1
|
Li C, Shan S, Chen L, Afshari MJ, Wang H, Lu K, Kou D, Wang N, Gao Y, Liu C, Zeng J, Liu F, Gao M. Using Adaptive Imaging Parameters to Improve PEGylated Ultrasmall Iron Oxide Nanoparticles-Enhanced Magnetic Resonance Angiography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405719. [PMID: 39164979 PMCID: PMC11497041 DOI: 10.1002/advs.202405719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Indexed: 08/22/2024]
Abstract
The PEGylated ultrasmall iron oxide nanoparticles (PUSIONPs) exhibit longer blood residence time and better biodegradability than conventional gadolinium-based contrast agents (GBCAs), enabling prolonged acquisitions in contrast-enhanced magnetic resonance angiography (CE-MRA) applications. The image quality of CE-MRA is dependent on the contrast agent concentration and the parameters of the pulse sequences. Here, a closed-form mathematical model is demonstrated and validated to automatically optimize the concentration, echo time (TE), repetition time (TR) and flip angle (FA). The pharmacokinetic studies are performed to estimate the dynamic intravascular concentrations within 12 h postinjection, and the adaptive concentration-dependent sequence parameters are determined to achieve optimal signal enhancement during a prolonged measurement window. The presented model is tested on phantom and in vivo rat images acquired from a 3T scanner. Imaging results demonstrate excellent agreement between experimental measurements and theoretical predictions, and the adaptive sequence parameters obtain better signal enhancement than the fixed ones. The low-dose PUSIONPs (0.03 mmol kg-1 and 0.05 mmol kg-1) give a comparable signal intensity to the high-dose one (0.10 mmol kg-1) within 2 h postinjection. The presented mathematical model provides guidance for the optimization of the concentration and sequence parameters in PUSIONPs-enhanced MRA, and has great potential for further clinical translation.
Collapse
Affiliation(s)
- Cang Li
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Shanshan Shan
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueensland4072Australia
| | - Lei Chen
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Mohammad Javad Afshari
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Hongzhao Wang
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Kuan Lu
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Dandan Kou
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Ning Wang
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Yang Gao
- School of Computer Science and EngineeringCentral South UniversityChangsha410000China
| | - Chunyi Liu
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Feng Liu
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueensland4072Australia
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| |
Collapse
|
2
|
Reisi Zargari N, Ebrahimi F, Akhlaghi M, Beiki D, Abdi K, Abbasi MA, Ramezanpour S, Asghari SM. Novel Gd-DTPA-peptide for targeted breast tumor magnetic resonance imaging. Biomed Pharmacother 2024; 178:117189. [PMID: 39059353 DOI: 10.1016/j.biopha.2024.117189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The prevalence of breast cancer underscores the imperative for early diagnosis in guiding treatment decisions. This study introduces a novel contrast agent, Gd-DTPA-VGB3, derived from the peptide VGB3 targeting vascular endothelial growth factor receptor-1 (VEGFR1) and VEGFR2, to enhance the contrast of conventional drug Magnevist in breast tumor MRI. The MRI contrast agent was synthesized on rink amide resin via Fmoc strategy, incorporating amino acids, and coupling to diethylenetriaminepentaacetic acid (DTPA). Gadolinium (Gd)-DTPA-VGB3 displayed specific binding to VEGFR1/2 in a displacement binding assay. Gd-DTPA-VGB3 exhibited minimal cytotoxicity to normal MCF-10 cells while inhibiting 4T1 mammary carcinoma cell proliferation. Compared to Magnevist, Gd-DTPA-VGB3 demonstrated a 2.8-fold increase in contrast-to-noise ratio (CNR) (355 vs. 125). Gd-DTPA-VGB3 exhibited enhanced accumulation in 4T1 tumor-bearing mice, resulting in significant signal intensity improvement. The findings highlight Gd-DTPA-VGB3's specific binding to VEGFRs, substantiating its potential as a candidate for enhancing MRI contrast in breast cancer diagnostics.
Collapse
Affiliation(s)
| | - Fatemeh Ebrahimi
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Davood Beiki
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosrou Abdi
- Department of Radiopharmacy and Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abbasi
- Firoozabadi Hospital Clinical Research Development Unit (FHCRDU), Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Kanal E, Maki JH, Schramm P, Marti-Bonmati L. Evolving Characteristics of Gadolinium-Based Contrast Agents for MR Imaging: A Systematic Review of the Importance of Relaxivity. J Magn Reson Imaging 2024. [PMID: 38699938 DOI: 10.1002/jmri.29367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) are widely and routinely used to enhance the diagnostic performance of magnetic resonance imaging and magnetic resonance angiography examinations. T1 relaxivity (r1) is the measure of their ability to increase signal intensity in tissues and blood on T1-weighted images at a given dose. Pharmaceutical companies have invested in the design and development of GBCAs with higher and higher T1 relaxivity values, and "high relaxivity" is a claim frequently used to promote GBCAs, with no clear definition of what "high relaxivity" means, or general concurrence about its clinical benefit. To understand whether higher relaxivity values translate into a material clinical benefit, well-designed, and properly powered clinical studies are necessary, while mere in vitro measurements may be misleading. This systematic review of relevant peer-reviewed literature provides high-quality clinical evidence showing that a difference in relaxivity of at least 40% between two GBCAs results in superior diagnostic efficacy for the higher-relaxivity agent when this is used at the same equimolar gadolinium dose as the lower-relaxivity agent, or similar imaging performance when used at a lower dose. Either outcome clearly implies a relevant clinical benefit. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Emanuel Kanal
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Division of Emergency Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeffrey H Maki
- Department of Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Peter Schramm
- Department of Neuroradiology, University Luebeck and Universitaetsklinikum Schleswig-Holstein Campus Luebeck, Luebeck, Germany
| | - Luis Marti-Bonmati
- Department of Radiology and GIBI230 Research Group on Biomedical Imaging, Hospital Universitario y Politécnico de La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
4
|
Oh G, Moon Y, Moon WJ, Ye JC. Unpaired deep learning for pharmacokinetic parameter estimation from dynamic contrast-enhanced MRI without AIF measurements. Neuroimage 2024; 291:120571. [PMID: 38518829 DOI: 10.1016/j.neuroimage.2024.120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024] Open
Abstract
DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics-driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.
Collapse
Affiliation(s)
- Gyutaek Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, 120-1, Neungdong-ro, Gwangjin-gu, 05030, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, 120-1, Neungdong-ro, Gwangjin-gu, 05030, Seoul, Republic of Korea.
| | - Jong Chul Ye
- Kim Jaechul Graduate School of AI, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Zairov RR, Kornev TA, Akhmadeev BS, Dovzhenko AP, Vasilyev VA, Kholin KV, Nizameeva GR, Ismaev IE, Mukhametzyanov TA, Liubina АP, Voloshina AD, Mustafina AR. Expanding Mn 2+ loading capacity of BSA via mild non-thermal denaturing and cross-linking as a tool to maximize the relaxivity of water protons. Int J Biol Macromol 2024; 266:131338. [PMID: 38569987 DOI: 10.1016/j.ijbiomac.2024.131338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Development of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn2+ ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn2+ ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.0 ± 0.7 nm BSA-based nanoparticles (BSA-NPs) loaded with Mn2+ ions, which are manifested in aqueous solutions as negatively charged spheres with high colloid stability. The optimal loading of Mn2+ ions into BSA-NPs provides maximum values of longitudinal and transverse relaxivity at 98.9 and 133.6 mM-1 s-1, respectively, which are among the best known from the literature. The spin trap EPR method indicates that Mn2+ ions bound to BSA-NPs exhibit poor catalytic activity in the Fenton-like reaction. On the contrary, the presence of BSA-NPs has an antioxidant effect by preventing the accumulation of hydroxyl radicals produced by H2O2. The NPs exhibit remarkably low hemolytic activity and hemagglutination can be avoided at concentrations lower than 110 μM. Thus, BSA-NPs bound with Mn2+ ions are promising candidates for combining high contrast effect with biosafety and hemocompatibility.
Collapse
Affiliation(s)
- Rustem R Zairov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation.
| | - Timur A Kornev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Bulat S Akhmadeev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Alexey P Dovzhenko
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Vadim A Vasilyev
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Kirill V Kholin
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russian Federation
| | - Guliya R Nizameeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation; Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russian Federation
| | - Ildus E Ismaev
- A.N. Tupolev Kazan Research Technological University, Kazan 420015, Russia
| | - Timur A Mukhametzyanov
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Аnna P Liubina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Alexandra D Voloshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Asiya R Mustafina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|
6
|
Endrikat J, Gutberlet M, Barkhausen J, Schöckel L, Bhatti A, Harz C, Hoffmann KT. Clinical Efficacy of Gadobutrol: Review of Over 25 Years of Use Exceeding 100 Million Administrations. Invest Radiol 2024; 59:345-358. [PMID: 37972293 DOI: 10.1097/rli.0000000000001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
BACKGROUND Gadobutrol has been administered more than 100 million times worldwide, since February 1998, that is, over the last 25 years. Numerous clinical studies in a broad range of indications document the long-term experience with gadobutrol. OBJECTIVE The aim of this study was to provide a literature-based overview on gadobutrol's efficacy in 9 approved indications and use in children. MATERIALS AND METHODS Efficacy results in patients of all age groups including sensitivity, specificity, accuracy, and positive/negative predictive values were identified by a systematic literature search on Embase until December 31, 2022. Nine approved indications were considered: central nervous system (CNS), magnetic resonance angiography (MRA), breast, heart, prostate, kidney, liver, musculoskeletal, whole body, and various indications in children. RESULTS Sixty-five publications (10 phase III, 2 phase IV, 53 investigator-initiated studies) reported diagnostic efficacy results obtained from 7806 patients including 271 children, at 369 centers worldwide. Indication-specific sensitivity ranges were 59%-98% (CNS), 53%-100% (MRA), 80%-100% (breast), 64%-90% (heart), 64%-96% (prostate), 71-85 (kidney), 79%-100% (liver), 53%-98% (musculoskeletal), and 78%-100% (children). Indication-specific specificity ranges were 75%-100% (CNS), 64%-99% (MRA), 58%-98% (breast), and 47%-100% (heart). CONCLUSIONS The evaluated body of evidence, consisting of 65 studies with 7806 patients, including 271 children and 7535 adults, showed that gadobutrol is an efficacious magnetic resonance imaging contrast agent for all age groups in various approved indications throughout the whole body.
