1
|
Chaher N, Lacerda S, Digilio G, Padovan S, Gao L, Lavin B, Stefania R, Velasco C, Cruz G, Prieto C, Botnar RM, Phinikaridou A. Non-invasive in vivo imaging of changes in Collagen III turnover in myocardial fibrosis. NPJ IMAGING 2024; 2:33. [PMID: 39301014 PMCID: PMC11408249 DOI: 10.1038/s44303-024-00037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Heart failure (HF) affects 64 million people globally with enormous societal and healthcare costs. Myocardial fibrosis, characterised by changes in collagen content drives HF. Despite evidence that collagen type III (COL3) content changes during myocardial fibrosis, in vivo imaging of COL3 has not been achieved. Here, we discovered the first imaging probe that binds to COL3 with high affinity and specificity, by screening candidate peptide-based probes. Characterisation of the probe showed favourable magnetic and biodistribution properties. The probe's potential for in vivo molecular cardiac magnetic resonance imaging was evaluated in a murine model of myocardial infarction. Using the new probe, we were able to map and quantify, previously undetectable, spatiotemporal changes in COL3 after myocardial infarction and monitor response to treatment. This innovative probe provides a promising tool to non-invasively study the unexplored roles of COL3 in cardiac fibrosis and other cardiovascular conditions marked by changes in COL3.
Collapse
Affiliation(s)
- Nadia Chaher
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE17EH UK
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans rue Charles Sadron, 45071 Orléans, France
| | - Giuseppe Digilio
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR), Molecular Biotechnology Center, Torino, Italy
| | - Ling Gao
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE17EH UK
| | - Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE17EH UK
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Rachele Stefania
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE17EH UK
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE17EH UK
- Department of Radiology, University of Michigan, Ann Arbor, MI USA
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE17EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE17EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- King's BHF Centre of Excellence, Cardiovascular Division, London, UK
- Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE17EH UK
- King's BHF Centre of Excellence, Cardiovascular Division, London, UK
| |
Collapse
|
2
|
Ernenwein D, Geisler I, Pavlishchuk A, Chmielewski J. Metal-Assembled Collagen Peptide Microflorettes as Magnetic Resonance Imaging Agents. Molecules 2023; 28:molecules28072953. [PMID: 37049716 PMCID: PMC10095756 DOI: 10.3390/molecules28072953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a medical imaging technique that provides detailed information on tissues and organs. However, the low sensitivity of the technique requires the use of contrast agents, usually ones that are based on the chelates of gadolinium ions. In an effort to improve MRI signal intensity, we developed two strategies whereby the ligand DOTA and Gd(III) ions are contained within Zn(II)-promoted collagen peptide (NCoH) supramolecular assemblies. The DOTA moiety was included in the assembly either via a collagen peptide sidechain (NHdota) or through metal–ligand interactions with a His-tagged DOTA conjugate (DOTA-His6). SEM verified that the morphology of the NCoH assembly was maintained in the presence of the DOTA-containing peptides (microflorettes), and EDX and ICP-MS confirmed that Gd(III) ions were incorporated within the microflorettes. The Gd(III)-loaded DOTA florettes demonstrated higher intensities for the T1-weighted MRI signal and higher longitudinal relaxivity (r1) values, as compared to the clinically used contrast agent Magnevist. Additionally, no appreciable cellular toxicity was observed with the collagen microflorettes loaded with Gd(III). Overall, two peptide-based materials were generated that have potential as MRI contrast agents.
Collapse
|
3
|
Fibrin-Targeted Nanoparticles for Finding, Visualizing and Characterizing Blood Clots in Acute Ischemic Stroke. Pharmaceutics 2022; 14:pharmaceutics14102156. [PMID: 36297588 PMCID: PMC9606925 DOI: 10.3390/pharmaceutics14102156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
Recanalization of the occluded artery is the gold standard treatment for acute ischemic stroke, which includes enzymatic fibrinolytic treatment with the use of recombinant tissue plasminogen activators (rtPAs) to disrupt the occluding clot, the use of mechanical thrombectomy to physically remove the clot, or a combination of both. Fibrin is one of the main components of blood clots causing ischemic stroke and is the target of rtPA upon activation of plasminogen in the clot. In addition, fibrin content also influences the efficacy of mechanical thrombectomy. Current imaging methods can successfully identify occlusions in large vessels; however, there is still a need for contrast agents capable of visualizing small thrombi in ischemic stroke patients. In this work, we describe the synthesis and the in vitro characterization of a new diagnostic nanoparticle, as well as the in vivo evaluation in an animal model of thromboembolic stroke. Gd-labeled KCREKA peptides were synthesized and attached onto the surface of PEGylated superparamagnetic nanoparticles. Magnetic resonance imaging (MRI) of blood clots was performed in vitro and in vivo in animal models of thromboembolic stroke. KCREKA-NPs were synthesized by attaching the peptide to the amino (N) termini of the PEG-NPs. The sizes of the nanoparticles, measured via DLS, were similar for both KCREKA-NPs and PEG-NPs (23 ± 4 nm, PDI = 0.11 and 25 ± 8 nm, PDI = 0.24, respectively). In the same line, r2 relaxivities were also similar for the nanoparticles (149 ± 2 mM Fe s−1 and 151 ± 5 mM Fe s−1), whereas the r1 relaxivity was higher for KCREKA-NPs (1.68 ± 0.29 mM Fe s−1 vs. 0.69 ± 0.3 mM Fe s−1). In vitro studies showed that blood clots with low coagulation times were disrupted by rtPA, whereas aged clots were almost insensitive to the presence of rtPA. MRI in vitro studies showed a sharp decrease in the T1 × T2 signals measured for aged clots incubated with KCREKA-NPs compared with fresh clots (47% [22, 80] to 26% [15, 51]). Furthermore, the control blood showed a higher value of the T1 × T2 signal (39% [20, 61]), being the blood clots with low coagulation times the samples with the lowest values measured by MRI. In vivo studies showed a significant T1 × T2 signal loss in the clot region of 24% after i.v. injection of KCREKA-NPs. The thrombus age (2.5% ± 6.1% vs. 81.3% ± 19.8%, p < 0.01) confirmed our ability to identify in vivo fresh blood clots. In this study, we developed and tested a dual MRI nanoparticle, acting as T1 and T2 contrast agents in MRI analyses. The developed KCREKA-NPs showed affinity for the fibrin content of blood clots, and the MRI signals provided by the nanoparticles showed significant differences depending on the clot age. The developed KCREKA-NPs could be used as a tool to predict the efficacy of a recanalization treatment and improve the triage of ischemic stroke patients.
Collapse
|
4
|
Li Y, Gao S, Jiang H, Ayat N, Laney V, Nicolescu C, Sun W, Tweedle MF, Lu ZR. Evaluation of Physicochemical Properties, Pharmacokinetics, Biodistribution, Toxicity, and Contrast-Enhanced Cancer MRI of a Cancer-Targeting Contrast Agent, MT218. Invest Radiol 2022; 57:639-654. [PMID: 35703463 PMCID: PMC9444296 DOI: 10.1097/rli.0000000000000881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/12/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Preclinical assessments were performed according to the US Food and Drug Administration guidelines to determine the physicochemical properties, pharmacokinetics, clearance, safety, and tumor-specific magnetic resonance (MR) imaging of MT218, a peptidic gadolinium-based MR imaging agent targeting to extradomain B fibronectin for MR molecular imaging of aggressive tumors. MATERIALS AND METHODS Relaxivity, chelation stability, binding affinity, safety-related target profiling, and effects on CYP450 enzymes and transporters were evaluated in vitro. Magnetic resonance imaging was performed with rats bearing prostate cancer xenografts, immunocompetent mice bearing murine pancreatic cancer allografts, and mice bearing lung cancer xenografts at different doses of MT218. Pharmacological effects on cardiovascular, respiratory, and central nervous systems were determined in rats and conscious beagle dogs. Pharmacokinetics were tested in rats and dogs. Biodistribution and excretion were studied in rats. Single and repeated dosing toxicity was evaluated in rats and dogs. In vitro and in vivo genotoxicity, in vitro hemolysis, and anaphylactic reactivity were also performed. RESULTS At 1.4 T, the r1 and r2 relaxivities of MT218 were 5.43 and 7.40 mM -1 s -1 in pure water, 6.58 and 8.87 mM -1 s -1 in phosphate-buffered saline, and 6.54 and 8.70 mM -1 s -1 in aqueous solution of human serum albumin, respectively. The binding affinity of MT218 to extradomain B fragment is 3.45 μM. MT218 exhibited no dissociation of the Gd(III) chelates under physiological conditions. The peptide degradation half-life ( t1/2 ) of MT218 was 1.63, 5.85, and 2.63 hours in rat, dog, and human plasma, respectively. It had little effect on CYP450 enzymes and transporters. MT218 produced up to 7-fold increase of contrast-to-noise ratios in the extradomain B fibronectin-rich tumors with a dose of 0.04 mmol/kg for at least 30 minutes. MT218 had little pharmacological effect on central nervous, cardiovascular, or respiratory systems. MT218 had a mean plasma elimination half-life ( t1/2 ) of 0.31 and 0.89 hours in rats and dogs at 0.1 mmol/kg, respectively. No detectable Gd deposition was observed in the brain at 6 hours postinjection of MT218 at 0.1 mmol/kg in rats. MT218 was not mutagenic and had no mortality or morbidity in the rats or dogs up to 1.39 and 0.70 mmol/kg/d, respectively. The no observed adverse effect level of MT218 in Sprague-Dawley rats was 1.39 mmol/kg for single dosing and 0.46 mmol/kg/d for repeated dosing. The no observed adverse effect level in dogs was 0.07 mmol/kg/d. MT218 exhibited no genotoxicity, hemolysis, and anaphylactic reactivity. CONCLUSION The preclinical assessments showed that the targeted contrast agent MT218 has high r1 and r2 relaxivities, satisfactory physicochemical properties, pharmacokinetic, and safety profiles and produces effective tumor enhancement in multiple cancer types in rats and mice at reduced doses.
