1
|
Kochanowicz AM, Osuch S, Berak H, Kumorek A, Caraballo Cortés K. Double Positive CD4 +CD8 + (DP) T-Cells Display Distinct Exhaustion Phenotype in Chronic Hepatitis C. Cells 2023; 12:1446. [PMID: 37408280 DOI: 10.3390/cells12101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
In chronic hepatitis C (CHC), characterized by exhaustion of T-cell function, increased frequencies of double-positive (DP) (CD4+CD8+) cells are present in peripheral blood. We compared the exhaustion phenotype between DP and single positive (SP) T-cells, including HCV-specific cells, and assessed the effect of successful HCV treatment on inhibitory receptors expression. Blood samples from 97 CHC patients were collected before and six months post-treatment. PD-1 (programmed cell death protein 1) and Tim-3 (T-cell immunoglobulin and mucin domain-containing molecule-3) expression was assessed by flow cytometry. DP T-cells displayed significantly higher PD-1 expression, lower Tim-3 expression than CD8+ SP T-cells and lower percentages of PD-1-Tim-3- cells than CD4+ SP T-cells, both before and after treatment. PD-1+Tim-3+ DP T-cells decreased following treatment. HCV-specific cells were more frequent among DP than SP T-cells, both before and after treatment. HCV-specific DP T-cells were characterized by lower PD-1 expression, higher PD-1 and Tim-3 co-expression, and lower percentages of PD-1-Tim-3- cells (both before and after treatment) and higher post-treatment Tim-3 than HCV-specific SP T-cells. Their percentages decreased following treatment, but the exhaustion phenotype remained unchanged. DP T-cells in CHC exhibit a distinct exhaustion phenotype from SP T-cells, and these changes mostly persist following successful treatment.
Collapse
Affiliation(s)
- Anna Maria Kochanowicz
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, 01-201 Warsaw, Poland
| | - Aleksandra Kumorek
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Zou S, Tan Y, Xiang Y, Liu Y, Zhu Q, Wu S, Guo W, Luo M, Shen L, Liang K. The Role of CD4+CD8+ T Cells in HIV Infection With Tuberculosis. Front Public Health 2022; 10:895179. [PMID: 35712309 PMCID: PMC9195591 DOI: 10.3389/fpubh.2022.895179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Background Tuberculosis (TB) is an important opportunistic infection in acquired immunodeficiency diseases (AIDS). Although the frequency of CD4+CD8+ double-positive (DP) T cells has been observed to increase in pathological conditions, their role (phenotypic and functional) is poorly described, especially in human immunodeficiency virus (HIV) infection with TB (HIV/TB (HT) coinfection). Methods The percentage and phenotypic and functional properties of peripheral blood DP T cells in patients with HT coinfection in comparison to uninfected controls and to patients with HIV or TB mono-infection were analyzed by direct intracellular cytokine staining (ICS). Results Total and CD4lowCD8high DP T cells were significantly increased in patients with both HIV and TB mono-infection, especially in patients with HT coinfection. Compared with healthy controls (HCs), the percentage of DP T cells expressing chemokine receptor 5 (CCR5) in patients with HT coinfection was significantly higher. Compared with HCs and patients with TB, a lower percentage of tumor necrosis factor α (TNF-α) secreting DP T cells and a higher percentage of granzyme A-secreting DP T cells were observed in patients with HIV mono-infection and HT coinfection, respectively. In addition, DP T cells expressed more cytolytic markers (granzyme A and perforin) than CD4+ T cells, but similarly to CD8+ T cells in patients with HT coinfection. Conclusions Our data suggested that HT coinfection resulted in a marked increase in DP T cells, especially the CD4lowCD8high subpopulation. DP T cells may be susceptible to HT coinfection, and have the same cytotoxic function as CD8+ T cells.
Collapse
Affiliation(s)
- Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yanni Xiang
- Department of Intensive Care Medicine, Yichang Central People's Hospital, Yichang, China
| | - Yang Liu
- Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- School of Economics and Management, Wuhan University, Wuhan, China
| | - Qi Zhu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Guo
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mingqi Luo
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
- *Correspondence: Ling Shen
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
- Ke Liang
| |
Collapse
|
3
|
Epstein–Barr Virus (EBV) Genotypes Associated with the Immunopathological Profile of People Living with HIV-1: Immunological Aspects of Primary EBV Infection. Viruses 2022; 14:v14020168. [PMID: 35215762 PMCID: PMC8880155 DOI: 10.3390/v14020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of the present study was to evaluate the immunological profile of adult HIV-1+ patients coinfected with primary Epstein–Barr virus (EBV) infection who were free of antiretroviral drugs and inhabitants of the Brazilian Amazon region. Materials and methods: Primary EBV infection was screened by the semiquantitative detection of IgM and IgG anti-VCA. Genotypes were determined by conventional PCR. EBV and HIV viral load (VL) were quantified by real-time PCR. Cytokine dosage and cell quantification were performed by cytometry. Results: Only HIV-1+ individuals had primary EBV infection (7.12%). The EBV-1 genotype was the most prevalent (47.37%). The VL of HIV-1 was lower in the HIV/EBV-2 group. CD4+ T lymphocytes were inversely proportional to the VL of EBV in HIV/EBV-1/2 multi-infected patients. The HIV/EBV-2 group had the lowest cytokine levels, especially IFN-γ and IL-4. Different correlations were proposed for each coinfection. The late search for specific care related to HIV infection directly affected the cytokine profile and the number of CD8+ T lymphocytes. Symptoms were associated with the increase in VL of both viruses and cytokine profile. Conclusions: Different immunological profiles were associated with EBV genotypes in primary infection, with EBV-2 being more frequent in patients with low levels of HIV viral load. With late infection monitoring and consequent delay in the initiation of HAART, clinical changes and effects on the maintenance of the immune response were observed.