Collapse
Affiliation(s)
- Jan Endrikat
- From the Radiology, Bayer AG, Berlin, Germany (J.E., L.S., C.H.); Department of Gynecology, Obstetrics, and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany (J.E.); Department of Diagnostic and Interventional Radiology, University of Leipzig, Heart Center, Leipzig, Germany (M.G.); Department of Radiology and Nuclear Medicine, University Hospital Schleswig Holstein-Campus Luebeck, Luebeck, Germany (J.B.); Bayer US LLC, Benefit-Risk Management Pharmacovigilance, Whippany, NJ (A.B.); and Department of Neuroradiology, University of Leipzig, Leipzig, Germany (K.-T.H.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Ishida M, Yerly J, Ito H, Takafuji M, Nakamori S, Takase S, Ichiba Y, Komori Y, Dohi K, Piccini D, Bastiaansen JA, Stuber M, Sakuma H. Optimal Protocol for Contrast-enhanced Free-running 5D Whole-heart Coronary MR Angiography at 3T. Magn Reson Med Sci 2024; 23:225-237. [PMID: 36682776 PMCID: PMC11024717 DOI: 10.2463/mrms.tn.2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/11/2022] [Indexed: 01/20/2023] Open
Abstract
Free-running 5D whole-heart coronary MR angiography (MRA) is gaining in popularity because it reduces scanning complexity by removing the need for specific slice orientations, respiratory gating, or cardiac triggering. At 3T, a gradient echo (GRE) sequence is preferred in combination with contrast injection. However, neither the injection scheme of the gadolinium (Gd) contrast medium, the choice of the RF excitation angle, nor the dedicated image reconstruction parameters have been established for 3T GRE free-running 5D whole-heart coronary MRA. In this study, a Gd injection scheme, RF excitation angles of lipid-insensitive binominal off-resonance RF excitation (LIBRE) pulse for valid fat suppression and continuous data acquisition, and compressed-sensing reconstruction regularization parameters were optimized for contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence at 3T. Using this optimized protocol, contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence is feasible with good image quality at 3T.
Collapse
Affiliation(s)
- Masaki Ishida
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Haruno Ito
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | | | - Shiro Nakamori
- Department of Cardiology, Mie University Hospital, Tsu, Mie, Japan
| | - Shinichi Takase
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | | | | | - Kaoru Dohi
- Department of Cardiology, Mie University Hospital, Tsu, Mie, Japan
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Jessica A.M. Bastiaansen
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| |
Collapse
|
8
|
Sharrack N, Biglands JD, Broadbent DA, Kellman P, Chow K, Greenwood JP, Levelt E, Plein S, Buckley DL. The impact of water exchange on estimates of myocardial extracellular volume calculated using contrast enhanced T 1 measurements: A preliminary analysis in patients with severe aortic stenosis. Magn Reson Med 2024; 91:1637-1644. [PMID: 38041477 PMCID: PMC10872615 DOI: 10.1002/mrm.29956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Guidelines recommend measuring myocardial extracellular volume (ECV) using T1 -mapping before and 10-30 min after contrast agent administration. Data are then analyzed using a linear model (LM), which assumes fast water exchange (WX) between the ECV and cardiomyocytes. We investigated whether limited WX influences ECV measurements in patients with severe aortic stenosis (AS). METHODS Twenty-five patients with severe AS and 5 healthy controls were recruited. T1 measurements were made on a 3 T Siemens system using a multiparametric saturation-recovery single-shot acquisition (a) before contrast; (b) 4 min post 0.05 mmol/kg gadobutrol; and (c) 4 min, (d) 10 min, and (e) 30 min after an additional gadobutrol dose (0.1 mmol/kg). Three LM-based ECV estimates, made using paired T1 measurements (a and b), (a and d), and (a and e), were compared to ECV estimates made using all 5 T1 measurements and a two-site exchange model (2SXM) accounting for WX. RESULTS Median (range) ECV estimated using the 2SXM model was 25% (21%-39%) for patients and 26% (22%-29%) for controls. ECV estimated in patients using the LM at 10 min following a cumulative contrast dose of 0.15 mmol/kg was 21% (17%-32%) and increased significantly to 22% (19%-35%) at 30 min (p = 0.0001). ECV estimated using the LM was highest following low dose gadobutrol, 25% (19%-38%). CONCLUSION Current guidelines on contrast agent dose for ECV measurements may lead to underestimated ECV in patients with severe AS because of limited WX. Use of a lower contrast agent dose may mitigate this effect.
Collapse
Affiliation(s)
- Noor Sharrack
- Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John D Biglands
- Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Medical Physics & Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - David A Broadbent
- Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Medical Physics & Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelvin Chow
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Chicago, Illinois, USA
| | - John P Greenwood
- Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eylem Levelt
- Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sven Plein
- Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - David L Buckley
- Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Nicasy RJK, Huinink HP, Erich SJF, Adan OCG, Tomozeiu N. Ultra Fast Imaging NMR method for measuring fast transport processes in thin porous media. Magn Reson Imaging 2023; 103:61-74. [PMID: 37348740 DOI: 10.1016/j.mri.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Measuring moisture distributions during fast transport processes in thin porous media is a challenging task. In this paper, Ultra Fast Imaging (UFI) NMR is proposed as a valuable measurement technique for investigating moisture uptake in porous media by achieving a temporal resolution of 10 ms and spatial resolution between 14.5 and 18 μm. This paper gives a detailed explanation about the methodology and the interpretation of the signal intensity. It is shown that there exist specific T1- and T2- relaxation time conditions for performing UFI experiments with signal-to-noise ratios that are sufficiently high. In most cases, a contrast agent is required to optimize these relaxation times and achieve the optimal measurement conditions. In the first part of this paper, both CuSO4 and Clariscan are discussed as possible contrast agents. Furthermore, it is shown that the signal intensity can be linked to the moisture content for water based liquids. The second part of this paper covers penetration experiments on porous PVDF membranes. These measurements show that the technique is able to measure moisture profiles during fast capillary penetration and allows to extract moisture front positions. Those front positions follow a linear time behavior in PVDF membranes. Lastly the NMR-measurements showed similar results when compared to scanning absorptometry (ASA).
Collapse
Affiliation(s)
- R J K Nicasy
- Eindhoven University of Technology, Applied Physics Department, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands; Transport in Permeable Media group, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, the Netherlands
| | - H P Huinink
- Eindhoven University of Technology, Applied Physics Department, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands; Transport in Permeable Media group, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, the Netherlands; TNO Materials Solution, High Tech Campus 25, Eindhoven, the Netherlands.
| | - S J F Erich
- Eindhoven University of Technology, Applied Physics Department, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands; Organization of Applied Scientific Research, TNO, P.O. Box 49, Delft, 2600 AA, the Netherlands; Transport in Permeable Media group, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, the Netherlands
| | - O C G Adan
- Organization of Applied Scientific Research, TNO, P.O. Box 49, Delft, 2600 AA, the Netherlands
| | - N Tomozeiu
- Canon Production Printing, Research and Development, AM department, Venlo, the Netherlands; Transport in Permeable Media group, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, the Netherlands; Eindhoven Institute of Renewable Energy Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, the Netherlands
| |
Collapse
|
10
|
Peng Y, Li Y, Li L, Xie M, Wang Y, Butch CJ. Coating influence on inner shell water exchange: An underinvestigated major contributor to SPIONs relaxation properties. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102713. [PMID: 37839694 DOI: 10.1016/j.nano.2023.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are heavily studied as potential MRI contrast enhancing agents. Every year, novel coatings are reported which yield large increases in relaxivity compared to similar particles. However, the reason for the increased performance is not always well understood mechanistically. In this review, we attempt to relate these advances back to fundamental models of relaxivity, developed for chelated metal ions, primarily gadolinium. We focus most closely on the three-shell model which considers the relaxation of surface-bound, entrained, and bulk water molecules as three distinct contributions to total relaxation. Because SPIONs are larger, more complex, and entrain significantly more water than gadolinium-based contrast agents, we consider how to adapt the application of classical models to SPIONs in a predictive manner. By carefully considering models and previous results, a qualitative model of entrained water interactions emerges, based primarily on the contributions of core size, coating thickness, density, and hydrophilicity.
Collapse
Affiliation(s)
- Yusong Peng
- Department of Material Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Yunlong Li
- Department of Material Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Li Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Manman Xie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China.