Collapse
Affiliation(s)
- Yajuan Li
- From the Molecular Theranostics, LLC, Cleveland
| | - Songqi Gao
- From the Molecular Theranostics, LLC, Cleveland
| | | | - Nadia Ayat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Victoria Laney
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Calin Nicolescu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Michael F. Tweedle
- Wright Center of Innovation, Department of Radiology, the Ohio State University, Columbus
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
5
|
Lohmeier J, Silva RV, Tietze A, Taupitz M, Kaneko T, Prüss H, Paul F, Infante-Duarte C, Hamm B, Caravan P, Makowski MR. Fibrin-targeting molecular MRI in inflammatory CNS disorders. Eur J Nucl Med Mol Imaging 2022; 49:3692-3704. [PMID: 35507058 PMCID: PMC9399196 DOI: 10.1007/s00259-022-05807-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/16/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Fibrin deposition is a fundamental pathophysiological event in the inflammatory component of various CNS disorders, such as multiple sclerosis (MS) and Alzheimer's disease. Beyond its traditional role in coagulation, fibrin elicits immunoinflammatory changes with oxidative stress response and activation of CNS-resident/peripheral immune cells contributing to CNS injury. PURPOSE To investigate if CNS fibrin deposition can be determined using molecular MRI, and to assess its capacity as a non-invasive imaging biomarker that corresponds to inflammatory response and barrier impairment. MATERIALS AND METHODS Specificity and efficacy of a peptide-conjugated Gd-based molecular MRI probe (EP2104-R) to visualise and quantify CNS fibrin deposition were evaluated. Probe efficacy to specifically target CNS fibrin deposition in murine adoptive-transfer experimental autoimmune encephalomyelitis (EAE), a pre-clinical model for MS (n = 12), was assessed. Findings were validated using immunohistochemistry and laser ablation inductively coupled plasma mass spectrometry. Deposition of fibrin in neuroinflammatory conditions was investigated and its diagnostic capacity for disease staging and monitoring as well as quantification of immunoinflammatory response was determined. Results were compared using t-tests (two groups) or one-way ANOVA with multiple comparisons test. Linear regression was used to model the relationship between variables. RESULTS For the first time (to our knowledge), CNS fibrin deposition was visualised and quantified in vivo using molecular imaging. Signal enhancement was apparent in EAE lesions even 12-h after administration of EP2104-R due to targeted binding (M ± SD, 1.07 ± 0.10 (baseline) vs. 0.73 ± 0.09 (EP2104-R), p = .008), which could be inhibited with an MRI-silent analogue (M ± SD, 0.60 ± 0.14 (EP2104-R) vs. 0.96 ± 0.13 (EP2104-La), p = .006). CNS fibrin deposition corresponded to immunoinflammatory activity (R2 = 0.85, p < .001) and disability (R2 = 0.81, p < .001) in a model for MS, which suggests a clinical role for staging and monitoring. Additionally, EP2104-R showed substantially higher SNR (M ± SD, 6.6 ± 1 (EP2104-R) vs. 2.7 ± 0.4 (gadobutrol), p = .004) than clinically used contrast media, which increases sensitivity for lesion detection. CONCLUSIONS Molecular imaging of CNS fibrin deposition provides an imaging biomarker for inflammatory CNS pathology, which corresponds to pathophysiological ECM remodelling and disease activity, and yields high signal-to-noise ratio, which can improve diagnostic neuroimaging across several neurological diseases with variable degrees of barrier impairment.
Collapse
Affiliation(s)
- Johannes Lohmeier
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Charité Mitte (CCM), Charitéplatz 1, 10117, Berlin, Germany.
| | - Rafaela V Silva
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Lindenberger Weg 80, 13125, Berlin, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Charité Mitte (CCM), Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Taupitz
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Charité Mitte (CCM), Charitéplatz 1, 10117, Berlin, Germany
| | - Takaaki Kaneko
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Charité Mitte (CCM) and German Center for Neurodegenerative Diseases (DZNE) Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Lindenberger Weg 80, 13125, Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Lindenberger Weg 80, 13125, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Charité Mitte (CCM), Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, MB, 02129, USA
| | - Marcus R Makowski
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Charité Mitte (CCM), Charitéplatz 1, 10117, Berlin, Germany
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| |
Collapse
|
6
|
Gil CJ, Li L, Hwang B, Cadena M, Theus AS, Finamore TA, Bauser-Heaton H, Mahmoudi M, Roeder RK, Serpooshan V. Tissue engineered drug delivery vehicles: Methods to monitor and regulate the release behavior. J Control Release 2022; 349:143-155. [PMID: 35508223 DOI: 10.1016/j.jconrel.2022.04.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022]
Abstract
Tissue engineering is a rapidly evolving, multidisciplinary field that aims at generating or regenerating 3D functional tissues for in vitro disease modeling and drug screening applications or for in vivo therapies. A variety of advanced biological and engineering methods are increasingly being used to further enhance and customize the functionality of tissue engineered scaffolds. To this end, tunable drug delivery and release mechanisms are incorporated into tissue engineering modalities to promote different therapeutic processes, thus, addressing challenges faced in the clinical applications. In this review, we elaborate the mechanisms and recent developments in different drug delivery vehicles, including the quantum dots, nano/micro particles, and molecular agents. Different loading strategies to incorporate the therapeutic reagents into the scaffolding structures are explored. Further, we discuss the main mechanisms to tune and monitor/quantify the release kinetics of embedded drugs from engineered scaffolds. We also survey the current trend of drug delivery using stimuli driven biopolymer scaffolds to enable precise spatiotemporal control of the release behavior. Recent advancements, challenges facing current scaffold-based drug delivery approaches, and areas of future research are discussed.
Collapse
Affiliation(s)
- Carmen J Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Lan Li
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Andrea S Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Tyler A Finamore
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Sibley Heart Center at Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48864, USA
| | - Ryan K Roeder
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Molecular Detection of Venous Thrombosis in Mouse Models Using SPECT/CT. Biomolecules 2022; 12:biom12060829. [PMID: 35740954 PMCID: PMC9221411 DOI: 10.3390/biom12060829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
The efficacy of thrombolysis is inversely correlated with thrombus age. During early thrombogenesis, activated factor XIII (FXIIIa) cross-links α2-AP to fibrin to protect it from early lysis. This was exploited to develop an α2-AP-based imaging agent to detect early clot formation likely susceptible to thrombolysis treatment. In this study, this imaging probe was improved and validated using 111In SPECT/CT in a mouse thrombosis model. In vitro fluorescent- and 111In-labelled imaging probe-to-fibrin cross-linking assays were performed. Thrombus formation was induced in C57Bl/6 mice by endothelial damage (FeCl3) or by ligation (stenosis) of the infrarenal vena cava (IVC). Two or six hours post-surgery, mice were injected with 111In-DTPA-A16 and ExiTron Nano 12000, and binding of the imaging tracer to thrombi was assessed by SPECT/CT. Subsequently, ex vivo IVCs were subjected to autoradiography and histochemical analysis for platelets and fibrin. Efficient in vitro cross-linking of A16 imaging probe to fibrin was obtained. In vivo IVC thrombosis models yielded stable platelet-rich thrombi with FeCl3 and fibrin and red cell-rich thrombi with stenosis. In the stenosis model, clot formation in the vena cava corresponded with a SPECT hotspot using an A16 imaging probe as a molecular tracer. The fibrin-targeting A16 probe showed specific binding to mouse thrombi in in vitro assays and the in vivo DVT model. The use of specific and covalent fibrin-binding probes might enable the clinical non-invasive imaging of early and active thrombosis.