Collapse
|
4
|
Increased CD4 +CD8 + Double-Positive T Cell in Patients with Primary Sjögren's Syndrome Correlated with Disease Activity. J Immunol Res 2021; 2021:6658324. [PMID: 34095321 PMCID: PMC8140824 DOI: 10.1155/2021/6658324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
Primary Sjogren's syndrome (pSS) is an autoimmune disease that invades lacrimal glands, salivary glands, and other exocrine glands, but its pathogenic mechanism is still unclear. CD4+CD8+ double-positive T (DPT) cells have been discovered in recent years to play an important role in autoimmune diseases and viral infections, but the frequency and significance of DPT in primary Sjogren's syndrome are still unclear. This study detected the frequency of DPT in the peripheral blood of patients with pSS and detected the clinical indicators and cytokines in patients. We then analyzed the correlation between DPT and clinical indicators, cytokines, and disease activity scores. The results showed that the peripheral DPT frequency of pSS patients was significantly higher than that of healthy controls. The peripheral DPT frequency was negatively correlated with ESR, IgA, and IgG, and peripheral DPT frequency was positively correlated with anti-inflammatory cytokine IL-10. Analysis of DPT and pSS disease activity scores found that DPT frequency had a negative correlation with ESSDAI and SSDAI. This study suggests that peripheral DPT may play a protective role in pSS. The frequency of peripheral DPT cells can be used as an indicator for disease activity. Regulating the expression of peripheral DPT cells is expected to become a new strategy for treatment of pSS.
Collapse
|
5
|
T cell subset profile and inflammatory cytokine properties in the gut-associated lymphoid tissues of chickens during infectious bursal disease virus (IBDV) infection. Arch Virol 2020; 165:2249-2258. [PMID: 32696270 DOI: 10.1007/s00705-020-04735-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/12/2020] [Indexed: 12/23/2022]
Abstract
While infectious bursal disease virus (IBDV) mainly targets immature B cells and causes T cell infiltration in the bursa of Fabricius (BF) of chickens, the effect of IBDV infection on the properties of T cells and relevant cytokine production in avian gut-associated lymphoid tissues (GALTs) remains unknown. Here, we show that while the CD8+ T cell subset is not affected, IBDV infection decreases the percentage of CD4+ T cells in the cecal tonsil (CT), but not in esophagus tonsil, pylorus tonsil, and Meckel's diverticulum of GALTs, in contrast to BF and spleen, in which the proportion of CD4+ cells increases upon IBDV infection. Further, IBDV infection upregulates IFN-γ, IL-10, and the T cell checkpoint receptor LAG-3 mRNA expression in BF. In contrast, in CTs, IBDV infection significantly increases the production of IFN-β and CTLA-4 mRNA, while no significant effect is seen in the case of IFN-γ, IL-10 and LAG-3. Together, our data reveal differential modulation of T cell subsets and proinflammatory cytokine production in different lymphoid tissues during the course of IBDV infection.
Collapse
|
6
|
Gonzalez-Mancera MS, Bolaños NI, Salamanca M, Orjuela GA, Rodriguez AN, Gonzalez JM. Percentages of CD4+CD8+ Double-positive T Lymphocytes in the Peripheral Blood of Adults from a Blood Bank in Bogotá, Colombia. Turk J Haematol 2019; 37:36-41. [PMID: 31612695 PMCID: PMC7057749 DOI: 10.4274/tjh.galenos.2019.2019.0256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: CD4+CD8+ double-positive T-cells (DPTs) have been classified as a separate T-cell subpopulation, with two main phenotypes: CD4high CD8low and CD4low CD8high. In recent years, the relevance of DPTs in the pathogenesis of infections, tumors, and autoimmune diseases has been recognized. Reference values among healthy individuals remain unknown. Therefore, the aim of this study is to provide a reference value for DPTs in peripheral blood from healthy donors in a blood bank in Bogotá, Colombia, and to determine the activation status using a surface marker. Materials and Methods: One hundred healthy donors were enrolled in the study. Peripheral blood cells were stained for CD3, CD4, CD8, and CD154 (CD40L), and cellular viability was assessed with 7-aminoactinomycin D and analyzed by flow cytometry. Results: The median value for DPTs was 2.6% (interquartile range=1.70%-3.67%). Women had higher percentages of DPTs than men (3.3% vs. 2.1%). The subpopulation of CD4low CD8high showed higher expression of CD154 than the other T-cell subpopulations. Conclusion: DPT reference values were obtained from blood bank donors. A sex difference was found, and the CD4low CD8high subpopulation had the highest activation marker expression.