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
11
|
Donatelli G, Cecchi P, Migaleddu G, Cencini M, Frumento P, D'Amelio C, Peretti L, Buonincontri G, Pasquali L, Tosetti M, Cosottini M, Costagli M. Quantitative T1 mapping detects blood-brain barrier breakdown in apparently non-enhancing multiple sclerosis lesions. Neuroimage Clin 2023; 40:103509. [PMID: 37717382 PMCID: PMC10514220 DOI: 10.1016/j.nicl.2023.103509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVES The disruption of the blood-brain barrier (BBB) is a key and early feature in the pathogenesis of demyelinating multiple sclerosis (MS) lesions and has been neuropathologically demonstrated in both active and chronic plaques. The local overt BBB disruption in acute demyelinating lesions is captured as signal hyperintensity in post-contrast T1-weighted images because of the contrast-related shortening of the T1 relaxation time. On the contrary, the subtle BBB disruption in chronic lesions is not visible at conventional radiological evaluation but it might be of clinical relevance. Indeed, persistent, subtle BBB leakage might be linked to low-grade inflammation and plaque evolution. Here we hypothesised that 3D Quantitative Transient-state Imaging (QTI) was able to reveal and measure T1 shortening (ΔT1) reflecting small amounts of contrast media leakage in apparently non-enhancing lesions (ANELs). MATERIALS AND METHODS Thirty-four patients with relapsing remitting MS were included in the study. All patients underwent a 3 T MRI exam of the brain including conventional sequences and QTI acquisitions (1.1 mm isotropic voxel) performed both before and after contrast media administration. For each patient, a ΔT1 map was obtained via voxel-wise subtraction of pre- and post- contrast QTI-derived T1 maps. ΔT1 values measured in ANELs were compared with those recorded in enhancing lesions and in the normal appearing white matter. A reference distribution of ΔT1 in the white matter was obtained from datasets acquired in 10 non-MS patients with unrevealing MR imaging. RESULTS Mean ΔT1 in ANELs (57.45 ± 48.27 ms) was significantly lower than in enhancing lesions (297.71 ± 177.52 ms; p < 0. 0001) and higher than in the normal appearing white matter (36.57 ± 10.53 ms; p < 0.005). Fifty-two percent of ANELs exhibited ΔT1 higher than those observed in the white matter of non-MS patients. CONCLUSIONS QTI-derived quantitative ΔT1 mapping enabled to measure contrast-related T1 shortening in ANELs. ANELs exhibiting ΔT1 values that deviate from the reference distribution in non-MS patients may indicate persistent, subtle, BBB disruption. Access to this information may be proved useful to better characterise pathology and objectively monitor disease activity and response to therapy.
Collapse
Affiliation(s)
- Graziella Donatelli
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Paolo Cecchi
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | | | - Matteo Cencini
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - Paolo Frumento
- Department of Political Sciences, University of Pisa, Pisa, Italy
| | - Claudio D'Amelio
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Peretti
- Imago7 Research Foundation, Pisa, Italy; Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Guido Buonincontri
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Livia Pasquali
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Mirco Cosottini
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Mauro Costagli
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
12
|
Shen Q, Lin C, Yao Q, Wang J, Zhou J, He L, Chen G, Hu X. Addition of gadolinium contrast to three-dimensional SSFP MR sequences improves the visibility of coronary artery anatomy in young children. Front Pediatr 2023; 11:1159347. [PMID: 37215588 PMCID: PMC10196256 DOI: 10.3389/fped.2023.1159347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Objective This study aims to compare the value of a gadolinium contrast-enhanced 1.5-T three-dimensional (3D) steady-state free precession (SSFP) sequence with that of a noncontrast 3D SSFP sequence for magnetic resonance coronary angiography in a pediatric population. Materials and methods Seventy-nine patients from 1 month to 18 years old participated in this study. A 3D SSFP coronary MRA at 1.5-T was applied before and after gadolinium-diethylenetriaminepentaaceticacid (DTPA) injection. The detection rates of coronary arteries and side branches were assessed by McNemar's χ2 test. The image quality, vessel length, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of the coronary arteries were analyzed by the Wilcoxon signed-rank test. The intra- and interobserver agreements were evaluated with a weighted kappa test or an intraclass correlation efficient test. Results A contrast-enhanced scan detected more coronary arteries than a noncontrast-enhanced scan in patients under 2 years old (P < 0.05). The SSFP sequence with contrast media detected more coronary artery side branches in patients younger than 5 years (P < 0.05). The image quality of all the coronary arteries was better after the injection of gadolinium-DTPA in children younger than 2 years (P < 0.05) but not significantly improved in children older than 2 years (P > 0.05). The contrast-enhanced 3D SSFP protocol detected longer lengths for the left anterior descending coronary artery in children younger than 2 years and the left circumflex coronary artery (LCX) in children younger than 5 years (P < 0.05). SNR and CNR of all the coronary arteries in children younger than 5 years and the LCX and right coronary artery in children older than 5 years enhanced after the injection of gadolinium-DTPA (P < 0.05). The intra- and interobserver agreements were high (0.803-0.998) for image quality, length, SNR, and CNR of the coronary arteries in both pre- and postcontrast groups. Conclusion The use of gadolinium contrast in combination with the 3D SSFP sequence is necessary for coronary imaging in children under 2 years of age and may be helpful in children between 2 and 5 years. Coronary artery visualization is not significantly improved in children older than 5 years.
Collapse
Affiliation(s)
- Quanli Shen
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Chengxiang Lin
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Qiong Yao
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Junbo Wang
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Lan He
- Heart Centre, Children’s Hospital of Fudan University, Shanghai, China
| | - Gang Chen
- Heart Centre, Children’s Hospital of Fudan University, Shanghai, China
| | - Xihong Hu
- Department of Radiology, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
13
|
Nyström NN, McRae SW, Martinez FM, Kelly JJ, Scholl TJ, Ronald JA. A Genetically Encoded Magnetic Resonance Imaging Reporter Enables Sensitive Detection and Tracking of Spontaneous Metastases in Deep Tissues. Cancer Res 2023; 83:673-685. [PMID: 36512633 DOI: 10.1158/0008-5472.can-22-2770] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Metastasis is the leading cause of cancer-related death. However, it remains a poorly understood aspect of cancer biology, and most preclinical cancer studies do not examine metastasis, focusing solely on the primary tumor. One major factor contributing to this paradox is a gap in available tools for accurate spatiotemporal measurements of metastatic spread in vivo. Here, our objective was to develop an imaging reporter system that offers sensitive three-dimensional (3D) detection of cancer cells at high resolutions in live mice. An organic anion-transporting polypeptide 1b3 (oatp1b3) was used as an MRI reporter gene, and its sensitivity was systematically optimized for in vivo tracking of viable cancer cells in a spontaneous metastasis model. Metastases with oatp1b3-MRI could be observed at the single lymph node level and tracked over time as cancer cells spread to multiple lymph nodes and different organ systems in individual animals. While initial single lesions were successfully imaged in parallel via bioluminescence, later metastases were largely obscured by light scatter from the initial node. Importantly, MRI could detect micrometastases in lung tissue comprised on the order of 1,000 cancer cells. In summary, oatp1b3-MRI enables longitudinal tracking of cancer cells with combined high resolution and high sensitivity that provides 3D spatial information and the surrounding anatomical context. SIGNIFICANCE An MRI reporter gene system optimized for tracking metastasis in deep tissues at high resolutions and able to detect spontaneous micrometastases in lungs of mice provides a useful tool for metastasis research.
Collapse
Affiliation(s)
- Nivin N Nyström
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Sean W McRae
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Francisco M Martinez
- Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - John J Kelly
- Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physics and Astronomy, Western University, London, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - John A Ronald
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
14
|
Lee HD, Grady CJ, Krell K, Strebeck C, Good NM, Martinez-Gomez NC, Gilad AA. A Novel Protein for the Bioremediation of Gadolinium Waste. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522788. [PMID: 36711778 PMCID: PMC9881998 DOI: 10.1101/2023.01.05.522788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several hundreds of tons of gadolinium-based contrast agents (GBCAs) are being dumped into the environment every year. Although macrocyclic GBCAs exhibit superior stability compared to their linear counterparts, we have found that the structural integrity of chelates are susceptible to ultraviolet light, regardless of configuration. In this study, we present a synthetic protein termed GLamouR that binds and reports gadolinium in an intensiometric manner. We then explore the extraction of gadolinium from GBCA-spiked artificial urine samples and investigate if the low picomolar concentrations reported in gadolinium-contaminated water sources pose a barrier for bioremediation. Based on promising results, we anticipate GLamouR can be used for detecting and mining REEs beyond gadolinium as well and hope to expand the biological toolbox for such applications.
Collapse
Affiliation(s)
- Harvey D. Lee
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Connor J. Grady
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Katie Krell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Cooper Strebeck
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Nathan M. Good
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - N. Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Assaf A. Gilad
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
15
|
Vymazal J, Kazda T, Novak T, Slanina P, Sroubek J, Klener J, Hrbac T, Syrucek M, Rulseh AM. Eighteen years' experience with tumor treating fields in the treatment of newly diagnosed glioblastoma. Front Oncol 2023; 12:1014455. [PMID: 36741707 PMCID: PMC9892904 DOI: 10.3389/fonc.2022.1014455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction The prognosis of glioblastoma remains unfavorable. TTFields utilize low intensity electric fields (frequency 150-300 kHz) that disrupt cellular processes critical for cancer cell viability and tumor progression. TTFields are delivered via transducer arrays placed on the patients' scalp. Methods: Between the years 2004 and 2022, 55 patients (20 female), aged 21.9-77.8 years (mean age 47.3±11.8 years; median 47.6 years) were treated with TTFields for newly-diagnosed GBM, and compared to 54 control patients (20 females), aged 27.0-76.7 years (mean age 51.4±12.2 years; median 51.7 years) (p=0.08). All patients underwent gross total or partial resection of GBM. One patient had biopsy only. When available, MGMT promoter methylation status and IDH mutation was detected. Results Patients on TTFields therapy demonstrated improvements in PFS and OS relative to controls (hazard ratio: 0.64, p=0.031; and 0.61, p=0.028 respectively). TTFields average time on therapy was 74.8% (median 82%): median PFS of these patients was 19.75 months. Seven patients with TTFields usage ≤60% (23-60%, mean 46.3%, median 53%) had a median PFS of 7.95 months (p=0.0356). Control patients with no TTFields exposure had a median PFS of 12.45 months. Median OS of TTF patients was 31.67 months compared to 24.80 months for controls. Discussion This is the most extensive study on newly-diagnosed GBM patients treated with TTFields, covering a period of 18 years at a single center and presenting not only data from clinical trials but also a group of 36 patients treated with TTFields as a part of routine clinical practice.