Collapse
|
8
|
Driever EG, von Meijenfeldt FA, Adelmeijer J, de Haas RJ, van den Heuvel MC, Nagasami C, Weisel JW, Fondevila C, Porte RJ, Blasi A, Heaton N, Gregory S, Kane P, Bernal W, Zen Y, Lisman T. Nonmalignant portal vein thrombi in patients with cirrhosis consist of intimal fibrosis with or without a fibrin-rich thrombus. Hepatology 2022; 75:898-911. [PMID: 34559897 PMCID: PMC9300169 DOI: 10.1002/hep.32169] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Portal vein thrombosis (PVT) is a common complication of cirrhosis. The exact pathophysiology remains largely unknown, and treatment with anticoagulants does not lead to recanalization of the portal vein in all patients. A better insight into the structure and composition of portal vein thrombi may assist in developing strategies for the prevention and treatment of PVT. APPROACH AND RESULTS Sixteen prospectively and 63 retrospectively collected nonmalignant portal vein thrombi from patients with cirrhosis who underwent liver transplantation were included. Histology, immunohistochemistry, and scanning electron microscopy were used to assess structure and composition of the thrombi. Most recent CT scans were reanalyzed for thrombus characteristics. Clinical characteristics were related to histological and radiological findings. All samples showed a thickened, fibrotic tunica intima. Fibrin-rich thrombi were present on top of the fibrotic intima in 9/16 prospective cases and in 21/63 retrospective cases. A minority of the fibrotic areas stained focally positive for fibrin/fibrinogen (16% of cases), von Willebrand factor (VWF; 10%), and CD61 (platelets, 21%), while most of the fibrin-rich areas stained positive for those markers (fibrin/fibrinogen, 100%; VWF, 77%; CD61, 100%). No associations were found between clinical characteristics including estimated thrombus age and use of anticoagulants and presence of fibrin-rich thrombi. CONCLUSION We demonstrate that PVT in patients with cirrhosis consists of intimal fibrosis with an additional fibrin-rich thrombus in only one-third of cases. We hypothesize that our observations may explain why not all portal vein thrombi in patients with cirrhosis recanalize by anticoagulant therapy.
Collapse
Affiliation(s)
- Ellen G Driever
- Surgical Research LaboratoryDepartment of SurgeryUniversity Medical Center GroningenGroningenthe Netherlands
| | - Fien A von Meijenfeldt
- Surgical Research LaboratoryDepartment of SurgeryUniversity Medical Center GroningenGroningenthe Netherlands
| | - Jelle Adelmeijer
- Surgical Research LaboratoryDepartment of SurgeryUniversity Medical Center GroningenGroningenthe Netherlands
| | - Robbert J de Haas
- Department of RadiologyUniversity Medical Center GroningenGroningenthe Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenthe Netherlands
| | - Chandrasekaran Nagasami
- Department of Cell and Developmental BiologyUniversity of Pennsylvania School of MedicinePhiladelphiaPennsylvaniaUSA
| | - John W Weisel
- Department of Cell and Developmental BiologyUniversity of Pennsylvania School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Constantino Fondevila
- Department of SurgeryHospital ClínicInstitute d'Investigacions Biomèdica Agustí Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Robert J Porte
- Department of SurgerySection of Hepatobiliary Surgery and Liver TransplantationUniversity Medical Center GroningenGroningenthe Netherlands
| | - Anabel Blasi
- Anesthesiology DepartmentHospital ClínicInstitute d'Investigacions Biomèdica Agustí Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Nigel Heaton
- Liver Transplant SurgeryInstitute of Liver StudiesKing's College HospitalLondonUK
| | | | - Pauline Kane
- Department of RadiologyKing's College HospitalLondonUK
| | - William Bernal
- Liver Intensive Care UnitInstitute of Liver StudiesKing's College HospitalLondonUK.,Institute of Liver StudiesKing's College HospitalLondonUK
| | - Yoh Zen
- Department of PathologyInstitute of Liver StudiesKing's College HospitalLondonUK
| | - Ton Lisman
- Surgical Research LaboratoryDepartment of SurgeryUniversity Medical Center GroningenGroningenthe Netherlands.,Department of SurgerySection of Hepatobiliary Surgery and Liver TransplantationUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
9
|
Bernhard B, Erdoes G, Radojewski P, Jung S, Schroth G, Gräni C. Extended Imaging Protocols to Elucidate Sources of Cardiovascular Embolism in the Work-up of Ischemic Stroke. Clin Neuroradiol 2021; 31:897-900. [PMID: 34870718 DOI: 10.1007/s00062-021-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Gabor Erdoes
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Piotr Radojewski
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Simon Jung
- Department of Neurology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | - Gerhard Schroth
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
10
|
Kakkar P, Kakkar T, Patankar T, Saha S. Current approaches and advances in the imaging of stroke. Dis Model Mech 2021; 14:273651. [PMID: 34874055 PMCID: PMC8669490 DOI: 10.1242/dmm.048785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A stroke occurs when the blood flow to the brain is suddenly interrupted, depriving brain cells of oxygen and glucose and leading to further cell death. Neuroimaging techniques, such as computed tomography and magnetic resonance imaging, have greatly improved our ability to visualise brain structures and are routinely used to diagnose the affected vascular region of a stroke patient's brain and to inform decisions about clinical care. Currently, these multimodal imaging techniques are the backbone of the clinical management of stroke patients and have immensely improved our ability to visualise brain structures. Here, we review recent developments in the field of neuroimaging and discuss how different imaging techniques are used in the diagnosis, prognosis and treatment of stroke. Summary: Stroke imaging has undergone seismic shifts in the past decade. Although magnetic resonance imaging (MRI) is superior to computed tomography in providing vital information, further research on MRI is still required to bring its full potential into clinical practice.
Collapse
Affiliation(s)
- Pragati Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Tarun Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | | | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Wang X, Ziegler M, McFadyen JD, Peter K. Molecular Imaging of Arterial and Venous Thrombosis. Br J Pharmacol 2021; 178:4246-4269. [PMID: 34296431 DOI: 10.1111/bph.15635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022] Open
Abstract
Thrombosis contributes to one in four deaths worldwide and is the cause of a large proportion of mortality and morbidity. A reliable and rapid diagnosis of thrombosis will allow for immediate therapy, thereby providing significant benefits to patients. Molecular imaging is a fast-growing and captivating area of research, in both preclinical and clinical applications. Major advances have been achieved by improvements in three central areas of molecular imaging: 1) Better markers for diseases, with increased sensitivity and selectivity; 2) Optimised contrast agents with improved signal to noise ratio; 3) Progress in scanner technologies with higher sensitivity and resolution. Clinically available imaging modalities used for molecular imaging include, magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, as well as nuclear imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT). In the preclinical imaging field, optical (fluorescence and bioluminescent) molecular imaging has provided new mechanistic insights in the pathology of thromboembolic diseases. Overall, the advances in molecular imaging, driven by the collaboration of various scientific disciplines, have substantially contributed to an improved understanding of thrombotic disease, and raises the exciting prospect of earlier diagnosis and individualised therapy for cardiovascular diseases. As such, these advances hold significant promise to be translated to clinical practice and ultimately to reduce mortality and morbidity in patients with thromboembolic diseases.