Collapse
Affiliation(s)
| | - Natalia I. Bolaños
- University of los Andes, School of Medicine, Grupo de Ciencias Básicas Médicas, Bogotá, Colombia
| | - Manuel Salamanca
- University of los Andes, School of Medicine, Grupo de Ciencias Básicas Médicas, Bogotá, Colombia
| | | | | | - John M. Gonzalez
- University of los Andes, School of Medicine, Grupo de Ciencias Básicas Médicas, Bogotá, Colombia
| |
Collapse
|
7
|
Desalegn G, Tsegaye A, Gebreegziabiher D, Aseffa A, Howe R. Enhanced IFN-γ, but not IL-2, response to Mycobacterium tuberculosis antigens in HIV/latent TB co-infected patients on long-term HAART. BMC Immunol 2019; 20:35. [PMID: 31601184 PMCID: PMC6788090 DOI: 10.1186/s12865-019-0317-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 09/11/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND HIV-infected individuals with latent TB infection are at increased risk of developing active TB. HAART greatly reduces the incidence rate of TB in HIV-infected patients and reconstitutes Mycobacterium tuberculosis (M. tuberculosis)-specific immune response in the first 12 months of therapy. The durability of the anti-mycobacterial immune restoration after a year of HAART however remains less investigated. METHOD A cross-sectional study was conducted to evaluate M. tuberculosis-specific functional immune responses in HIV/latent TB co-infected patients who were on HAART for at least 1.5 up to 9 years as compared to HAART-naïve patients. Three-hundred sixteen HIV-infected patients without active TB were screened by tuberculin skin testing for M. tuberculosis infection and peripheral blood mononuclear cells (PBMCs) were isolated from 61 HIV/latent TB co-infected patients (30 HAART-naïve and 31 HAART-treated). IFN-γ and IL-2 ELISPOT as well as CFSE cell proliferation assays were performed after stimulation with M. tuberculosis antigens PPD and ESAT-6. RESULT The median frequency of PPD and ESAT-6 specific IFN-γ secreting cells was significantly higher in the HAART-treated patients as compared to HAART-naïve patients, p = 0.0021 and p = 0.0081 respectively. However, there was no significant difference in the median frequency of IL-2 secreting cells responding to PPD (p = 0.5981) and ESAT-6 (p = 0.3943) antigens between HAART-naïve and-treated groups. Both IFN-γ and IL-2 responses were independent of CD4+ T cell count regardless of the HAART status. Notably, the frequency of PPD and ESAT-6 specific IL-2 secreting cells was positively associated with CD4+ T cell proliferation while inversely correlated with duration of HAART, raising the possibility that M. tuberculosis-specific IL-2 response that promote the antigen-specific CD4+ T cell proliferation diminish with time on antiretroviral therapy in HIV/latent TB co-infected patients. CONCLUSION This study shows an increased M. tuberculosis-specific IFN-γ, but not IL-2, response in HIV/latent TB co-infected patients with long-term HAART, consistent with only partial immune restoration. Future studies should, therefore, be done to prospectively define the rate and extent to which functional immune responses to M. tuberculosis are restored after long-term HAART.
Collapse
Affiliation(s)
- Girmay Desalegn
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Microbiology and Immunology, Mekelle University, Mekelle, Ethiopia
| | - Aster Tsegaye
- Department of Medical Laboratory Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dawit Gebreegziabiher
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Medical Microbiology and Immunology, Mekelle University, Mekelle, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Ding ZD, Zheng JF, Song CB, Fu YJ, Xu JJ, Jiang YJ, Shang H, Zhang ZN. Decreased CD4 +CD8 low T cells in early HIV infection are associated with rapid disease progression. Cytokine 2019; 125:154801. [PMID: 31442680 DOI: 10.1016/j.cyto.2019.154801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND HIV rapid progressors (RPs) present with a rapid decline of CD4+ T cells within a few years of infection. Determining the underlying mechanisms throughout this decline is important to identify prognostic biomarkers and intervention strategies. Determining the numbers of CD4+ and CD8+ T cells is essential for monitoring the immune status of HIV infected patients. There are additional kinds of cell subtypes in T cells, but their relationship to the rapid progression of HIV disease is not well defined. METHODS Nineteen RPs and twenty-one chronic progressors (CPs) were enrolled in this study. Based on the intensity of CD4 and CD8 expression, different T cell subtypes were identified, including CD4+CD8+T cells, CD4-CD8- T cells, CD4+CD8low T cells and CD4-CD8low T cells. Alterations in these T cell subtypes in early HIV infection (within 120 days of infection) between RPs and CPs were measured, and the relationships between these subtypes and HIV disease progression were investigated. In addition, expression of IFN-γ in T cell subtypes after PMA stimulation was analyzed by flow cytometry. RESULTS We found that during early HIV infection, CD4+CD8low T cells both significantly decreased in numbers and percentages in RPs compared to CPs. Furthermore, baseline CD4+CD8low T cells positively correlated not only with baseline CD4+T cells but also with CD4+T cells 12 months after infection. Moreover, survival analysis indicated that low levels of baseline CD4+CD8low T cells significantly accelerated the decline in CD4+ T cells as well as increased viral loads. CD4+CD8low T cells secreted significantly more IFN-γ after PMA stimulation compared to CD4+CD8-T cells and CD4-CD8+T cells, which may be beneficial for the prevention of disease progression. CONCLUSIONS Our results identified that in early stage HIV-1 infection, a subtype of T cells, CD4+CD8low, are associated with subsequent disease progression.
Collapse
Affiliation(s)
- Zi-Dan Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Jie-Fu Zheng
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Cheng-Bo Song
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Jun-Jie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China.