Collapse
Affiliation(s)
- Josef Vymazal
- Department of Radiology and Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czechia,*Correspondence: Josef Vymazal, ; Aaron M. Rulseh,
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Novak
- Department of Radiation Oncology, Central Military Hospital and Faculty Hospital Motol, Prague, Czechia
| | - Petr Slanina
- Department of Radiology and Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czechia
| | - Jan Sroubek
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czechia
| | - Jan Klener
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czechia
| | - Tomas Hrbac
- Department of Neurosurgery, Faculty Hospital Ostrava, Ostrava, Czechia
| | - Martin Syrucek
- Department of Pathology, Na Homolce Hospital, Prague, Czechia
| | - Aaron M. Rulseh
- Department of Radiology and Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czechia,*Correspondence: Josef Vymazal, ; Aaron M. Rulseh,
| |
Collapse
|
16
|
Zamecnik P, Israel B, Feuerstein J, Nagarajah J, Gotthardt M, Barentsz JO, Hambrock T. Ferumoxtran-10-enhanced 3-T Magnetic Resonance Angiography of Pelvic Arteries: Initial Experience. Eur Urol Focus 2022; 8:1802-1808. [PMID: 35337778 DOI: 10.1016/j.euf.2022.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Patients with renal impairment cannot undergo angiography because iodine and gadolinium contrast agents are contraindicated. Iron-containing ultrasmall superparamagnetic iron oxide particles, such as ferumoxtran-10, are not contraindicated in these patients. Thus, patients with renal failure can still undergo angiography with ferumoxtran-10. OBJECTIVE To evaluate the visibility of pelvic vessels with magnetic resonance angiography (MRA) using ferumoxtran-10 as contrast agent. DESIGN, SETTING, AND PARTICIPANTS Three hundred and eighty-one patients diagnosed with primary or recurrent prostate cancer underwent pelvic ferumoxtran-10 MRA. Eleven anatomical pelvic-vessel segments per patient were evaluated using qualitative and quantitative criteria for image quality (IQ), vessel visibility (VV), and the contrast-to-noise ratio (CNR). INTERVENTION Ferumoxtran-10-enhaced MRA. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS IQ, VV, and CNR were assessed on a 5-point scale for each data set/vessel segment (very poor, poor, moderate, good, and excellent). RESULTS AND LIMITATIONS IQ was good to excellent for 98.2% of the data sets and VV was good to excellent for 97.7% of all vessel segments. The mean CNR for all segments was 88.13 (standard deviation 4.22). Contrast bolus imaging cannot be performed with this technique, so it is impossible to visualize the arterial or venous phase separately. The timing of contrast administration is also a limitation, with MRA performed 1 d after contrast infusion. CONCLUSIONS Ferumoxtran-10 MRA showed excellent image quality and visibility for pelvic vessels. In addition, the homogeneity of the intraluminal contrast was superior. Patients with preterminal or terminal renal function can benefit from ferumoxtran-10 MRA if visualization of their pelvic vessels is required. PATIENT SUMMARY Magnetic resonance imaging of blood vessels using a contrast agent called ferumoxtran-10 is a promising technique for patients with impaired kidney function, as it provides high-quality visualization of blood vessels in the pelvis.
Collapse
Affiliation(s)
- Patrik Zamecnik
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Bas Israel
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - James Nagarajah
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jelle O Barentsz
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Hambrock
- Department of Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Lohrke J, Berger M, Frenzel T, Hilger CS, Jost G, Panknin O, Bauser M, Ebert W, Pietsch H. Preclinical Profile of Gadoquatrane: A Novel Tetrameric, Macrocyclic High Relaxivity Gadolinium-Based Contrast Agent. Invest Radiol 2022; 57:629-638. [PMID: 35703267 PMCID: PMC9444293 DOI: 10.1097/rli.0000000000000889] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this report was to characterize the key physicochemical, pharmacokinetic (PK), and magnetic resonance imaging (MRI) properties of gadoquatrane (BAY 1747846), a newly designed tetrameric, macrocyclic, extracellular gadolinium-based contrast agent (GBCA) with high relaxivity and stability. MATERIALS AND METHODS The r1-relaxivities of the tetrameric gadoquatrane at 1.41 and 3.0 T were determined in human plasma and the nuclear magnetic relaxation dispersion profiles in water and plasma. The complex stability was analyzed in human serum over 21 days at pH 7.4 at 37°C and was compared with the linear GBCA gadodiamide and the macrocyclic GBCA (mGBCA) gadobutrol. In addition, zinc transmetallation assay was performed to investigate the kinetic inertness. Protein binding and the blood-to-plasma ratio were determined in vitro using rat and human plasma. The PK profile was evaluated in rats (up to 7 days postinjection). Magnetic resonance imaging properties were investigated using a glioblastoma (GS9L) rat model. RESULTS The new chemical entity gadoquatrane is a macrocyclic tetrameric Gd complex with one inner sphere water molecule per Gd ( q = 1). Gadoquatrane showed high solubility in buffer (1.43 mol Gd/L, 10 mM Tris-HCl, pH 7.4), high hydrophilicity (logP -4.32 in 1-butanol/water), and negligible protein binding. The r1-relaxivity of gadoquatrane in human plasma per Gd of 11.8 mM -1 ·s -1 (corresponding to 47.2 mM -1 ·s -1 per molecule at 1.41 T at 37°C, pH 7.4) was more than 2-fold (8-fold per molecule) higher compared with established mGBCAs. Nuclear magnetic relaxation dispersion profiles confirmed the more than 2-fold higher r1-relaxivity in human plasma for the clinically relevant magnetic field strengths from 0.47 to 3.0 T. The complex stability of gadoquatrane at physiological conditions was very high. The observed Gd release after 21 days at 37°C in human serum was below the lower limit of quantification. Gadoquatrane showed no Gd 3+ release in the presence of zinc in the transmetallation assay. The PK profile (plasma elimination, biodistribution, recovery) was comparable to that of gadobutrol. In MRI, the quantitative evaluation of the tumor-to-brain contrast in the rat glioblastoma model showed significantly improved contrast enhancement using gadoquatrane compared with gadobutrol at the same Gd dose administered (0.1 mmol Gd/kg body weight). In comparison to gadoterate meglumine, similar contrast enhancement was reached with gadoquatrane with 75% less Gd dose. In terms of the molecule dose, this was reduced by 90% when compared with gadoterate meglumine. Because of its tetrameric structure and hence lower number of molecules per volume, all prepared formulations of gadoquatrane were iso-osmolar to blood. CONCLUSIONS The tetrameric gadoquatrane is a novel, highly effective mGBCA for use in MRI. Gadoquatrane provides favorable physicochemical properties (high relaxivity and stability, negligible protein binding) while showing essentially the same PK profile (fast extracellular distribution, fast elimination via the kidneys in an unchanged form) to established mGBCAs on the market. Overall, gadoquatrane is an excellent candidate for further clinical development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wolfgang Ebert
- Program Management and Operations, Pharmaceuticals, Bayer AG, Berlin, Germany
| | | |
Collapse
|
18
|
Chen S, An L, Yang S. Low-Molecular-Weight Fe(III) Complexes for MRI Contrast Agents. Molecules 2022; 27:molecules27144573. [PMID: 35889445 PMCID: PMC9324404 DOI: 10.3390/molecules27144573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fe(III) complexes have again attracted much attention for application as MRI contrast agents in recent years due to their high thermodynamic stability, low long-term toxicity, and large relaxivity at a higher magnetic field. This mini-review covers the recent progress on low-molecular-weight Fe(III) complexes, which have been considered as one of the promising alternatives to clinically used Gd(III)-based contrast agents. Two kinds of complexes including mononuclear Fe(III) complexes and multinuclear Fe(III) complexes are summarized in sequence, with a specific highlight of the structural relationships between the complexes and their relaxivity and thermodynamic stability. In additional, the future perspectives for the design of low-molecular-weight Fe(III) complexes for MRI contrast agents are suggested.
Collapse
Affiliation(s)
- Shangjun Chen
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China;
| | - Lu An
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China;
| | - Shiping Yang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China;
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China;
- Correspondence:
| |
Collapse
|
19
|
Mazaheri Y, Kim N, Lakhman Y, Jafari R, Vargas A, Otazo R. Dynamic contrast-enhanced MRI parametric mapping using high spatiotemporal resolution Golden-angle RAdial Sparse Parallel MRI and iterative joint estimation of the arterial input function and pharmacokinetic parameters. NMR IN BIOMEDICINE 2022; 35:e4718. [PMID: 35226774 PMCID: PMC9203940 DOI: 10.1002/nbm.4718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The aim of this work is to develop a data-driven quantitative dynamic contrast-enhanced (DCE) MRI technique using Golden-angle RAdial Sparse Parallel (GRASP) MRI with high spatial resolution and high flexible temporal resolution and pharmacokinetic (PK) analysis with an arterial input function (AIF) estimated directly from the data obtained from each patient. DCE-MRI was performed on 13 patients with gynecological malignancy using a 3-T MRI scanner with a single continuous golden-angle stack-of-stars acquisition and image reconstruction with two temporal resolutions, by exploiting a unique feature in GRASP that reconstructs acquired data with user-defined temporal resolution. Joint estimation of the AIF (both AIF shape and delay) and PK parameters was performed with an iterative algorithm that alternates between AIF and PK estimation. Computer simulations were performed to determine the accuracy (expressed as percentage error [PE]) and precision of the estimated parameters. PK parameters (volume transfer constant [Ktrans ], fractional volume of the extravascular extracellular space [ve ], and blood plasma volume fraction [vp ]) and normalized root-mean-square error [nRMSE] (%) of the fitting errors for the tumor contrast kinetic data were measured both with population-averaged and data-driven AIFs. On patient data, the Wilcoxon signed-rank test was performed to compare nRMSE. Simulations demonstrated that GRASP image reconstruction with a temporal resolution of 1 s/frame for AIF estimation and 5 s/frame for PK analysis resulted in an absolute PE of less than 5% in the estimation of Ktrans and ve , and less than 11% in the estimation of vp . The nRMSE (mean ± SD) for the dual temporal resolution image reconstruction and data-driven AIF was 0.16 ± 0.04 compared with 0.27 ± 0.10 (p < 0.001) with 1 s/frame using population-averaged AIF, and 0.23 ± 0.07 with 5 s/frame using population-averaged AIF (p < 0.001). We conclude that DCE-MRI data acquired and reconstructed with the GRASP technique at dual temporal resolution can successfully be applied to jointly estimate the AIF and PK parameters from a single acquisition resulting in data-driven AIFs and voxelwise PK parametric maps.