Collapse
Affiliation(s)
- Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Medicine, Monash University.,Department of Cardiometabolic Health, University of Melbourne
| | - Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute
| | - James D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Cardiometabolic Health, University of Melbourne.,Clinical Hematology Department, Alfred Hospital
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Medicine, Monash University.,Department of Cardiometabolic Health, University of Melbourne.,Department of Cardiology, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
12
|
Molecular MR-Imaging in Thromboembolic Stroke Using a Fibrin-Specific Contrast Agent in Patients at 3 Tesla. Clin Neuroradiol 2021; 31:925-931. [PMID: 34236442 DOI: 10.1007/s00062-021-01052-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/05/2021] [Indexed: 10/20/2022]
|
13
|
Magnetic Resonance Imaging Agents. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Abstract
Molecular magnetic resonance (MR) imaging utilizes molecular probes to provide added biochemical or cellular information to what can already be achieved with anatomical and functional MR imaging. This review provides an overview of molecular MR and focuses specifically on molecular MR contrast agents that provide contrast by shortening the T1 time. We describe the requirements for a successful molecular MR contrast agent and the challenges for clinical translation. The review highlights work from the last 5 years and places an emphasis on new contrast agents that have been validated in multiple preclinical models. Applications of molecular MR include imaging of inflammation, fibrosis, fibrogenesis, thromboembolic disease, and cancers. Molecular MR is positioned to move beyond detection of disease to the quantitative staging of disease and measurement of treatment response.
Collapse
Affiliation(s)
| | | | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
15
|
Osborn EA, Albaghdadi M, Libby P, Jaffer FA. Molecular Imaging of Atherosclerosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Hajhosseiny R, Prieto C, Qi H, Phinikaridou A, Botnar RM. Thrombosis and Embolism. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Molecular Magnetic Resonance Imaging of Fibrin Deposition in the Liver as an Indicator of Tissue Injury and Inflammation. Invest Radiol 2020; 55:209-216. [PMID: 31895219 DOI: 10.1097/rli.0000000000000631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Liver inflammation is associated with nonalcoholic steatohepatitis and other pathologies, but noninvasive methods to assess liver inflammation are limited. Inflammation causes endothelial disruption and leakage of plasma proteins into the interstitial space and can result in extravascular coagulation with fibrin deposition. Here we assess the feasibility of using the established fibrin-specific magnetic resonance probe EP-2104R for the noninvasive imaging of fibrin as a marker of liver inflammation. METHODS Weekly 100 mg/kg diethylnitrosamine (DEN) dosing was used to generate liver fibrosis in male rats; control animals received vehicle. Magnetic resonance imaging at 1.5 T with EP-2104R, a matched non-fibrin-binding control linear peptide, or the collagen-specific probe EP-3533 was performed at 1 day or 7 days after the last DEN administration. Imaging data were compared with quantitative histological measures of fibrosis and inflammation. RESULTS After 4 or 5 DEN administrations, the liver becomes moderately fibrotic, and fibrosis is the same if the animal is killed 1 day (Ishak score, 3.62 ± 0.31) or 7 days (Ishak score, 3.82 ± 0.25) after the last DEN dose, but inflammation is significantly higher at 1 day compared with 7 days after the last DEN dose (histological activity index from 0-4, 3.54 ± 0.14 vs 1.61 ± 0.16, respectively; P < 0.0001). Peak EP-2104R signal enhancement was significantly higher in animals imaged at 1 day post-DEN compared with 7 days post-DEN or control rats (29.0% ± 3.2% vs 22.4% ± 2.0% vs 17.0% ± 0.2%, respectively; P = 0.017). Signal enhancement with EP-2104R was significantly higher than control linear peptide at 1 day post-DEN but not at 7 days post-DEN indicating specific fibrin binding during the inflammatory phase. Collagen molecular magnetic resonance with EP-3533 showed equivalent T1 change when imaging rats 1 day or 7 days post-DEN, consistent with equivalent fibrosis. CONCLUSIONS EP-2104R can specifically detect fibrin associated with inflammation in a rat model of liver inflammation and fibrosis.
Collapse
|
18
|
Vorobiev V, Adriouach S, Crowe LA, Lenglet S, Thomas A, Chauvin AS, Allémann E. Vascular-targeted micelles as a specific MRI contrast agent for molecular imaging of fibrin clots and cancer cells. Eur J Pharm Biopharm 2020; 158:347-358. [PMID: 33271302 DOI: 10.1016/j.ejpb.2020.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Molecular medical imaging is intended to increase the accuracy of diagnosis, particularly in cardiovascular and cancer-related diseases, where early detection could significantly increase the treatment success rate. In this study, we present mixed micelles formed from four building blocks as a magnetic resonance imaging targeted contrast agent for the detection of atheroma and cancer cells. The building blocks are a gadolinium-loaded DOTA ring responsible for contrast enhancement, a fibrin-specific CREKA pentapeptide responsible for targeting, a fluorescent dye and DSPE-PEG2000. The micelles were fully characterized in terms of their size, zeta potential, stability, relaxivity and toxicity. Target binding assays performed on fibrin clots were quantified by fluorescence and image signal intensities and proved the binding power. An additional internalization assay showed that the micelles were also designed to specifically enter into cancer cells. Overall, these multimodal mixed micelles represent a potential formulation for MRI molecular imaging of atheroma and cancer cells.
Collapse
Affiliation(s)
- Vassily Vorobiev
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Souad Adriouach
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Lindsey A Crowe
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Sébastien Lenglet
- Forensic Toxicology and Chemistry Unit, University Center for Legal Medicine, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Aurélien Thomas
- Unit of Toxicology, CURML, Lausanne University Hospital, Geneva University Hospitals, Switzerland; Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anne-Sophie Chauvin
- Institut of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
19
|
Ezeani M, Hagemeyer CE, Lal S, Niego B. Molecular imaging of atrial myopathy: Towards early AF detection and non-invasive disease management. Trends Cardiovasc Med 2020; 32:20-31. [DOI: 10.1016/j.tcm.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
|
20
|
Yang A, Qiao B, Strohm EM, Cao J, Wang Z, Yuan X, Luo Y, Sun Y. Thrombin-responsive engineered nanoexcavator with full-thickness infiltration capability for pharmaceutical-free deep venous thrombosis theranostics. Biomater Sci 2020; 8:4545-4558. [PMID: 32671366 DOI: 10.1039/d0bm00917b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although nanotechnology has shown great promise for treating multiple vascular diseases in recent years, simultaneous noninvasive detection and efficient dissolution of deep venous thrombosis (DVT) still remains challenging. In particular, long blockage areas and large thrombus thicknesses in DVT cause enormous difficulties for site-specific deep-seated thrombus theranostics. Therefore, based on the unique components of DVT, the novel concept of a thrombin-responsive full-thickness infiltration nonpharmaceutical nanoplatform for DVT theranostics is proposed here. The penetration depth is innovatively enhanced with efficient targeting and accumulation in the whole thrombi. Herein, we report a thrombin-responsive phase-transition liposome incorporating a liquid perfluoropentane (PFP) core and modified with two binding peptides, activatable cell-penetrating peptide (ACPP) and fibrin-binding ligand (FTP), which contribute to efficient liposome targeting and accumulation within the thrombi. This targeted nanoplatform is constructed to dig out the thrombus with the assistance of low-intensity focused ultrasound (LIFU), performing the destructive function of an excavator via an acoustic droplet vaporization effect (acting as a "nanoexcavator" system), which can activate and vaporize into microbubbles to enhance LIFU efficacy. The resulting microbubbles enable real-time monitoring of the therapeutic process with ultrasound imaging and high performance photoacoustic imaging after loading DIR. This non-invasive nonpharmaceutical thrombolytic strategy is an improvement over existing clinical methods without systemic side effects.