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China.
| |
Collapse
|
9
|
von Buttlar H, Bismarck D, Alber G. Peripheral canine CD4(+)CD8(+) double-positive T cells - unique amongst others. Vet Immunol Immunopathol 2015; 168:169-75. [PMID: 26460086 DOI: 10.1016/j.vetimm.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022]
Abstract
T lymphocytes co-expressing CD4 and CD8 ("double-positive T cells") are commonly associated with a thymic developmental stage of T cells. Their first description in humans and pigs as extrathymic T cells with a memory phenotype almost 30 years ago came as a surprise. Meanwhile peripheral double-positive T cells have been described in a growing number of different species. In this review we highlight novel data from our very recent studies on canine peripheral double-positive T cells which point to unique features of double-positive T cells in the dog. In contrast to porcine CD4(+)CD8(+) T cells forming a homogenous cellular population based on their expression of CD4 and CD8α, canine CD4(+)CD8(+) T cells can be divided into three different cellular subsets with distinct expression levels of CD4 and CD8α. Double-positive T cells expressing CD8β are present in humans and dogs but absent in swine. Moreover, canine CD4(+)CD8(+) T cells can not only develop from CD4(+) single-positive T cells but also from CD8(+) single-positive T cells. Together, this places canine CD4(+)CD8(+) T cells closer to their human than porcine counterparts since human double-positive T cells also appear to be heterogeneous in their CD4 and CD8α expression and have both CD4(+) and CD8(+) T cells as progenitor cells. However, CD4(+) single-positive T cells are the more potent progenitors for canine double-positive T cells, whereas CD8(+) single-positive T cells are more potent progenitors for human double-positive T cells. Canine double-positive T cells have an activated phenotype and may have as yet unrecognized roles in vivo in immunity to infection or in inflammatory diseases such as chronic infection, autoimmunity, allergy, or cancer.
Collapse
Affiliation(s)
- Heiner von Buttlar
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany.
| | - Doris Bismarck
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany.
| | - Gottfried Alber
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany.
| |
Collapse
|
10
|
Chawansuntati K, Chotirosniramit N, Sugandhavesa P, Aurpibul L, Thetket S, Kosashunhanan N, Supindham T, Kaewthip O, Sroysuwan P, Sirisanthana T, Suparatpinyo K, Wipasa J. Low expression of activation marker CD69 and chemokine receptors CCR5 and CXCR3 on memory T cells after 2009 H1N1 influenza A antigen stimulation in vitro following H1N1 vaccination of HIV-infected individuals. Hum Vaccin Immunother 2015; 11:2253-65. [PMID: 26091502 DOI: 10.1080/21645515.2015.1051275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Unlike well-studied antibody responses to pandemic 2009 H1N1 influenza A virus vaccines in human immunodeficiency virus-infected (HIV+) individuals, less well understood are cell-mediated immune (CMI) responses to this antigen in this susceptible population. We investigated such influenza-specific CMI responses in 61 HIV+ individuals and in 20 HIV-negative (HIV-) healthy controls. Each was vaccinated with a single licensed dose of inactivated, split-virion vaccine comprised of the influenza A/California/7/2009 (H1N1) virus-like strain. Cells collected just prior to vaccination and at 1 and 3 months afterwards were stimulated in vitro with dialyzed vaccine antigen and assayed by flow cytometry for cytokines TNF-α, IFN-γ, IL-2, and IL-10, for degranulation marker CD107a, as well as phenotypes of memory T-cell subpopulations. Comparable increases of cytokine-producing and CD107a-expressing T cells were observed in both HIV+ subjects and healthy HIV-controls. However, by 3 months post-vaccination, in vitro antigen stimulation of peripheral blood mononuclear cells induced greater expansion in controls of both CD4 and CD8 central memory and effector memory T cells, as well as higher expression of the activation marker CD69 and chemokine receptors CCR5 and CXCR3 than in HIV+ subjects. We concluded CD4+ and CD8+ memory T cells produce cytokines at comparable levels in both groups, whereas the expression after in vitro stimulation of molecules critical for cell migration to infection sites are lower in the HIV+ than in comparable controls. Further immunization strategies against influenza are needed to improve the CMI responses in people living with HIV.