Collapse
Affiliation(s)
- Yousef Mazaheri
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nathanael Kim
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yulia Lakhman
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ramin Jafari
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
20
|
Synthesis, characterization and relaxivity validations of Gd(III) complex of DOTA tetrahydrazide as MRI contrast agent. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Cerne JW, Pathrose A, Singer AM, Moore JE, Serhal A, Aouad P, Umair M, Ragin A, Allen BD, Avery R, Markl M, Carr JC. MRA of the Supraaortic Vasculature: Comparison of Gadobutrol and Gadoterate Meglumine at 1.5 T. J Magn Reson Imaging 2021; 56:440-449. [PMID: 34953154 DOI: 10.1002/jmri.28044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Gadobutrol (GB) and gadoterate meglumine (GM) are contrast agents used for contrast-enhanced magnetic resonance angiography (CEMRA). Supraaortic vasculature (SAV) CEMRAs are used to evaluate stroke risk and neurologic symptoms. There is a need to compare the SAV CEMRA image quality obtained with GB and GM. PURPOSE To intra-individually compare MRA images obtained with equimolar GB and GM at 1.5 T in the SAV. STUDY TYPE Prospective, crossover. POPULATION Twenty-eight subjects (54 ± 13 years; 17 female). FIELD STRENGTH/SEQUENCE 1.5 T; three-dimensional (3D) gradient recalled echo. ASSESSMENT Quantitative image quality was measured by normalized signal intensity (SIn ) [SIn = SI blood/SD blood] and contrast ratio (CR) [CR = SI blood/SI muscle], determined by an observer (JWC) with 1 year of vascular imaging experience. Three radiologists (AS, PA, and MU) with (5, 5, and 6 years of) vascular imaging experience evaluated image quality by Likert-scale ratings (of image impression, wall conspicuity, and artifact absence). STATISTICAL TESTS SIn and CR were compared with paired t-tests or Wilcoxon signed-rank tests and Bland-Altman plots. Qualitative ratings were compared with Wilcoxon signed-rank test. RESULTS No significant difference in SIn was found between GB and GM. CRs with GB were significantly higher than GM at the right common carotid (6.9 ± 2.5 vs. 4.8 ± 1), left internal carotid (7.3 ± 2 vs. 4.4 ± 1.2), right internal carotid (7.7 ± 2.2 vs. 5 ± 1.1), and left vertebral (6.6 ± 2.2 vs. 4.5 ± 1.1) arteries. Bland-Altman plots showed relatively greater differences between GB and GM at higher CRs and SIn s. GM showed significantly higher artifact than GB (3.56 ± 0.52 vs. 3.36 ± 0.46) and significantly lower overall image quality (10.73 ± 1.45 vs. 11.26 ± 1.58) at the left vertebral artery. DATA CONCLUSION At 1.5 T and equimolar demonstration, GB (0.1 mL/kg, i.e., 0.1 mmol/kg) showed higher CRs in the SAV compared to GM (0.2 mL/kg, i.e., 0.1 mmol/kg) at most vessels. Subjective image quality was not significantly different between the two agents for most vessels. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- John W Cerne
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashitha Pathrose
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alyssa M Singer
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jackson E Moore
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University McCormick School of Engineering and Applied Science, Evanston, Illinois, USA
| | - Ali Serhal
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Pascale Aouad
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Muhammad Umair
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ann Ragin
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley D Allen
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ryan Avery
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University McCormick School of Engineering and Applied Science, Evanston, Illinois, USA
| | - James C Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
22
|
Ray LA, Pike M, Simon M, Iliff JJ, Heys JJ. Quantitative analysis of macroscopic solute transport in the murine brain. Fluids Barriers CNS 2021; 18:55. [PMID: 34876169 PMCID: PMC8650464 DOI: 10.1186/s12987-021-00290-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Understanding molecular transport in the brain is critical to care and prevention of neurological disease and injury. A key question is whether transport occurs primarily by diffusion, or also by convection or dispersion. Dynamic contrast-enhanced (DCE-MRI) experiments have long reported solute transport in the brain that appears to be faster than diffusion alone, but this transport rate has not been quantified to a physically relevant value that can be compared to known diffusive rates of tracers. METHODS In this work, DCE-MRI experimental data is analyzed using subject-specific finite-element models to quantify transport in different anatomical regions across the whole mouse brain. The set of regional effective diffusivities ([Formula: see text]), a transport parameter combining all mechanisms of transport, that best represent the experimental data are determined and compared to apparent diffusivity ([Formula: see text]), the known rate of diffusion through brain tissue, to draw conclusions about dominant transport mechanisms in each region. RESULTS In the perivascular regions of major arteries, [Formula: see text] for gadoteridol (550 Da) was over 10,000 times greater than [Formula: see text]. In the brain tissue, constituting interstitial space and the perivascular space of smaller blood vessels, [Formula: see text] was 10-25 times greater than [Formula: see text]. CONCLUSIONS The analysis concludes that convection is present throughout the brain. Convection is dominant in the perivascular space of major surface and branching arteries (Pe > 1000) and significant to large molecules (> 1 kDa) in the combined interstitial space and perivascular space of smaller vessels (not resolved by DCE-MRI). Importantly, this work supports perivascular convection along penetrating blood vessels.
Collapse
Affiliation(s)
- Lori A Ray
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA
| | - Martin Pike
- Advanced Imaging Research Center, Oregon Health and Sciences University, Portland, USA
| | - Matthew Simon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, USA
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, USA
- Denali Therapeutics, San Francisco, USA
| | - Jeffrey J Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, USA
| | - Jeffrey J Heys
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA.
| |
Collapse
|
23
|
Kuhn MJ, Patriarche JW, Patriarche D, Kirchin MA, Bona M, Pirovano G. The TRUTH confirmed: validation of an intraindividual comparison of gadobutrol and gadoteridol for imaging of glioblastoma using quantitative enhancement analysis. Eur Radiol Exp 2021; 5:46. [PMID: 34635965 PMCID: PMC8505590 DOI: 10.1186/s41747-021-00240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous intraindividual comparative studies evaluating gadobutrol and gadoteridol for contrast-enhanced magnetic resonance imaging (MRI) of brain tumours have relied on subjective image assessment, potentially leading to misleading conclusions. We used artificial intelligence algorithms to objectively compare the enhancement achieved with these contrast agents in glioblastoma patients. METHODS Twenty-seven patients from a prior study who received identical doses of 0.1 mmol/kg gadobutrol and gadoteridol (with appropriate washout in between) were evaluated. Quantitative enhancement (QE) maps of the normalised enhancement of voxels, derived from computations based on the comparison of contrast-enhanced T1-weighted images relative to the harmonised intensity on unenhanced T1-weighted images, were compared. Bland-Altman analysis, linear regression analysis and Pearson correlation coefficient (r) determination were performed to compare net QE and per-region of interest (per-ROI) average QE (net QE divided by the number of voxels). RESULTS No significant differences were observed for comparisons performed on net QE (mean difference -24.37 ± 620.8, p = 0.840, r = 0.989) or per-ROI average QE (0.0043 ± 0.0218, p = 0.313, r = 0.958). Bland-Altman analysis revealed better per-ROI average QE for gadoteridol-enhanced MRI in 19/27 (70.4%) patients although the mean difference (0.0043) was close to zero indicating high concordance and the absence of fixed bias. CONCLUSIONS The enhancement of glioblastoma achieved with gadoteridol and gadobutrol at 0.1 mmol/kg bodyweight is similar indicating that these agents have similar contrast efficacy and can be used interchangeably, confirming the results of a prior double-blind, randomised, intraindividual, crossover study.
Collapse
Affiliation(s)
- Matthew J Kuhn
- University of Illinois College of Medicine at Peoria, 221 NE Glen Oak Ave, Peoria, IL, 61636, USA. .,A.I. Analysis, Inc., 1425 Broadway #20-2656, Seattle, WA, 98122, USA.