Collapse
Affiliation(s)
- Anyu Yang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Desjardins B, Hanley M, Steigner ML, Aghayev A, Azene EM, Bennett SJ, Chandra A, Hedgire SS, Lo BM, Mauro DM, Ptak T, Singh-Bhinder N, Suranyi PS, Verma N, Dill KE. ACR Appropriateness Criteria® Suspected Upper Extremity Deep Vein Thrombosis. J Am Coll Radiol 2020; 17:S315-S322. [PMID: 32370975 DOI: 10.1016/j.jacr.2020.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 01/13/2023]
Abstract
This publication includes the appropriate imaging modalities to assess suspected deep vein thrombosis in the upper extremities. Ultrasound duplex Doppler is the most appropriate imaging modality to assess upper-extremity deep vein thrombosis. It is a noninvasive test, which can be performed at the bedside and used for serial evaluations. Ultrasound can also directly identify thrombus by visualizing echogenic material in the vein and by lack of compression of the vein walls from manual external pressure. It can indirectly identify thrombus from altered blood-flow patterns. It is most appropriate in the evaluation of veins peripheral to the brachiocephalic vein. CT venography and MR venography are not first-line imaging tests, but are appropriate to assess the central venous structures, or to assess the full range of venous structures from the hand to the right atrium. Catheter venography is appropriate if therapy is required. Radionuclide venography and chest radiography are usually not appropriate to assess upper-extremity deep vein thrombosis. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | - Michael Hanley
- Panel Chair, University of Virginia Health System, Charlottesville, Virginia
| | | | - Ayaz Aghayev
- Brigham & Women's Hospital, Boston, Massachusetts
| | | | | | - Ankur Chandra
- Scripps Green Hospital, La Jolla, California; Society for Vascular Surgery
| | - Sandeep S Hedgire
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bruce M Lo
- Sentara Norfolk General/Eastern Virginia Medical School, Norfolk, Virginia; American College of Emergency Physicians
| | - David M Mauro
- University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Thomas Ptak
- University of Maryland Medical Center, Baltimore, Maryland
| | | | - Pal S Suranyi
- Medical University of South Carolina, Charleston, South Carolina
| | | | - Karin E Dill
- Specialty Chair, UMass Memorial Medical Center, Worcester, Massachusetts
| |
Collapse
|
22
|
Su M, Dai Q, Chen C, Zeng Y, Chu C, Liu G. Nano-Medicine for Thrombosis: A Precise Diagnosis and Treatment Strategy. NANO-MICRO LETTERS 2020; 12:96. [PMID: 34138079 PMCID: PMC7770919 DOI: 10.1007/s40820-020-00434-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/13/2020] [Indexed: 05/11/2023]
Abstract
Thrombosis is a global health issue and one of the leading factors of death. However, its diagnosis has been limited to the late stages, and its therapeutic window is too narrow to provide reasonable and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, allergic reactions, inactivation, and unwanted tissue hemorrhage. Nano-medicines have gained extensive attention in diagnosis, drug delivery, and photo/sound/magnetic-theranostics due to their convertible properties. Furthermore, diagnosis and treatment of thrombosis using nano-medicines have also been widely studied. This review summarizes the recent advances in this area, which revealed six types of nanoparticle approaches: (1) in vitro diagnostic kits using "synthetic biomarkers"; (2) in vivo imaging using nano-contrast agents; (3) targeted drug delivery systems using artificial nanoparticles; (4) microenvironment responsive drug delivery systems; (5) drug delivery systems using biological nanostructures; and (6) treatments with external irradiation. The investigations of nano-medicines are believed to be of great significance, and some of the advanced drug delivery systems show potential applications in clinical theranotics.
Collapse
Affiliation(s)
- Min Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
23
|
Salarian M, Ibhagui OY, Yang JJ. Molecular imaging of extracellular matrix proteins with targeted probes using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1622. [PMID: 32126587 DOI: 10.1002/wnan.1622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/04/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) consists of proteins and carbohydrates that supports different biological structures and processes such as tissue development, elasticity, and preservation of organ structure. Diseases involving inflammation, fibrosis, tumor invasion, and injury are all attributed to the transition of the ECM from homeostasis to remodeling, which can significantly change the biochemical and biomechanical features of ECM components. While contrast agents have played an indispensable role in facilitating clinical diagnosis of diseases using magnetic resonance imaging (MRI), there is a strong need to develop novel biomarker-targeted imaging probes for in vivo visualization of biological processes and pathological alterations at a cellular and molecular level, for both early diagnosis and monitoring drug treatment. Herein, we will first review the pathological accumulation and characterization of ECM proteins recognized as important molecular features of diseases. Developments in MRI probes targeting ECM proteins such as collagen, fibronectin, and elastin via conjugation of existing contrast agents to targeting moieties and their applications to various diseases, are also reviewed. We have also reviewed our progress in the development of collagen-targeted protein MRI contrast agent with significant improvement in relaxivity and metal binding specificity, and their applications in early detection of fibrosis and metastatic cancer. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Biology-Inspired Nanomaterials > Peptide-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mani Salarian
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | | | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
24
|
Hajhosseiny R, Bahaei TS, Prieto C, Botnar RM. Molecular and Nonmolecular Magnetic Resonance Coronary and Carotid Imaging. Arterioscler Thromb Vasc Biol 2020; 39:569-582. [PMID: 30760017 DOI: 10.1161/atvbaha.118.311754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is the leading cause of cardiovascular morbidity and mortality. Over the past 2 decades, increasing research attention is converging on the early detection and monitoring of atherosclerotic plaque. Among several invasive and noninvasive imaging modalities, magnetic resonance imaging (MRI) is emerging as a promising option. Advantages include its versatility, excellent soft tissue contrast for plaque characterization and lack of ionizing radiation. In this review, we will explore the recent advances in multicontrast and multiparametric imaging sequences that are bringing the aspiration of simultaneous arterial lumen, vessel wall, and plaque characterization closer to clinical feasibility. We also discuss the latest advances in molecular magnetic resonance and multimodal atherosclerosis imaging.
Collapse
Affiliation(s)
- Reza Hajhosseiny
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.).,National Heart and Lung Institute, Imperial College London, United Kingdom (R.H.)
| | - Tamanna S Bahaei
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.)
| | - Claudia Prieto
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.).,Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile (C.P., R.M.B.)
| | - René M Botnar
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.).,Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile (C.P., R.M.B.)
| |
Collapse
|
25
|
Petroková H, Mašek J, Kuchař M, Vítečková Wünschová A, Štikarová J, Bartheldyová E, Kulich P, Hubatka F, Kotouček J, Turánek Knotigová P, Vohlídalová E, Héžová R, Mašková E, Macaulay S, Dyr JE, Raška M, Mikulík R, Malý P, Turánek J. Targeting Human Thrombus by Liposomes Modified with Anti-Fibrin Protein Binders. Pharmaceutics 2019; 11:pharmaceutics11120642. [PMID: 31810280 PMCID: PMC6955937 DOI: 10.3390/pharmaceutics11120642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Development of tools for direct thrombus imaging represents a key step for diagnosis and treatment of stroke. Nanoliposomal carriers of contrast agents and thrombolytics can be functionalized to target blood thrombi by small protein binders with selectivity for fibrin domains uniquely formed on insoluble fibrin. We employed a highly complex combinatorial library derived from scaffold of 46 amino acid albumin-binding domain (ABD) of streptococcal protein G, and ribosome display, to identify variants recognizing fibrin cloth in human thrombus. We constructed a recombinant target as a stretch of three identical fibrin fragments of 16 amino acid peptide of the Bβ chain fused to TolA protein. Ribosome display selection followed by large-scale Enzyme-Linked ImmunoSorbent Assay (ELISA) screening provided four protein variants preferentially binding to insoluble form of human fibrin. The most specific binder variant D7 was further modified by C-terminal FLAG/His-Tag or double His-tag for the attachment onto the surface of nanoliposomes via metallochelating bond. D7-His-nanoliposomes were tested using in vitro flow model of coronary artery and their binding to fibrin fibers was demonstrated by confocal and electron microscopy. Thus, we present here the concept of fibrin-targeted binders as a platform for functionalization of nanoliposomes in the development of advanced imaging tools and future theranostics.
Collapse
Affiliation(s)
- Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic; (H.P.); (M.K.)
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Milan Kuchař
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic; (H.P.); (M.K.)
| | - Andrea Vítečková Wünschová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Jana Štikarová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U nemocnice 2094/1, 128 20 Praha 2, Czech Republic; (J.Š.); (J.E.D.)
| | - Eliška Bartheldyová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - František Hubatka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Jan Kotouček
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Pavlína Turánek Knotigová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Eva Vohlídalová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Renata Héžová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Eliška Mašková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
| | - Stuart Macaulay
- Malvern Instruments Ltd., Enigma Business Park, Grove Lane, Malvern WR14 1XZ, UK;
| | - Jan Evangelista Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U nemocnice 2094/1, 128 20 Praha 2, Czech Republic; (J.Š.); (J.E.D.)
| | - Milan Raška
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Robert Mikulík
- The International Clinical Research Center ICRC and Neurology Department of St. Anne’s University Hospital in Brno, Pekařská 53, 656 91 Brno, Czech Republic;
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic; (H.P.); (M.K.)
- Correspondence: (P.M.); (J.T.); Tel.: +420-325-873-763 (P.M.); +420-732-813-577 (J.T.)