Collapse
|
11
|
Determination of lymphocyte subset reference ranges in peripheral blood of healthy adults by a dual-platform flow cytometry method. Immunol Lett 2015; 163:96-101. [DOI: 10.1016/j.imlet.2014.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 11/22/2022]
|
12
|
Kourkounti S, Papaizos V, Leuow K, Kordosis T, Antoniou C. Hepatitis A Vaccination and Immunological Parameters in HIV-Infected Patients. Viral Immunol 2013; 26:357-63. [DOI: 10.1089/vim.2012.0100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sofia Kourkounti
- Department of Dermatology and Venereology (AIDS Unit), A. Sygros Hospital, Athens, Greece
| | - Vassilios Papaizos
- Department of Dermatology and Venereology (AIDS Unit), A. Sygros Hospital, Athens, Greece
| | - Kirsten Leuow
- Department of Dermatology and Venereology (AIDS Unit), A. Sygros Hospital, Athens, Greece
| | - Theodoros Kordosis
- Department of Pathophysiology (AIDS Unit), Laikon General Hospital, Athens, Greece
| | - Christina Antoniou
- Department of Dermatology and Venereology (AIDS Unit), A. Sygros Hospital, Athens, Greece
| |
Collapse
|
13
|
Patel V, Jalah R, Kulkarni V, Valentin A, Rosati M, Alicea C, von Gegerfelt A, Huang W, Guan Y, Keele BF, Bess JW, Piatak M, Lifson JD, Williams WT, Shen X, Tomaras GD, Amara RR, Robinson HL, Johnson W, Broderick KE, Sardesai NY, Venzon DJ, Hirsch VM, Felber BK, Pavlakis GN. DNA and virus particle vaccination protects against acquisition and confers control of viremia upon heterologous simian immunodeficiency virus challenge. Proc Natl Acad Sci U S A 2013; 110:2975-80. [PMID: 23359688 PMCID: PMC3581900 DOI: 10.1073/pnas.1215393110] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously shown that macaques vaccinated with DNA vectors expressing SIVmac239 antigens developed potent immune responses able to reduce viremia upon high-dose SIVmac251 challenge. To further improve vaccine-induced immunity and protection, we combined the SIVmac239 DNA vaccine with protein immunization using inactivated SIVmac239 viral particles as protein source. Twenty-six weeks after the last vaccination, the animals were challenged intrarectally at weekly intervals with a titrated dose of the heterologous SIVsmE660. Two of DNA-protein coimmunized macaques did not become infected after 14 challenges, but all controls were infected by 11 challenges. Vaccinated macaques showed modest protection from SIVsmE660 acquisition compared with naïve controls (P = 0.050; stratified for TRIM5α genotype). Vaccinees had significantly lower peak (1.6 log, P = 0.0048) and chronic phase viremia (P = 0.044), with 73% of the vaccinees suppressing viral replication to levels below assay detection during the 40-wk follow-up. Vaccine-induced immune responses associated significantly with virus control: binding antibody titers and the presence of rectal IgG to SIVsmE660 Env correlated with delayed SIVsmE660 acquisition; SIV-specific cytotoxic T cells, prechallenge CD4(+) effector memory, and postchallenge CD8(+) transitional memory cells correlated with control of viremia. Thus, SIVmac239 DNA and protein-based vaccine protocols were able to achieve high, persistent, broad, and effective cellular and humoral immune responses able to delay heterologous SIVsmE660 infection and to provide long-term control of viremia. These studies support a role of DNA and protein-based vaccines for development of an efficacious HIV/AIDS vaccine.
Collapse
Affiliation(s)
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | | | | | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | | | - Wensheng Huang
- Department of Microbiology, and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yongjun Guan
- Department of Microbiology, and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Julian W. Bess
- AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Michael Piatak
- AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | | | | | | | - Rama R. Amara
- Yerkes National Primate Center, Emory University, Atlanta, GA 30329
| | | | | | | | | | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852; and
| | - Vanessa M. Hirsch
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20814
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | | |
Collapse
|
14
|
Xi Y, Day SL, Jackson RJ, Ranasinghe C. Role of novel type I interferon epsilon in viral infection and mucosal immunity. Mucosal Immunol 2012; 5:610-22. [PMID: 22617838 PMCID: PMC3481022 DOI: 10.1038/mi.2012.35] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 04/03/2012] [Indexed: 02/04/2023]
Abstract
Intranasal infection with vaccinia virus co-expressing interferon epsilon (VV-HIV-IFN-ε) was used to evaluate the role of IFN-ε in mucosal immunity. VV-HIV- IFN-ε infection induced a rapid VV clearance in lung that correlated with (i) an elevated lung VV-specific CD8(+)CD107a(+)IFN-γ(+) population expressing activation markers CD69/CD103, (ii) enhanced lymphocyte recruitment to lung alveoli with reduced inflammation, and (iii) an heightened functional/cytotoxic CD8(+)CD4(+) T-cell subset (CD3(hi)CCR7(hi)CD62L(lo)) in lung lymph nodes. These responses were different to that observed with intranasal VV-HA-IFN-α(4) or VV-HA-IFN-β infections. When IFN-ε was used in an intranasal/intramuscular heterologous HIV prime-boost immunization, elevated HIV-specific effector, but not memory CD8(+)T cells responses, were observed in spleen, genito-rectal nodes, and Peyer's patch. Homing marker α4β7 and CCR9 analysis indicated that unlike other type I IFNs, IFN-ε could promote migration of antigen-specific CD8(+)T cells to the gut. Our results indicate that IFN-ε has a unique role in the mucosae and most likely can be used to control local lung and/or gut infections (i.e., microbicide) such as tuberculosis, HIV-1, or sexually transmitted diseases.