| | | | | | - Miles A Kirchin
- Global Medical & Regulatory Affairs, Bracco Imaging SpA, Via Caduti di Marcinelle, 13, 20134, Milan, Italy
| | - Massimo Bona
- Global Medical & Regulatory Affairs, Bracco Imaging SpA, Via Caduti di Marcinelle, 13, 20134, Milan, Italy
| | - Gianpaolo Pirovano
- Global Medical & Regulatory Affairs, Bracco Diagnostics, Inc., 259 Prospect Plains Rd. Building H, Monroe Township, NJ, 08831, USA
| |
Collapse
|
24
|
Editorial Comment: Toward Meeting ACR-ASNR Guidelines for Reducing Gadolinium-Based Contrast Agent Dose in Brain MRI Examinations. AJR Am J Roentgenol 2021; 217:1205. [PMID: 34570589 DOI: 10.2214/ajr.21.26374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Clinical Efficacy of Reduced Dose Gadobutrol Versus Standard Dose Gadoterate for Contrast-Enhanced MRI of the CNS: An International Multicenter Prospective Crossover Trial (LEADER-75). AJR Am J Roentgenol 2021; 217:1195-1205. [PMID: 34133205 DOI: 10.2214/ajr.21.25924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Gadobutrol and gadoterate are widely used macrocyclic gadolinium-based contrast agents. Given gadobutrol's higher T1 relaxivity, reduced gadobutrol dose should achieve essentially equivalent diagnostic efficacy as standard gadoterate dose. Objective: To demonstrate that efficacy of 25%-reduced dose of gadobutrol (rd-gadobutrol) is non-inferior to 100%-standard-dose of gadoterate (sd-gadoterate) for contrast-enhanced MRI of the CNS. Methods: In this international, prospective, multicenter, open-label, cross-over trial (LEADER-75), adult patients with known or suspected CNS pathology underwent contrast-enhanced brain MRI with sd-gadoterate (0.1 mmol/kg); if an enhancing lesion was identified, a second MRI with rd-gadobutrol (0.075 mmol/kg) was performed within 15 days. Three radiologists independently reviewed images to score three primary efficacy measures (subjective lesion enhancement, lesion border delineation, lesion internal morphology); primary non-inferiority analysis used readers' mean scores. Non-inferiority of rd-gadobutrol to sd-gadoterate for primary efficacy measures was defined as difference in score between rd-gadobutrol and unenhanced images achieving at least 80% of difference in score between sd-gadoterate and unenhanced images. Post-hoc analysis was performed to directly compare contrast-enhanced images for equivalence. Secondary efficacy variables included number of lesions detected, reader confidence, diagnostic performance for malignancy, and reader preference in side-by-side comparison. Results: The efficacy analysis included 141 patients (78 men, 63 women; mean age, 58.5±13.5 years). Improvement of rd-gadobutrol over unenhanced images was non-inferior to improvement of sd-gadoterate over unenhanced images using 20% non-inferiority margin for all three primary efficacy measures using mean readings (p≤.025). In post-hoc analysis, mean reading for the three primary efficacy measures differed by less than 1% between rd-gadobutrol and sd-gadoterate, supporting equivalence of all measures using a narrow ±5% margin (p≤.025). Total lesions detected by mean reading was 301 for rd-gadobutrol versus 291 for sd-gadoterate. Mean confidence was 3.3±0.6 for rd-gadobutrol versus 3.3±0.6 for sd-gadoterate. Sensitivity (58.7%), specificity (91.8%), and accuracy (70.2%) for malignancy from majority reading were identical for rd-gadobutrol and sd-gadoterate. Reader preference was not different (95% CI [-0.10, 0.11]). Conclusion: A 25%-reduced dose of gadobutrol is non-inferior to sd-gadoterate for contrast-enhanced brain MRI. Clinical Impact: Use of rd-gadobutrol should be considered for brain MRI, particularly in patients undergoing multiple contrast-enhanced examinations.
Collapse
|
26
|
Xie J, Haeckel A, Hauptmann R, Ray IP, Limberg C, Kulak N, Hamm B, Schellenberger E. Iron(III)-tCDTA derivatives as MRI contrast agents: Increased T 1 relaxivities at higher magnetic field strength and pH sensing. Magn Reson Med 2021; 85:3370-3382. [PMID: 33538352 DOI: 10.1002/mrm.28664] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Low molecular weight iron(III) complex-based contrast agents (IBCA) including iron(III) trans-cyclohexane diamine tetraacetic acid [Fe(tCDTA)]- could serve as alternatives to gadolinium-based contrast agents in MRI. In search for IBCA with enhanced properties, we synthesized derivatives of [Fe(tCDTA)]- and compared their contrast effects. METHODS Trans-cyclohexane diamine tetraacetic acid (tCDTA) was chemically modified in 2 steps: first the monoanhydride of Trans-cyclohexane diamine tetraacetic acid was generated, and then it was coupled to amines in the second step. After purification, the chelators were analyzed by high-performance liquid chromatography, mass spectrometry, and NMR spectrometry. The chelators were complexed with iron(III), and the relaxivities of the complexes were measured at 0.94, 1.5, 3, and 7 Tesla. Kinetic stabilities of the complexes were analyzed spectrophotometrically and the redox properties by cyclic voltammetry. RESULTS Using ethylenediamine (en) and trans-1,4-diaminocyclohexane, we generated monomers and dimers of tCDTA: en-tCDTA, en-tCDTA-dimer, trans-1,4-diaminocyclohexane-tCDTA, and trans-1,4-diaminocyclohexane-tCDTA-dimer. The iron(III) complexes of these derivatives had similarly high stabilities as [Fe(tCDTA)]- . The iron(III) complexes of the trans-1,4-diaminocyclohexane derivatives had higher T1 relaxivities than [Fe(tCDTA)]- that increased with increasing magnetic field strengths and were highest at 6.8 L·mmol-1 ·s-1 per molecule for the dimer. Remarkably, the relaxivity of [Fe(en-tCDTA)]+ had a threefold increase from neutral pH toward pH6. CONCLUSION Four iron(III) complexes with similar stability in comparison to [Fe(tCDTA)]- were synthesized. The relaxivities of trans-1,4-diaminocyclohexane-tCDTA and trans-1,4-diaminocyclohexane-tCDTA-dimer complexes were in the same range as gadolinium-based contrast agents at 3 Tesla. The [Fe(en-tCDTA)]+ complex is a pH sensor at weakly acidic pH levels, which are typical for various cancer types.
Collapse
Affiliation(s)
- Jing Xie
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Akvile Haeckel
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Hauptmann
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christian Limberg
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nora Kulak
- Institute of Chemistry, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Bernd Hamm
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eyk Schellenberger
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Szomolanyi P, Frenzel T, Noebauer-Huhmann IM, Rohrer M, Trattnig S, Pietsch H, Endrikat J. Impact of concentration and dilution of three macrocyclic gadolinium-based contrast agents on MRI signal intensity at 1.5T and 3T and different pulse sequences: results of a phantom study in human plasma. Acta Radiol 2021; 62:51-57. [PMID: 32290676 DOI: 10.1177/0284185120915674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Many factors influence the increase in signal intensity (SI) provided by magnetic resonance imaging (MRI) contrast media. PURPOSE To assess the impact of different gadolinium concentrations and dilutions of three macrocyclic gadolinium-based contrast agents (GBCA) on SI. MATERIAL AND METHODS This phantom study investigated gadobutrol, gadoteridol, and gadoterate in human plasma of a healthy donor pool at 37 °C. Different molar concentrations served to mimic conditions typically relevant for steady-state imaging; different dilutions served to mimic influence on first-pass bolus imaging. For SI measurement at 1.5T and 3T, we used two Magnetom Scanners (Siemens), applying the T1-weighted sequences Flash 2D/3D and VIBE. Regions of interest were placed on the central slice of the test vials. RESULTS In the concentration series, gadobutrol showed the highest SI of all three GBCAs up to 2 mM, followed by gadoteridol and gadoterate. No major differences were seen between 1.5T and 3T. In the dilution series, gadobutrol showed the highest SI of all three GBCAs up to 10 mL/L. The highest effect was recorded with Flash 3D and VIBE at 3T. CONCLUSION SIs measured in phantoms using three macrocyclic GBCAs strongly depend on their relaxivity and on the local concentration. The latter can be influenced-when comparing dilutions-by their initial concentration in their formulation. Furthermore, the pulse sequences and the chosen parameters have essential influence. At steady-state concentrations (≤2 mM) and first-pass bolus dilutions (up to 10 ml/L), gadobutrol showed highest SIs, followed by gadoterate and gadoteridol.
Collapse
Affiliation(s)
- Pavol Szomolanyi
- High field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Iris M Noebauer-Huhmann
- High field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Siegfried Trattnig
- High field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | | | - Jan Endrikat
- Bayer AG, Berlin, Germany
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| |
Collapse
|
28
|
Amrahli M, Centelles M, Cressey P, Prusevicius M, Gedroyc W, Xu XY, So PW, Wright M, Thanou M. MR-labelled liposomes and focused ultrasound for spatiotemporally controlled drug release in triple negative breast cancers in mice. Nanotheranostics 2021; 5:125-142. [PMID: 33457192 PMCID: PMC7806456 DOI: 10.7150/ntno.52168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
Rationale: Image-guided, triggerable, drug delivery systems allow for precisely placed and highly localised anti-cancer treatment. They contain labels for spatial mapping and tissue uptake tracking, providing key location and timing information for the application of an external stimulus to trigger drug release. High Intensity Focused Ultrasound (HIFU or FUS) is a non-invasive approach for treating small tissue volumes and is particularly effective at inducing drug release from thermosensitive nanocarriers. Here, we present a novel MR-imageable thermosensitive liposome (iTSL) for drug delivery to triple-negative breast cancers (TNBC). Methods: A macrocyclic gadolinium-based Magnetic Resonance Imaging (MRI) contrast agent was covalently linked to a lipid. This was incorporated at 30 mol% into the lipid bilayer of a thermosensitive liposome that was also encapsulating doxorubicin. The resulting iTSL-DOX formulation was assessed for physical and chemical properties, storage stability, leakage of gadolinium or doxorubicin, and thermal- or FUS-induced drug release. Its effect on MRI relaxation time was tested in phantoms. Mice with tumours were used for studies to assess both tumour distribution and contrast enhancement over time. A lipid-conjugated near-infrared fluorescence (NIRF) probe was also included in the liposome to facilitate the real time monitoring of iTSL distribution and drug release in tumours by NIRF bioimaging. TNBC (MDA-MB-231) tumour-bearing mice were then used to demonstrate the efficacy at retarding tumour growth and increasing survival. Results: iTSL-DOX provided rapid FUS-induced drug release that was dependent on the acoustic power applied. It was otherwise found to be stable, with minimum leakage of drug and gadolinium into buffers or under challenging conditions. In contrast to the usually suggested longer FUS treatment we identified that brief (~3 min) FUS significantly enhanced iTSL-DOX uptake to a targeted tumour and triggered near-total release of encapsulated doxorubicin, causing significant growth inhibition in the TNBC mouse model. A distinct reduction in the tumours' average T1 relaxation times was attributed to the iTSL accumulation. Conclusions: We demonstrate that tracking iTSL in tumours using MRI assists the application of FUS for precise drug release and therapy.