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; (J.M.); (A.V.W.); (E.B.); (P.K.); (F.H.); (J.K.); (P.T.K.); (E.V.); (R.H.); (E.M.)
- Correspondence: (P.M.); (J.T.); Tel.: +420-325-873-763 (P.M.); +420-732-813-577 (J.T.)
| |
Collapse
|
26
|
Saxena A, Ng EYK, Lim ST. Imaging modalities to diagnose carotid artery stenosis: progress and prospect. Biomed Eng Online 2019; 18:66. [PMID: 31138235 PMCID: PMC6537161 DOI: 10.1186/s12938-019-0685-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022] Open
Abstract
In the past few decades, imaging has been developed to a high level of sophistication. Improvements from one-dimension (1D) to 2D images, and from 2D images to 3D models, have revolutionized the field of imaging. This not only helps in diagnosing various critical and fatal diseases in the early stages but also contributes to making informed clinical decisions on the follow-up treatment profile. Carotid artery stenosis (CAS) may potentially cause debilitating stroke, and its accurate early detection is therefore important. In this paper, the technical development of various CAS diagnosis imaging modalities and its impact on the clinical efficacy is thoroughly reviewed. These imaging modalities include duplex ultrasound (DUS), computed tomography angiography (CTA) and magnetic resonance angiography (MRA). For each of the imaging modalities considered, imaging methodology (principle), critical imaging parameters, and the extent of imaging the vulnerable plaque are discussed. DUS is usually the initial recommended CAS diagnostic examination. However, for the therapeutic intervention, either MRA or CTA is recommended for confirmation, and for added information on intracranial cerebral circulation and aortic arch condition for procedural planning. Over the past few decades, the focus of CAS diagnosis has also shifted from pure stenosis quantification to plaque characterization. This has led to further advancement in the existing imaging tools and development of other potential imaging tools like Optical coherence tomography (OCT), photoacoustic tomography (PAT), and infrared (IR) thermography.
Collapse
Affiliation(s)
- Ashish Saxena
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N3, Singapore, 639798, Singapore
| | - Eddie Yin Kwee Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N3, Singapore, 639798, Singapore.
| | - Soo Teik Lim
- Department of Cardiology, National Heart Center Singapore, 5 Hospital Dr, Singapore, 169609, Singapore
| |
Collapse
|
27
|
Viscuse PV, Bartlett DJ, Foley TA, Michelena HI. Post-ischaemic exuberant left ventricular mass: thrombus vs. tumour-case report. EUROPEAN HEART JOURNAL-CASE REPORTS 2019; 2:yty077. [PMID: 31020155 PMCID: PMC6177049 DOI: 10.1093/ehjcr/yty077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 06/27/2018] [Indexed: 11/16/2022]
Abstract
Background We present a case that illustrates the diagnostic challenge of differentiating thrombus from tumour when confronted with a large left ventricular (LV) cardiac mass. Case Summary A 43-year-old Caucasian woman polysubstance-abuser presented to a regional hospital with an ST-elevation myocardial infarction and underwent aspiration-thrombectomy and successful circumflex artery bare metal stenting. She was noted to have an exuberant LV mass on transthoracic echocardiogram the following day and transferred to our care. Transthoracic echocardiogram, transoesophageal echocardiogram, and cardiac magnetic resonance imaging were performed in an attempt to characterize the mass with conflicting findings for either thrombus or tumour. The mass was surgically excised and final pathology indicated a fibrin-rich thrombus. Discussion The association of the mass with an infarcted area of the left ventricle supported the diagnosis of thrombus. However, due to the size and some imaging features a myxoma could not be completely ruled out. Atypical presentations of thrombus can be difficult to differentiate from cardiac tumours.
Collapse
Affiliation(s)
- Paul V Viscuse
- Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - David J Bartlett
- Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Thomas A Foley
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Hector I Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| |
Collapse
|
28
|
Advocating the Development of Next-Generation High-Relaxivity Gadolinium Chelates for Clinical Magnetic Resonance. Invest Radiol 2019; 53:381-389. [PMID: 29462023 DOI: 10.1097/rli.0000000000000454] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The question of improved relaxivity, and potential efficacy therein, for a next-generation of magnetic resonance gadolinium chelates with extracellular distribution and renal excretion, which could also be viewed from the perspective of dose, is addressed on the basis of historical development, animal experimentation, and human trials. There was no systematic evaluation that preceded the choice of 0.1 mmol/kg as the standard dose for human imaging with the gadolinium chelates. In part, this dose was chosen owing to bloodwork abnormalities seen in phase I and phase II studies. Animal investigations and early clinical trials demonstrated improved lesion detectability at higher doses in the brain, liver, and heart. By designing an agent with substantially improved relaxivity, higher enhancement equivalent to that provided with the conventional gadolinium agents at high dose could be achieved, translating to improved diagnosis and, thus, clinical care. Implicit in the development of such high-relaxivity agents would be stability equivalent to or exceeding that of the currently approved macrocyclic agents, given current concern regarding dechelation and gadolinium deposition in the brain, skin, and bone with the linear agents that were initially approved. Development of such next-generation agents with a substantial improvement in relaxivity, in comparison with the current group of approved agents, with a 2-fold increase likely achievable, could lead to improved lesion enhancement, characterization, diagnosis, and, thus, clinical efficacy.
Collapse
|
29
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 859] [Impact Index Per Article: 171.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
31
|
Montesi SB, Désogère P, Fuchs BC, Caravan P. Molecular imaging of fibrosis: recent advances and future directions. J Clin Invest 2019; 129:24-33. [PMID: 30601139 DOI: 10.1172/jci122132] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis, the progressive accumulation of connective tissue that occurs in response to injury, causes irreparable organ damage and may result in organ failure. The few available antifibrotic treatments modify the rate of fibrosis progression, but there are no available treatments to reverse established fibrosis. Thus, more effective therapies are urgently needed. Molecular imaging is a promising biomedical methodology that enables noninvasive visualization of cellular and subcellular processes. It provides a unique means to monitor and quantify dysregulated molecular fibrotic pathways in a noninvasive manner. Molecular imaging could be used for early detection, disease staging, and prognostication, as well as for assessing disease activity and treatment response. As fibrotic diseases are often molecularly heterogeneous, molecular imaging of a specific pathway could be used for patient stratification and cohort enrichment with the goal of improving clinical trial design and feasibility and increasing the ability to detect a definitive outcome for new therapies. Here we review currently available molecular imaging probes for detecting fibrosis and fibrogenesis, the active formation of new fibrous tissue, and their application to models of fibrosis across organ systems and fibrotic processes. We provide our opinion as to the potential roles of molecular imaging in human fibrotic diseases.
Collapse
Affiliation(s)
| | - Pauline Désogère
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging and.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Caravan
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging and.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Pagoto A, Tripepi M, Stefania R, Lanzardo S, Livio Longo D, Garello F, Porpiglia F, Manfredi M, Aime S, Terreno E. An efficient MRI agent targeting extracellular markers in prostate adenocarcinoma. Magn Reson Med 2018; 81:1935-1946. [DOI: 10.1002/mrm.27494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Amerigo Pagoto
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences University of Torino Torino Italy
| | - Martina Tripepi
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences University of Torino Torino Italy
| | - Rachele Stefania
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences University of Torino Torino Italy
| | - Stefania Lanzardo
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences University of Torino Torino Italy
| | - Dario Livio Longo
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences University of Torino Torino Italy
| | - Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences University of Torino Torino Italy
| | - Francesco Porpiglia
- Division of Urology University of Torino, San Luigi Gonzaga Hospital Orbassano, Torino Italy
| | - Matteo Manfredi
- Division of Urology University of Torino, San Luigi Gonzaga Hospital Orbassano, Torino Italy
| | - Silvio Aime
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences University of Torino Torino Italy
- IBB‐CNR Sede Secondaria c/o MBC Torino Italy
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences University of Torino Torino Italy
| |
Collapse
|
33
|
Wang L, Cui C, Li R, Xu S, Li H, Li L, Liu J. Study on the oxidation of fibrinogen using Fe 3O 4 magnetic nanoparticles and its influence to the formation of fibrin. J Inorg Biochem 2018; 189:58-68. [PMID: 30243119 DOI: 10.1016/j.jinorgbio.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
Abstract
Oxidative stress accompanies various diseases associated with chronic inflammation. In this work, H2O2 and H2O2-Fe3O4 magnetic nanoparticles were used as two reactive oxygen species to study the oxidative stress for the structure and polymerization behaviour of fibrinogen molecules. The alterations of secondary structure and component of fibrinogen molecule were characterized by circular dichroism spectra, ultraviolet-visible spectra and fluorescence spectra, the viscoelasticity of fibrinogen solution was studied by dynamic light scattering microrheology. Based on the molecular dynamics simulations and fluorescence properties, the possible oxidative stress sites were analyzed and confirmed by Tb3+ probe. The hydrophobicity/philicity and electrostatic net charges present on the exterior part of the fibrinogen molecules were measured with zeta potential. The height and image analysis obtained from atomic force microscope indicated that oxidative stress of fibrinogen molecules could influence the equilateral junctions of protofibrils and the different cross-linking patterns between the α- and γ-chains, result in the decrease of the fibre size, form a higher proportion of branching and a denser aggregation state. This study will provide insights into the misfolding and fibril formation of disease-associated fibrinogen, facilitate an increased understanding of how oxidative stress in vivo affects the formation and polymerization of fibrin, and support efforts for the improved treatment of patients suffering from the thrombotic disease.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China.