Collapse
Affiliation(s)
- Yang Xi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
15
|
Jalah R, Patel V, Kulkarni V, Rosati M, Alicea C, Ganneru B, von Gegerfelt A, Huang W, Guan Y, Broderick KE, Sardesai NY, LaBranche C, Montefiori DC, Pavlakis GN, Felber BK. IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques. Hum Vaccin Immunother 2012; 8:1620-9. [PMID: 22894956 DOI: 10.4161/hv.21407] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intramuscular injection of macaques with an IL-12 expression plasmid (0.1 or 0.4 mg DNA/animal) optimized for high level of expression and delivered using in vivo electroporation, resulted in the detection of systemic IL-12 cytokine in the plasma. Peak levels obtained by day 4-5 post injection were paralleled by a rapid increase of IFN-γ, indicating bioactivity of the IL-12 cytokine. Both plasma IL-12 and IFN-γ levels were reduced to basal levels by day 14, indicating a short presence of elevated levels of the bioactive IL-12. The effect of IL-12 as adjuvant together with an SIVmac239 DNA vaccine was further examined comparing two groups of rhesus macaques vaccinated in the presence or absence of IL-12 DNA. The IL-12 DNA-adjuvanted group developed significantly higher SIV-specific cellular immune responses, including IFN-γ (+) Granzyme B (+) T cells, demonstrating increased levels of vaccine-induced T cells with cytotoxic potential, and this difference persisted for 6 mo after the last vaccination. Coinjection of IL-12 DNA led to increases in Gag-specific CD4 (+) and CD4 (+) CD8 (+) double-positive memory T cell subsets, whereas the Env-specific increases were mainly mediated by the CD8 (+) and CD4 (+) CD8 (+) double-positive memory T cell subsets. The IL-12 DNA-adjuvanted vaccine group developed higher binding antibody titers to Gag and mac251 Env, and showed higher and more durable neutralizing antibodies to heterologous SIVsmE660. Therefore, co-delivery of IL-12 DNA with the SIV DNA vaccine enhanced the magnitude and breadth of immune responses in immunized rhesus macaques, and supports the inclusion of IL-12 DNA as vaccine adjuvant.
Collapse
Affiliation(s)
- Rashmi Jalah
- Human Retrovirus Pathogenesis Section; Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pérez AR, Morrot A, Berbert LR, Terra-Granado E, Savino W. Extrathymic CD4+CD8+ lymphocytes in Chagas disease: possible relationship with an immunoendocrine imbalance. Ann N Y Acad Sci 2012; 1262:27-36. [DOI: 10.1111/j.1749-6632.2012.06627.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Chauhan NK, Vajpayee M, Mojumdar K, Singh R, Singh A. Study of CD4+CD8+ Double positive T-lymphocyte phenotype and function in Indian patients infected with HIV-1. J Med Virol 2012; 84:845-56. [DOI: 10.1002/jmv.23289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Frahm MA, Picking RA, Kuruc JD, McGee KS, Gay CL, Eron JJ, Hicks CB, Tomaras GD, Ferrari G. CD4+CD8+ T cells represent a significant portion of the anti-HIV T cell response to acute HIV infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:4289-96. [PMID: 22461689 DOI: 10.4049/jimmunol.1103701] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have revealed that HIV-infected individuals possess circulating CD4(+)CD8(+) double-positive (DP) T cells specific for HIV Ags. In the present study, we analyzed the proliferation and functional profile of circulating DP T cells from 30 acutely HIV-infected individuals and 10 chronically HIV-infected viral controllers. The acutely infected group had DP T cells that showed more proliferative capability and multifunctionality than did both their CD4(+) and CD8(+) T cells. DP T cells were found to exhibit greater proliferation and higher multifunctionality compared with CD4 T cells in the viral controller group. The DP T cell response represented 16% of the total anti-HIV proliferative response and >70% of the anti-HIV multifunctional response in the acutely infected subjects. Proliferating DP T cells of the acutely infected subjects responded to all HIV Ag pools with equal magnitude. Conversely, the multifunctional response was focused on the pool representing Nef, Rev, Tat, VPR, and VPU. Meanwhile, the controllers' DP T cells focused on Gag and the Nef, Rev, Tat, VPR, and VPU pool for both their proliferative and multifunctional responses. Finally, we show that the presence of proliferating DP T cells following all HIV Ag stimulations is well correlated with proliferating CD4 T cells whereas multifunctionality appears to be largely independent of multifunctionality in other T cell compartments. Therefore, DP T cells represent a highly reactive cell population during acute HIV infection, which responds independently from the traditional T cell compartments.
Collapse
Affiliation(s)
- Marc A Frahm
- Center for AIDS Research, Duke University Medical Center, Durham, NC 22710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Husain MM, Aggarwal R, Kumar D, Jameel S, Naik S. Effector T cells immune reactivity among patients with acute hepatitis E. J Viral Hepat 2011; 18:e603-8. [PMID: 21914082 DOI: 10.1111/j.1365-2893.2011.01489.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis in several developing countries. Information on cellular immune responses during acute hepatitis E is limited. We therefore studied peripheral blood mononuclear cells (PBMCs) from patients with acute hepatitis E and healthy adult subjects who lacked anti-HEV antibodies for enumeration of various T-cell subsets using flow cytometry and to assess HEV-specific T effector cell responses using interferon-gamma ELISPOT assays. The patients showed increased numbers of CD8(+) cells and CD4(+) CD8(+) cells compared with healthy controls. In addition, the proportion of PBMCs that produced interferon-gamma in response to recombinant HEV open reading frame (ORF) 2 and ORF 3 proteins were found to be higher in patients than in healthy controls. Using pools of 15-mer overlapping peptides corresponding to these recombinant proteins, the immunodominant regions in these proteins for interferon-gamma-producing cells were mapped to regions corresponding to amino acids 181-249 and 301-489 of HEV ORF2 protein. These data provide evidence for the activation of effector T cells during acute hepatitis E. These responses may play a role in viral clearance from the host in patients with HEV infection.