Collapse
Affiliation(s)
- Maral Amrahli
- School of Cancer & Pharmaceutical Sciences, King's College London, U.K
| | - Miguel Centelles
- School of Cancer & Pharmaceutical Sciences, King's College London, U.K
| | - Paul Cressey
- School of Cancer & Pharmaceutical Sciences, King's College London, U.K
| | | | | | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, U.K
| | - Po-Wah So
- Department of Neuroimaging, King's College London, U.K
| | - Michael Wright
- School of Cancer & Pharmaceutical Sciences, King's College London, U.K
| | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, U.K
| |
Collapse
|
29
|
Zhang X, Zhou J, Gu Z, Zhang H, Gong Q, Luo K. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials 2020; 269:120492. [PMID: 33153757 DOI: 10.1016/j.biomaterials.2020.120492] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
In spite of a great improvement in medical health services and an increase in lifespan, we have witnessed a skyrocket increase in the incidence of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease), ischemic stroke, and epilepsy, which have seriously undermined the quality of life and substantially increased economic and societal burdens. Development of diagnostic methods for CNS disorders is still in the early stage, and the clinical outcomes suggest these methods are not ready for the challenges associated with diagnosis of CNS disorders, such as early detection, specific binding, sharp contrast, and continuous monitoring of therapeutic interventions. Another challenge is to overcome various barrier structures during delivery of diagnostic agents, especially the blood-brain barrier (BBB). Fortunately, utilization of nanomaterials has been pursued as a potential and promising strategy to address these challenges. This review will discuss anatomical and functional structures of BBB and transport mechanisms of nanomaterials across the BBB, and special emphases will be placed on the state-of-the-art advances in the development of nanomedicines from a variety of nanomaterials for diagnosis of CNS disorders. Meanwhile, current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Valkovič L, Lau JYC, Abdesselam I, Rider OJ, Frollo I, Tyler DJ, Rodgers CT, Miller JJJ. Effects of contrast agents on relaxation properties of 31P metabolites. Magn Reson Med 2020; 85:1805-1813. [PMID: 33090502 DOI: 10.1002/mrm.28541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/22/2020] [Accepted: 09/14/2020] [Indexed: 11/10/2022]
Abstract
PURPOSE Phosphorous MR spectroscopy (31P-MRS) forms a powerful, non-invasive research tool to quantify the energetics of the heart in diverse patient populations. 31P-MRS is frequently applied alongside other radiological examinations, many of which use various contrast agents that shorten relaxation times of water in conventional proton MR, for a better characterisation of cardiac function, or following prior computed tomography (CT). It is, however, unknown whether these agents confound 31P-MRS signals, for example, 2,3-diphosphoglycerate (2,3-DPG). METHODS In this work, we quantitatively assess the impact of non-ionic, low osmolar iodinated CT contrast agent (iopamidol/Niopam), gadolinium chelates (linear gadopentetic acid dimeglumine/Magnevist and macrocyclic gadoterate meglumine/Dotarem) and superparamagnetic iron oxide nanoparticles (ferumoxytol/Feraheme) on the nuclear T1 and T2 of 31P metabolites (ie, 2,3-DPG), and 1H in water in live human blood and saline phantoms at 11.7 T. RESULTS Addition of all contrast agents led to significant shortening of all relaxation times in both 1H and 31P saline phantoms. On the contrary, the T1 relaxation time of 2,3-DPG in blood was significantly shortened only by Magnevist (P = .03). Similarly, the only contrast agent that influenced the T2 relaxation times of 2,3-DPG in blood samples was ferumoxytol (P = .02). CONCLUSION Our results show that, unlike conventional proton MR, phosphorus MRS is unconfounded in patients who have had prior CT with contrast, not all gadolinium-based contrast agents influence 31P-MRS data in vivo, and that ferumoxytol is a promising contrast agent for the reduction in 31P-MRS blood-pool signal.
Collapse
Affiliation(s)
- Ladislav Valkovič
- Oxford Centre for Clinical MR Research (OCMR), RDM Cardiovascular Medicine, University of Oxford, Oxford, UK
- Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Justin Y C Lau
- Oxford Centre for Clinical MR Research (OCMR), RDM Cardiovascular Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ines Abdesselam
- Oxford Centre for Clinical MR Research (OCMR), RDM Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Oliver J Rider
- Oxford Centre for Clinical MR Research (OCMR), RDM Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Ivan Frollo
- Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Damian J Tyler
- Oxford Centre for Clinical MR Research (OCMR), RDM Cardiovascular Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Christopher T Rodgers
- Oxford Centre for Clinical MR Research (OCMR), RDM Cardiovascular Medicine, University of Oxford, Oxford, UK
- The Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Jack J J Miller
- Oxford Centre for Clinical MR Research (OCMR), RDM Cardiovascular Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Richard G, Noll C, Archambault M, Lebel R, Tremblay L, Ait-Mohand S, Guérin B, Blondin DP, Carpentier AC, Lepage M. Contribution of perfusion to the 11 C-acetate signal in brown adipose tissue assessed by DCE-MRI and 68 Ga-DOTA PET in a rat model. Magn Reson Med 2020; 85:1625-1642. [PMID: 33010059 DOI: 10.1002/mrm.28535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/15/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Determine if dynamic contrast enhanced (DCE) -MRI and/or 68 gallium 1,4,7,10-tetraazacyclododecane N, N', N″, N‴-tretraacetic acid (68 Ga-DOTA) positron emission tomography (PET) can assess perfusion in rat brown adipose tissue (BAT). Evaluate changes in perfusion between cold-stimulated and heat-inhibited BAT. Determine if the 11 C-acetate pharmacokinetic model can be constrained with perfusion information to improve assessment of BAT oxidative metabolism. METHODS Rats were split into three groups. In group 1 (N = 6), DCE-MRI with gadobutrol was compared directly to 68 Ga-DOTA PET following exposure to 10 °C for 48 h. 11 C-Acetate PET was also performed to assess oxidation. In group 2 (N = 4), only 68 Ga-DOTA PET was acquired following exposure to 10 °C for 48 h. Finally, in group 3 (N = 10), perfusion was assessed with DCE-MRI in rats exposed to 10 °C or 30 °C for 48 h, and oxidation was measured with 11 C-acetate. Perfusion was quantified with a two-compartment pharmacokinetic model, while oxidation was assessed by a four-compartment model. RESULTS DCE-MRI and 68 Ga-DOTA PET provided similar perfusion measures, but a decrease in the perfusion signal was noted with longer imaging sessions. Exposure to 10 °C or 30 °C did not affect the perfusion measures, but the 11 C-acetate signal increased in BAT at 10 °C. Without prior information about blood volume, the 11 C-acetate compartment model overestimated blood volume and underestimated oxidation in 10 °C BAT. CONCLUSION Precise assessment of oxidation via 11 C-acetate PET requires prior information about blood volume which can be obtained by DCE-MRI or 68 Ga-DOTA PET. Since perfusion can change rapidly, simultaneous PET-MRI would be preferred.
Collapse
Affiliation(s)
- Gabriel Richard
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Archambault
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Réjean Lebel
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luc Tremblay
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Samia Ait-Mohand
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Lepage
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
32
|
Zanardo M, Sardanelli F, Rainford L, Monti CB, Murray JG, Secchi F, Cradock A. Technique and protocols for cardiothoracic time-resolved contrast-enhanced magnetic resonance angiography sequences: a systematic review. Clin Radiol 2020; 76:156.e9-156.e18. [PMID: 33008622 DOI: 10.1016/j.crad.2020.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
AIM To review contrast medium administration protocols used for cardiothoracic applications of time-resolved, contrast-enhanced magnetic resonance angiography (MRA) sequences. MATERIALS AND METHODS A systematic search of the literature (Medline/EMBASE) was performed to identify articles utilising time-resolved MRA sequences, focusing on type of sequence, adopted technical parameters, contrast agent (CA) issues, and acquisition workflow. Study design, year of publication, population, magnetic field strength, type, dose, and injection parameters of CA, as well as technical parameters of time-resolved MRA sequences were extracted. RESULTS Of 117 retrieved articles, 16 matched the inclusion criteria. The study design was prospective in 9/16 (56%) articles, and study population ranged from 5 to 185 patients, for a total of 506 patients who underwent cardiothoracic time-resolved MRA. Magnetic field strength was 1.5 T in 13/16 (81%), and 3 T in 3/16 (19%) articles. The administered CA was gadobutrol (Gadovist) in 6/16 (37%) articles, gadopentetate dimeglumine (Magnevist) in 5/16 (31%), gadobenate dimeglumine (MultiHance) in 2/16 (13%), gadodiamide (Omniscan) in 2/16 (13%), gadofosveset trisodium (Ablavar, previously Vasovist) in 1/16 (6%). CA showed highly variable doses among studies: fixed amount or based on patient body weight (0.02-0.2 mmol/kg) and was injected with a flow rate ranging 1-5 ml/s. Sequences were TWIST in 13/16 (81%), TRICKS in 2/16 (13%), and CENTRA 1/16 articles (6%). CONCLUSION Time-resolved MRA sequences were adopted in different clinical settings with a large spectrum of technical approaches, mostly in association with different CA dose, type, and injection method. Further studies in relation to specific clinical indications are warranted to provide a common standardised acquisition protocol.