| | - Chuansheng Cui
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Rui Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Shuling Xu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Haibo Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Lianzhi Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China.
| | - Jifeng Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
34
|
Rahaghi FN, Minhas JK, Heresi GA. Diagnosis of Deep Venous Thrombosis and Pulmonary Embolism: New Imaging Tools and Modalities. Clin Chest Med 2018; 39:493-504. [PMID: 30122174 PMCID: PMC6317734 DOI: 10.1016/j.ccm.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Imaging continues to be the modality of choice for the diagnosis of venous thromboembolic disease, particularly when incorporated into diagnostic algorithms. Improvement in imaging techniques as well as new imaging modalities and processing methods have improved diagnostic accuracy and additionally are being leveraged in prognostication and decision making for choice of intervention. In this article, we review the role of imaging in diagnosis and prognostication of venous thromboembolism. We also discuss emerging imaging approaches that may in the near future find clinical usefulness in improving diagnosis and prognostication as well as differentiating disease phenotypes.
Collapse
Affiliation(s)
- Farbod N. Rahaghi
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School. 15 Francis Street, Boston MA 02115, ; Phone: 617-632-6770
| | - Jasleen K. Minhas
- Department of Medicine, North Shore Medical Center, 81 highland Ave Salem MA 10970, Phone: 978-354-4801
| | - Gustavo A. Heresi
- Respiratory Institute, Cleveland Clinic, Mail code A90, 9500 Euclid Ave, OH 44195, Phone: 216-636-5327
| |
Collapse
|
35
|
Gallium-68: methodology and novel radiotracers for positron emission tomography (2012–2017). Pharm Pat Anal 2018; 7:193-227. [DOI: 10.4155/ppa-2018-0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Commercial 68Ge/68Ga generators provide a means to produce positron emission tomography agents on site without use of a cyclotron. This development has led to a rapid growth of academic literature and patents ongallium-68 (68Ga). As 68Ga positron emission tomography agents usually involve a targeting moiety attached to a metal chelator, the development lends itself to the investigation of theragnostic applications; the 68Ga-based diagnostic is utilized to determine if the biological target is present and, if so, a therapeutic isotope (e.g., 177Lu, 225Ac) can be complexed with the same scaffold to generate a corresponding radiotherapeutic. This review considers patents issued between 2012 and 2017 that contain a 68Ga-labeled molecule indexed by Chemical Abstract Services (a division of the American Chemical Society).
Collapse
|
36
|
Ta HT, Arndt N, Wu Y, Lim HJ, Landeen S, Zhang R, Kamato D, Little PJ, Whittaker AK, Xu ZP. Activatable magnetic resonance nanosensor as a potential imaging agent for detecting and discriminating thrombosis. NANOSCALE 2018; 10:15103-15115. [PMID: 30059122 DOI: 10.1039/c8nr05095c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The early detection and accurate characterization of life-threatening diseases such as cardiovascular disease and cancer are critical to the design of treatment. Knowing whether or not a thrombus in a blood vessel is new (fresh) or old (constituted) is very important for physicians to decide a treatment protocol. We have designed smart MRI nano-sensors that can detect, sense and report the stage or progression of cardiovascular diseases such as thrombosis. The nanosensors were functionalized with fibrin-binding peptide to specifically target thrombus and were also labelled with fluorescent dye to enable optical imaging. We have demonstrated that our nanosensors were able to switch between the T1 and T2 signal depending on thrombus age or the presence or absence of thrombin at the thrombus site. The developed nanosensors appeared to be non-toxic when tested with Chinese Hamster Ovarian cells within the tested concentrations. The working principle demonstrated in this study can be applied to many other diseases such as cancer.
Collapse
Affiliation(s)
- Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia. and School of Pharmacy, the University of Queensland, Brisbane, Queensland, Australia
| | - Nina Arndt
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia. and Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Yuao Wu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia. and School of Pharmacy, the University of Queensland, Brisbane, Queensland, Australia
| | - Hui Jean Lim
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia.
| | - Shea Landeen
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia. and Department of Biological Engineering, Massachusetts Institute of Technology, Boston, USA
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia.
| | - Danielle Kamato
- School of Pharmacy, the University of Queensland, Brisbane, Queensland, Australia
| | - Peter J Little
- School of Pharmacy, the University of Queensland, Brisbane, Queensland, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia. and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland, Australia and Centre of Advanced Imaging, the University of Queensland, Brisbane, Queensland, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
37
|
State-of-the-Art Imaging for the Evaluation of Pulmonary Embolism. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018; 20:71. [DOI: 10.1007/s11936-018-0671-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Bode C, von zur Mühlen C. MRI, the technology for imaging of thrombi and inflammation. Hamostaseologie 2017; 35:252-62. [DOI: 10.5482/hamo-14-11-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/13/2015] [Indexed: 11/05/2022] Open
Abstract
SummaryAtherosclerosis and its sequelae have a major impact on morbidity and mortality. The rupture of an inflamed atherosclerotic plaque is a crucial event, since it can result in acute thrombotic closure of an arterial vessel, resulting e. g. in myocardial infarction or stroke. Not only detection of early plaque rupture with imminent closure is therefore of clinical interest, but also timely detection of vascular inflammation and atherosclerotic plaque progression. However, plaque inflammation or even plaque rupture without vessel occlusion is not reliably detectable by current imaging techniques. Coronary angiography is the gold standard for evaluation of the coronary vessels, but only allows visualization of the vessel lumen without characterizing the important pathophysiology of the vessel wall. Therefore, highly inflamed and rupture prone plaques can be missed, or appear as a minor vessel narrowing. Although currently available techniques such as intravascular ultrasound or optical coherence tomography allow a further characterization of atherosclerotic plaques, it would be desirable to detect plaque inflammation, early plaque rupture or vascular thrombosis by non-invasive techniques such as magnetic resonance imaging (MRI), since they could allow early identification of patients at risk or triage of symptomatic patients.In this manuscript, different strategies for detection of vascular inflammation, plaque-rupture and thrombosis by MRI will be discussed, with a special focus on molecular imaging contrast agents.
Collapse
|
39
|
Abstract
The development of new methods to image the onset and progression of thrombosis is an unmet need. Non-invasive molecular imaging techniques targeting specific key structures involved in the formation of thrombosis have demonstrated the ability to detect thrombus in different disease state models and in patients. Due to its high concentration in the thrombus and its essential role in thrombus formation, the detection of fibrin is an attractive strategy for identification of thrombosis. Herein we provide an overview of recent and selected fibrin-targeted probes for molecular imaging of thrombosis by magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical techniques. Emphasis is placed on work that our lab has explored over the last 15 years that has resulted in the progression of the fibrin-binding PET probe [64Cu]FBP8 from preclinical studies into human trials.