Collapse
Affiliation(s)
- M M Husain
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | |
Collapse
|
20
|
Giraldo NA, Bolaños NI, Cuellar A, Guzman F, Uribe AM, Bedoya A, Olaya N, Cucunubá ZM, Roa N, Rosas F, Velasco V, Puerta CJ, González JM. Increased CD4+/CD8+ double-positive T cells in chronic Chagasic patients. PLoS Negl Trop Dis 2011; 5:e1294. [PMID: 21886854 PMCID: PMC3160296 DOI: 10.1371/journal.pntd.0001294] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 07/19/2011] [Indexed: 01/08/2023] Open
Abstract
Background CD4+/CD8+ double positive (DP) T cells have been described in healthy individuals as well as in patients with autoimmune and chronic infectious diseases. In chronic viral infections, this cell subset has effector memory phenotype and displays antigen specificity. No previous studies of double positive T cells in parasite infections have been carried out. Methodology/Principal Findings Seventeen chronic chagasic patients (7 asymptomatic and 10 symptomatic) and 24 non-infected donors, including 12 healthy and 12 with non-chagasic cardiomyopathy donors were analyzed. Peripheral blood was stained for CD3, CD4, CD8, HLA-DR and CD38, and lymphocytes for intracellular perforin. Antigen specificity was assessed using HLA*A2 tetramers loaded with T. cruzi K1 or influenza virus epitopes. Surface expression of CD107 and intracellular IFN-γ production were determined in K1-specific DP T cells from 11 chagasic donors. Heart tissue from a chronic chagasic patient was stained for both CD8 and CD4 by immunochemistry. Chagasic patients showed higher frequencies of DP T cells (2.1%±0.9) compared with healthy (1.1%±0.5) and non-chagasic cardiomyopathy (1.2%±0.4) donors. DP T cells from Chagasic patients also expressed more HLA-DR, CD38 and perforin and had higher frequencies of T. cruzi K1-specific cells. IFN-γ production in K1-specific cells was higher in asymptomatic patients after polyclonal stimulation, while these cells tended to degranulate more in symptomatic donors. Immunochemistry revealed that double positive T cells infiltrate the cardiac tissue of a chagasic donor. Conclusions Chagasic patients have higher percentages of circulating double positive T cells expressing activation markers, potential effector molecules and greater class I antigenic specificity against T. cruzi. Although K1 tetramer positive DP T cell produced little IFN-γ, they displayed degranulation activity that was increased in symptomatic patients. Moreover, K1-specific DP T cells can migrate to the heart tissue. Chagas disease, produced by the blood parasite Trypanosoma cruzi, is considered a public health problem in Central and South America. Non sterile immunity can be achieved after acute infection. Parasite persistence can induce tissue damage in nearly 20% to 30% of chronically infected individuals. Indeed, chagasic cardiomyopathy is one of the consequences of the chronic infection. Antigen persistence and dysfunctional cellular immune response have been implicated in T. cruzi pathogenesis. Here, a higher frequency of circulating CD4+/CD8+ double positive T cells in chronic chagasic patients is reported as compared with non infected donors, including those with a non-chagasic cardiomyopathy. This cell subset also expressed more activation markers and stored more intracellular perforin. We have previously reported that CD8+ T cells from T. cruzi infected donors recognized the HLA-A*0201 restricted K1-peptide derived from the KMP-11 protein. Here, double positive T cells displayed higher percentages of recognition for the K1 peptide than single CD8+ T cells. These cells produce little IFN-γ, but display degranulation activity that was increased in the symptomatic group. Finally, double positive T cells can be localized in the heart tissue from a chronic chagasic donor.
Collapse
Affiliation(s)
- Nicolas A. Giraldo
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Natalia I. Bolaños
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Cuellar
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fanny Guzman
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Ana Maria Uribe
- Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Astrid Bedoya
- Grupo de Infección y Cáncer, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Olaya
- Instituto de Patología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Zulma M. Cucunubá
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Nubia Roa
- Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | - Concepción J. Puerta
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John M. González
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
21
|
HLA-DR+ CD38+ CD4+ T lymphocytes have elevated CCR5 expression and produce the majority of R5-tropic HIV-1 RNA in vivo. J Virol 2011; 85:10189-200. [PMID: 21813616 DOI: 10.1128/jvi.02529-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Percentages of activated T cells correlate with HIV-1 disease progression, but the underlying mechanisms are not fully understood. We hypothesized that HLA-DR(+) CD38(+) (DR(+) 38(+)) CD4(+) T cells produce the majority of HIV-1 due to elevated expression of CCR5 and CXCR4. In phytohemagglutinin (PHA)-stimulated CD8-depleted peripheral blood mononuclear cells (PBMC) infected with HIV-1 green fluorescent protein (GFP) reporter viruses, DR(-) 38(+) T cells constituted the majority of CCR5 (R5)-tropic (median, 62%) and CXCR4 (X4)-tropic HIV-1-producing cells (median, 61%), although cell surface CCR5 and CXCR4 were not elevated in this subset of cells. In lymph nodes from untreated individuals infected with R5-tropic HIV-1, percentages of CCR5(+) cells were elevated in DR(+) 38(+) CD4(+) T cells (median, 36.4%) compared to other CD4(+) T-cell subsets (median values of 5.7% for DR(-) 38(-) cells, 19.4% for DR(+) 38(-) cells, and 7.6% for DR(-) 38(+) cells; n = 18; P < 0.001). In sorted CD8(-) lymph node T cells, median HIV-1 RNA copies/10(5) cells was higher for DR(+) 38(+) cells (1.8 × 10(6)) than for DR(-) 38(-) (0.007 × 10(6)), DR(-) 38(+) (0.064 × 10(6)), and DR(+) 38(-) (0.18 × 10(6)) subsets (n = 8; P < 0.001 for all). After adjusting for percentages of subsets, a median of 87% of viral RNA was harbored by DR(+) 38(+) cells. Percentages of CCR5(+) CD4(+) T cells and concentrations of CCR5 molecules among subsets predicted HIV-1 RNA levels among CD8(-) DR/38 subsets (P < 0.001 for both). Median HIV-1 DNA copies/10(5) cells was higher in DR(+) 38(+) cells (5,360) than in the DR(-) 38(-) (906), DR(-) 38(+) (814), and DR(+) 38(-) (1,984) subsets (n = 7; P ≤ 0.031). Thus, DR(+) 38(+) CD4(+) T cells in lymph nodes have elevated CCR5 expression, are highly susceptible to infection with R5-tropic virus, and produce the majority of R5-tropic HIV-1. PBMC assays failed to recapitulate in vivo findings, suggesting limited utility. Strategies to reduce numbers of DR(+) 38(+) CD4(+) T cells may substantially inhibit HIV-1 replication.
