the mitochondrial genome in cultured cells. A fraction of Lon preferentially binds to the control region of mitochondrial DNA where transcription and replication are initiated. Here, we present an overview of the diverse functions of mitochondrial Lon, as well as speculative perspectives on its role in protein and mtDNA quality control.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB E-633, Newark, New Jersey 07103 USA
| | | | | | | | | |
Collapse
|
24
|
Apostolova N, Blas-García A, Esplugues JV. Mitochondrial interference by anti-HIV drugs: mechanisms beyond Pol-γ inhibition. Trends Pharmacol Sci 2011; 32:715-25. [PMID: 21899897 DOI: 10.1016/j.tips.2011.07.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 02/06/2023]
Abstract
The combined pharmacological approach to the treatment of HIV infection, known as highly active antiretroviral therapy (HAART), has dramatically reduced AIDS-related morbidity and mortality. However, its use has been associated with serious adverse reactions, of which those resulting from mitochondrial dysfunction are particularly widespread. Nucleos(t)ide-reverse transcriptase inhibitors (NRTIs) have long been considered the main source of HAART-related mitochondrial toxicity due to their ability to inhibit Pol-γ, the DNA polymerase responsible for the synthesis of mitochondrial DNA. Nevertheless, accumulating evidence points to a more complex relationship between these organelles and NRTIs. Also, alternative pathways by which other groups of anti-HIV drugs (non-nucleoside reverse transcriptase inhibitors and protease inhibitors) interfere with mitochondria have been suggested, although their implications, both pharmacological and clinical, are open to debate. This review aims to provide a comprehensive overview of the mechanisms and factors which influence the mitochondrial involvement in the toxicity of all three major classes of anti-HIV drugs.
Collapse
Affiliation(s)
- Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Avda Blasco Ibáñez n.15-17, 46010 Valencia, Spain
| | | | | |
Collapse
|
25
|
Cossarizza A, Pinti M, Nasi M, Gibellini L, Manzini S, Roat E, De Biasi S, Bertoncelli L, Montagna JP, Bisi L, Manzini L, Trenti T, Borghi V, Mussini C. Increased plasma levels of extracellular mitochondrial DNA during HIV infection: a new role for mitochondrial damage-associated molecular patterns during inflammation. Mitochondrion 2011; 11:750-5. [PMID: 21722755 DOI: 10.1016/j.mito.2011.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/02/2011] [Accepted: 06/15/2011] [Indexed: 12/13/2022]
Abstract
HIV infection is characterized by a chronic inflammatory state. Recently, it has been shown that mitochondrial DNA (mtDNA) released from damaged or dead cells can bind Toll like receptor-9 (TLR9), an intracellular receptor that responds to bacterial or viral DNA molecules. The activation of TLR9 present within monocytes or neutrophils results in a potent inflammatory reaction, with the production of proinflammatory cytokines. We measured plasma levels of mtDNA in different groups of HIV(+) patients, i.e., those experiencing an acute HIV infection (AHI), long term non progressors (LTNP), late presenters (LP) taking antiretroviral therapy for the first time, and healthy controls. We found that in AHI and LP mtDNA plasma levels were significantly higher than in healthy individuals or in LTNP. Plasma mtDNA levels were not correlated to peripheral blood CD4(+) T cell count, nor to markers of immune activation, but had a significant correlation with plasma viral load, revealing a possible role for mtDNA in inflammation, or as a biomarker of virus-induced damage.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pinti M, Gibellini L, De Biasi S, Nasi M, Roat E, O'Connor JE, Cossarizza A. Functional characterization of the promoter of the human Lon protease gene. Mitochondrion 2011; 11:200-6. [DOI: 10.1016/j.mito.2010.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/30/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
|
27
|
Maisa A, Westhorpe C, Elliott J, Jaworowski A, Hearps AC, Dart AM, Hoy J, Crowe SM. Premature onset of cardiovascular disease in HIV-infected individuals: the drugs and the virus. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.10.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Life expectancy in HIV-infected individuals has been greatly enhanced through immunologic restoration and virologic suppression resulting from antiretroviral therapy. Current clinical HIV care in Western countries focuses on treatment of drug toxicities and prevention of comorbidities. These non-AIDS HIV-related comorbidities, such as cardiovascular disease, occur even in individuals with virologic suppression and manifest at an earlier age than when normally presenting in the general population. While traditional risk factors are present in many HIV-infected individuals who develop cardiovascular disease, the additional roles of HIV-related chronic inflammation and immune activation as well as chronic HIV viremia may be significant. This review provides current evidence for the contributions of the virus, in terms of both chronic viremia and its contribution via chronic low-level inflammation, immune activation, premature immune senescence and dyslipidemia, to the pathogenesis of HIV-related cardiovascular disease, and balances this against the propensity of specific antiretroviral therapies to cause cardiovascular disease, in particular through altered cholesterol metabolism.
Collapse
Affiliation(s)
- Anna Maisa
- Centre for Virology, Burnet Institute, Commercial Road, Melbourne, Australia
| | - Clare Westhorpe
- Centre for Virology, Burnet Institute, Commercial Road, Melbourne, Australia
| | - Julian Elliott
- Infectious Diseases Unit, The Alfred Hospital, Melbourne, Australia
- Centre for Population Health, Burnet Institute, Commercial Road, Melbourne, Australia
- Deptment of Epidemiology & Preventive Medicine, Monash University, Commercial Road, Melbourne
| | - Anthony Jaworowski
- Centre for Virology, Burnet Institute, Commercial Road, Melbourne, Australia
- Deptment of Immunology, Monash University, Clayton, Australia
- Deptment of Medicine, Monash University, Clayton, Australia
| | - Anna C Hearps
- Centre for Virology, Burnet Institute, Commercial Road, Melbourne, Australia
| | - Anthony M Dart
- Deptment of Medicine, Monash University, Clayton, Australia
- Deptment of Cardiovascular Medicine, The Alfred Hospital, Melbourne, Australia
| | - Jennifer Hoy
- Infectious Diseases Unit, The Alfred Hospital, Melbourne, Australia
- Deptment of Medicine, Monash University, Clayton, Australia
| | | |
Collapse
|
28
|
|