Collapse
Affiliation(s)
- M Zanardo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy.
| | - F Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy
| | - L Rainford
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - C B Monti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - J G Murray
- Department of Radiology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - F Secchi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy
| | - A Cradock
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
33
|
Arai AE, Schulz-Menger J, Berman D, Mahrholdt H, Han Y, Bandettini WP, Gutberlet M, Abraham A, Woodard PK, Selvanayagam JB, McCann GP, Hamilton-Craig C, Schoepf UJ, San Tan R, Kramer CM, Friedrich MG, Haverstock D, Liu Z, Brueggenwerth G, Bacher-Stier C, Santiuste M, Pennell DJ, Pennell D, Schulz-Menger J, Mahrholdt H, Gutberlet M, Kramer U, von der Recke G, Nassenstein K, Tillmanns C, Taupitz M, Pache G, Mohrs O, Lotz J, Ko SM, Choo KS, Sung YM, Kang JW, Muzzarelli S, Valeti U, McCann G, Binukrishnam S, Croisille P, Jacquier A, Cowan B, Arai A, Berman D, Shah D, Bandettini WP, Han Y, Woodard P, Avery R, Schoepf J, Carr J, Kramer C, Flamm S, Harsinghani M, Lerakis S, Kim R, Raman S, Marcotte F, Islam A, Friedrich M, Abraham A, Selvanayagam J, Hamilton-Craig C, Chong WK, San Lynette Teo L, San Tan R. Gadobutrol-Enhanced Cardiac Magnetic Resonance Imaging for Detection of Coronary Artery Disease. J Am Coll Cardiol 2020; 76:1536-1547. [DOI: 10.1016/j.jacc.2020.07.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 11/26/2022]
|
34
|
|
35
|
Signal Enhancement and Enhancement Kinetics of Gadobutrol, Gadoteridol, and Gadoterate Meglumine in Various Body Regions. Invest Radiol 2020; 55:367-373. [DOI: 10.1097/rli.0000000000000645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Kapre R, Zhou J, Li X, Beckett L, Louie AY. A novel gamma GLM approach to MRI relaxometry comparisons. Magn Reson Med 2020; 84:1592-1604. [PMID: 32048764 PMCID: PMC7317199 DOI: 10.1002/mrm.28192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To demonstrate that constant coefficient of variation (CV), but nonconstant absolute variance in MRI relaxometry (T1 , T2 , R1 , R2 ) data leads to erroneous conclusions based on standard linear models such as ordinary least squares (OLS). We propose a gamma generalized linear model identity link (GGLM-ID) framework that factors the inherent CV into parameter estimates. We first examined the effects on calculations of contrast agent relaxivity before broadening to other applications such as analysis of variance (ANOVA) and liver iron content (LIC). METHODS Eight models including OLS and GGLM-ID were initially fit to data obtained on sulfated dextran iron oxide (SDIO) nanoparticles. Both a resampling simulation on the data as well as two separate Monte Carlo simulations (with and without concentration error) were performed to determine mean square error (MSE) and type I error rate. We then evaluated the performance of OLS/GGLM-ID on R1 repeatability and LIC data sets. RESULTS OLS had an MSE of 4-5× that of GGLM-ID as well as a type I error rate of 20-30%, whereas GGLM-ID was near the nominal 5% level in the relaxivity study. Only OLS found statistically significant effects of MRI facility on relaxivity in an R1 repeatability study, but no significant differences were found in a resampling, whereas GGLM was more consistent. GGLM-ID was also superior to OLS for modeling LIC. CONCLUSIONS OLS leads to erroneous conclusions when analyzing MRI relaxometry data. GGLM-ID factors in the inherent CV of an MRI experiment, leading to more reproducible conclusions.
Collapse
Affiliation(s)
- Rohan Kapre
- Department of Biomedical Engineering, University of California, Davis, CA.,Biostatistics Graduate Group, University of California, Davis, CA
| | - Junhan Zhou
- Chemistry Graduate Group, University of California, Davis, CA
| | - Xinzhe Li
- Department of Biomedical Engineering, University of California, Davis, CA
| | - Laurel Beckett
- Biostatistics Graduate Group, University of California, Davis, CA
| | - Angelique Y Louie
- Department of Biomedical Engineering, University of California, Davis, CA.,Chemistry Graduate Group, University of California, Davis, CA
| |
Collapse
|
37
|
Eder J, Szomolanyi P, Schmid-Schwap M, Bristela M, Skolka A, Pittschieler E, Piehslinger E, Trattnig S. Early diagnosis of degenerative changes in the articular/fibrocartilaginous disc of the temporomandibular joint in patients with temporomandibular disorders using delayed gadolinium-enhanced MRI at 3 Tesla - preliminary results. Magn Reson Imaging 2019; 67:24-27. [PMID: 31843417 DOI: 10.1016/j.mri.2019.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) is a quantitative method for assessment of glycosaminoglycan content in connective tissues. We hypothesize that the early diagnosis of degenerative changes in the temporomandibular joint could be diagnosed using dGEMRIC technique. PURPOSE To test the compositional MRI technique, dGEMRIC, at 3 Tesla to diagnosis early the degenerative changes in the fibrocartilaginous disc of the temporomandibular joint (TMJ) in patients with temporomandibular disorders (TMD) and to compare the dGEMRIC index of patients to the healthy volunteers. METHODS Six volunteers (two men, four women; 20.8÷28.1 years) and eleven patients (22 TMJs, seven women, four men; 24÷54 years) were recruited for this prospective trial. Only patients with no morphological abnormality on MRI and without disc dislocations were included. Volunteers were used as a control group. The PD-weighted FSE sequence and the 3D GRE (DESS) sequence protocols were performed for morphological assessment. The Inversion recovery (IR) sequence was performed for T1 relaxation time measurements and intra-venous (IV) contrast agent administration was used according to the dGEMRIC protocol. T1 maps were calculated offline and ROIs were drawn on TMJ discs by a specialist trained in TMD disorders. Statistical evaluation was performed by ANOVA and correlations were calculated. RESULTS The difference between the dGEMRIC values in the TMJ articular discs of the patients and the volunteers was statistically significant (P = .019). After contrast agent administration the T1 values dropped in both groups. In patient group was the T1 drop stronger (-54% from initial pre-contrast value), while in control group was the T1 drop less pronounced (-46% from initial pre-contrast value). CONCLUSIONS dGEMRIC seems to be a useful, compositional, quantitative method, suitable also for small joints, such as the articular disc of the TMJ. The results of the dGEMRIC index in the articular disc of the TMJ imply a lower GAG content in patients with TMJ disorders.
Collapse
Affiliation(s)
- Jaryna Eder
- Division of Prosthodontics, University Clinic of Dentistry Vienna, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.
| | - Pavol Szomolanyi
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, 84219 Bratislava, Slovakia
| | - Martina Schmid-Schwap
- Division of Prosthodontics, University Clinic of Dentistry Vienna, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Margit Bristela
- Division of Prosthodontics, University Clinic of Dentistry Vienna, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Astrid Skolka
- Division of Prosthodontics, University Clinic of Dentistry Vienna, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Elisabeth Pittschieler
- Private practice for orthodontics and craniomandibular disorders, Reichsratsstraße 5/4a1010, Vienna, Austria
| | - Eva Piehslinger
- Division of Prosthodontics, University Clinic of Dentistry Vienna, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Siegfried Trattnig
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; CD Laboratory for Molecular Clinical MR Imaging, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
38
|
de Boer A, Harteveld AA, Pieters TT, Blankestijn PJ, Bos C, Froeling M, Joles JA, Verhaar MC, Leiner T, Hoogduin H. Decreased native renal T 1 up to one week after gadobutrol administration in healthy volunteers. J Magn Reson Imaging 2019; 52:622-631. [PMID: 31799793 PMCID: PMC7496302 DOI: 10.1002/jmri.27014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
Background Gadolinium‐based contrast agents (GBCAs) are widely used in MRI, despite safety concerns regarding deposition in brain and other organs. In animal studies gadolinium was detected for weeks after administration in the kidneys, but this has not yet been demonstrated in humans. Purpose To find evidence for the prolonged presence of gadobutrol in the kidneys in healthy volunteers. Study Type Combined retrospective and prospective analysis of a repeatability study. Population Twenty‐three healthy volunteers with normal renal function (12 women, age range 40–76 years), of whom 21 were used for analysis. Field Strength/Sequence Inversion recovery‐based T1 map at 3T. Assessment T1 maps were obtained twice with a median interval of 7 (range: 4–16) days. The T1 difference (ΔT1) between both scans was compared between the gadolinium group (n = 16, 0.05 mmol/kg gadobutrol administered after T1 mapping during both scan sessions) and the control group (n = 5, no gadobutrol). T1 maps were analyzed separately for cortex and medulla. Statistical Tests Mann–Whitney U‐tests to detect differences in ΔT1 between groups and linear regression to relate time between scans and estimated glomerular filtration rate (eGFR) to ΔT1. Results ΔT1 differed significantly between the gadolinium and control group: median ΔT1 cortex –98 vs. 7 msec (P < 0.001) and medulla –68 msec vs. 19 msec (P = 0.001), respectively. The bias corresponds to renal gadobutrol concentrations of 8 nmol/g tissue (cortex) and 4 nmol/g tissue (medulla), ie, ~2.4 μmol for both kidneys (0.05% of original dose). ΔT1 correlated in the gadolinium group with duration between acquisitions for both cortex (regression coefficient (β) 16.5 msec/day, R2 0.50, P < 0.001) and medulla (β 11.5 msec/day, R2 0.32, P < 0.001). Medullary ΔT1 correlated with eGFR (β 1.13 msec/(ml/min) R2 0.25, P = 0.008). Data Conclusion We found evidence of delayed renal gadobutrol excretion after a single contrast agent administration in subjects with normal renal function. Even within this healthy population, elimination delay increased with decreasing kidney function. Level of Evidence: 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;52:622–631.
Collapse
Affiliation(s)
- Anneloes de Boer
- Department of Radiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Anita A Harteveld
- Department of Radiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Tobias T Pieters
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Peter J Blankestijn
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Clemens Bos
- Department of Radiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Hans Hoogduin
- Department of Radiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| |
Collapse
|