Collapse
|
22
|
Nascimbeni M, Pol S, Saunier B. Distinct CD4+ CD8+ double-positive T cells in the blood and liver of patients during chronic hepatitis B and C. PLoS One 2011; 6:e20145. [PMID: 21647449 PMCID: PMC3102078 DOI: 10.1371/journal.pone.0020145] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/19/2011] [Indexed: 01/10/2023] Open
Abstract
CD4+ and CD8+ T cells, the main effectors of adaptive cellular immune responses, differentiate from immature, non-functional CD4+CD8+ double-positive T (DPT) cells in the thymus. Increased proportions of circulating DPT lymphocytes have been observed during acute viral infections; in chronic viral diseases, the role and repartition of extra-thymic DPT cells remain largely uncharacterized. We performed a phenotypic analysis of DPT cells in blood and liver from patients chronically infected by hepatitis C (HCV) or B (HBV) viruses. The highest percentages of DPT cells, predominantly CD4highCD8low, were observed in patients infected by HCV, while HBV-infected patients mostly displayed CD4lowCD8high and CD4highCD8high DPT cells. All proportions of DPT cells were higher in liver than in blood with, for each subpopulation referred to above, a correlation between their frequencies in these two compartments. In HCV patients, intra-hepatic DPT cells displayed more heterogeneous activation, differentiation and memory phenotypes than in the blood; most of them expressed CD1a, a marker of T cell development in the thymus. Ex vivo, the inoculation of liver slices with HCV produced in cell culture was accompanied by a disappearance of CD8high cells, suggesting a direct effect of the virus on the phenotype of DPT cells in the liver. Our results suggest that, in half of the patients, chronic HCV infection promotes the production of DPT cells, perhaps by their re-induction in the thymus and selection in the liver.
Collapse
Affiliation(s)
- Michelina Nascimbeni
- Faculty of Medicine, Paris-Descartes University, Paris, France
- Institut Cochin, UMR8104 of the Centre National de la Recherche Scientific (CNRS), Paris, France
- U1016 of the Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France
| | - Stanislas Pol
- Faculty of Medicine, Paris-Descartes University, Paris, France
- Institut Cochin, UMR8104 of the Centre National de la Recherche Scientific (CNRS), Paris, France
- U1016 of the Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France
- Hepatology Unit of Cochin Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Bertrand Saunier
- Faculty of Medicine, Paris-Descartes University, Paris, France
- Institut Cochin, UMR8104 of the Centre National de la Recherche Scientific (CNRS), Paris, France
- U1016 of the Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France
- * E-mail:
| |
Collapse
|
23
|
HIV-1 Nef disrupts intracellular trafficking of major histocompatibility complex class I, CD4, CD8, and CD28 by distinct pathways that share common elements. J Virol 2011; 85:6867-81. [PMID: 21543478 DOI: 10.1128/jvi.00229-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Nef protein is an important HIV virulence factor that promotes the degradation of host proteins to augment virus production and facilitate immune evasion. The best-characterized targets of Nef are major histocompatibility complex class I (MHC-I) and CD4, but Nef also has been reported to target several other proteins, including CD8β, CD28, CD80, CD86, and CD1d. To compare and contrast the effects of Nef on each protein, we constructed a panel of chimeric proteins in which the extracellular and transmembrane regions of the MHC-I allele HLA-A2 were fused to the cytoplasmic tails of CD4, CD28, CD8β, CD80, CD86, and CD1d. We found that Nef coprecipitated with and disrupted the expression of molecules with cytoplasmic tails from MHC-I HLA-A2, CD4, CD8β, and CD28, but Nef did not bind to or alter the expression of molecules with cytoplasmic tails from CD80, CD86, and CD1d. In addition, we used short interfering RNA (siRNA) knockdown and coprecipitation experiments to implicate AP-1 as a cellular cofactor for Nef in the downmodulation of both CD28 and CD8β. The interaction with AP-1 required for CD28 and CD8β differed from the AP-1 interaction required for MHC-I downmodulation in that it was mediated through the dileucine motif within Nef (LL(164,165)AA) and did not require the tyrosine binding pocket of the AP-1 μ subunit. In addition, we demonstrate a requirement for β-COP as a cellular cofactor for Nef that was necessary for the degradation of targeted molecules HLA-A2, CD4, and CD8. These studies provide important new information on the similarities and differences with which Nef affects intracellular trafficking and help focus future research on the best potential pharmaceutical targets.
Collapse
|