Collapse
Affiliation(s)
- Bruno L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | | |
Collapse
|
40
|
Kang C, Gwon S, Song C, Kang PM, Park SC, Jeon J, Hwang DW, Lee D. Fibrin-Targeted and H 2O 2-Responsive Nanoparticles as a Theranostics for Thrombosed Vessels. ACS NANO 2017; 11:6194-6203. [PMID: 28481519 DOI: 10.1021/acsnano.7b02308] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A thrombus (blood clot) is formed in injured vessels to maintain the integrity of vasculature. However, obstruction of blood vessels by thrombosis slows blood flow, leading to death of tissues fed by the artery and is the main culprit of various life-threatening cardiovascular diseases. Herein, we report a rationally designed nanomedicine that could specifically image obstructed vessels and inhibit thrombus formation. On the basis of the physicochemical and biological characteristics of thrombi such as an abundance of fibrin and an elevated level of hydrogen peroxide (H2O2), we developed a fibrin-targeted imaging and antithrombotic nanomedicine, termed FTIAN, as a theranostic system for obstructive thrombosis. FTIAN inhibited the generation of H2O2 and suppressed the expression of tumor necrosis factor-alpha (TNF-α) and soluble CD40 ligand (sCD40L) in activated platelets, demonstrating its intrinsic antioxidant, anti-inflammatory, and antiplatelet activity. In a mouse model of ferric chloride (FeCl3)-induced carotid thrombosis, FTIAN specifically targeted the obstructive thrombus and significantly enhanced the fluorescence/photoacoustic signal. When loaded with the antiplatelet drug tirofiban, FTIAN remarkably suppressed thrombus formation. Given its thrombus-specific imaging along with excellent therapeutic activities, FTIAN offers tremendous translational potential as a nanotheranostic agent for obstructive thrombosis.
Collapse
Affiliation(s)
| | | | | | - Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Seong-Cheol Park
- Department of Polymer Engineering, Sunchon National University , Sunchon, Chonnam 540-950, Korea
| | - Jongho Jeon
- Advanced Radiation Technology Institute, Atomic Energy Research Institute , Jeongeup, Chonbuk 580-185, Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University College of Medicine , Seoul 151-742, Korea
| | | |
Collapse
|
41
|
Shea BS, Probst CK, Brazee PL, Rotile NJ, Blasi F, Weinreb PH, Black KE, Sosnovik DE, Van Cott EM, Violette SM, Caravan P, Tager AM. Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight 2017; 2:86608. [PMID: 28469072 PMCID: PMC5414562 DOI: 10.1172/jci.insight.86608] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Fibrotic lung disease, most notably idiopathic pulmonary fibrosis (IPF), is thought to result from aberrant wound-healing responses to repetitive lung injury. Increased vascular permeability is a cardinal response to tissue injury, but whether it is mechanistically linked to lung fibrosis is unknown. We previously described a model in which exaggeration of vascular leak after lung injury shifts the outcome of wound-healing responses from normal repair to pathological fibrosis. Here we report that the fibrosis produced in this model is highly dependent on thrombin activity and its downstream signaling pathways. Direct thrombin inhibition with dabigatran significantly inhibited protease-activated receptor-1 (PAR1) activation, integrin αvβ6 induction, TGF-β activation, and the development of pulmonary fibrosis in this vascular leak-dependent model. We used a potentially novel imaging method - ultashort echo time (UTE) lung magnetic resonance imaging (MRI) with the gadolinium-based, fibrin-specific probe EP-2104R - to directly visualize fibrin accumulation in injured mouse lungs, and to correlate the antifibrotic effects of dabigatran with attenuation of fibrin deposition. We found that inhibition of the profibrotic effects of thrombin can be uncoupled from inhibition of hemostasis, as therapeutic anticoagulation with warfarin failed to downregulate the PAR1/αvβ6/TGF-β axis or significantly protect against fibrosis. These findings have direct and important clinical implications, given recent findings that warfarin treatment is not beneficial in IPF, and the clinical availability of direct thrombin inhibitors that our data suggest could benefit these patients.
Collapse
Affiliation(s)
- Barry S. Shea
- Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island, USA
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - Patricia L. Brazee
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | | | - Francesco Blasi
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | | | - Katharine E. Black
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - David E. Sosnovik
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | - Elizabeth M. Van Cott
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| |
Collapse
|
42
|
Hara T, Ughi GJ, McCarthy JR, Erdem SS, Mauskapf A, Lyon SC, Fard AM, Edelman ER, Tearney GJ, Jaffer FA. Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo. Eur Heart J 2017; 38:447-455. [PMID: 26685129 PMCID: PMC5837565 DOI: 10.1093/eurheartj/ehv677] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/14/2015] [Accepted: 11/21/2015] [Indexed: 01/20/2023] Open
Abstract
AIMS Fibrin deposition and absent endothelium characterize unhealed stents that are at heightened risk of stent thrombosis. Optical coherence tomography (OCT) is increasingly used for assessing stent tissue coverage as a measure of healed stents, but cannot precisely identify whether overlying tissue represents physiological neointima. Here we assessed and compared fibrin deposition and persistence on bare metal stent (BMS) and drug-eluting stent (DES) using near-infrared fluorescence (NIRF) molecular imaging in vivo, in combination with simultaneous OCT stent coverage. METHODS AND RESULTS Rabbits underwent implantation of one BMS and one DES without overlap in the infrarenal aorta (N = 20 3.5 × 12 mm). At Days 7 and/or 28, intravascular NIRF-OCT was performed following the injection of fibrin-targeted NIRF molecular imaging agent FTP11-CyAm7. Intravascular NIRF-OCT enabled high-resolution imaging of fibrin overlying stent struts in vivo, as validated by histopathology. Compared with BMS, DES showed greater fibrin deposition and fibrin persistence at Days 7 and 28 (P < 0.01 vs. BMS). Notably, for edge stent struts identified as covered by OCT on Day 7, 92.8 ± 9.5% of DES and 55.8 ± 23.6% of BMS struts were NIRF fibrin positive (P < 0.001). At Day 28, 18.6 ± 10.6% (DES) and 5.1 ± 8.7% (BMS) of OCT-covered struts remained fibrin positive (P < 0.001). CONCLUSION Intravascular NIRF fibrin molecular imaging improves the detection of unhealed stents, using clinically translatable technology that complements OCT. A sizeable percentage of struts deemed covered by OCT are actually covered by fibrin, particularly in DES, and therefore such stents might remain prothrombotic. These findings have implications for the specificity of standalone clinical OCT assessments of stent healing.
Collapse
Affiliation(s)
- Tetsuya Hara
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giovanni J Ughi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason R McCarthy
- Center for System Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - S Sibel Erdem
- Center for System Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam Mauskapf
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha C Lyon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali M Fard
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Farouc A Jaffer
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Abstract
Thromboembolic disorders are a major cause of morbidity and mortality worldwide. The progress in noninvasive imaging techniques has led to the development of radionuclide imaging based on SPECT and PET approaches to observe molecular and cellular processes that may underlie the onset and progression of disease. The advantages of using normal and genetically modified small animal research have spurred the development of dedicated small animal imaging systems. Animal models of venous and arterial thrombosis are largely used and have improved our understanding of the etiology and pathogenesis of thrombosis. Here, we review the literature regarding nuclear imaging of thrombosis in mice and rats.
Collapse
Affiliation(s)
- Marie-Cécile Valéra
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,b Faculté de Chirurgie Dentaire, Université de Toulouse III , Toulouse , France
| | - Bernard Payrastre
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,c Laboratoire d'Hématologie CHU de Toulouse , Toulouse , France
| | - Olivier Lairez
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,d Fédération des services de cardiologie, Département de Médecine Nucléaire Centre d'imagerie cardiaque, CHU de Toulouse , Toulouse , France
| |
Collapse
|
44
|
Vistain LF, Rotz MW, Rathore R, Preslar AT, Meade TJ. Targeted delivery of gold nanoparticle contrast agents for reporting gene detection by magnetic resonance imaging. Chem Commun (Camb) 2016; 52:160-3. [PMID: 26505558 DOI: 10.1039/c5cc06565h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detection of protein expression by MRI requires a high payload of Gd(III) per protein binding event. Presented here is a targeted AuDNA nanoparticle capable of delivering several hundred Gd(III) chelates to the HaloTag reporter protein. Incubating this particle with HaloTag-expressing cells produced a 9.4 contrast-to-noise ratio compared to non-expressing cells.
Collapse
Affiliation(s)
- Luke F Vistain
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| | - Matthew W Rotz
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| | - Richa Rathore
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| | - Adam T Preslar
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| | - Thomas J Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| |
Collapse
|
45
|
Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models. Int J Mol Sci 2016; 17:ijms17091511. [PMID: 27618031 PMCID: PMC5037788 DOI: 10.3390/ijms17091511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies.
Collapse
|
46
|
Rezaeianpour S, Bozorgi AH, Moghimi A, Almasi A, Balalaie S, Ramezanpour S, Nasoohi S, Mazidi SM, Geramifar P, Bitarafan-Rajabi A, Shahhosseini S. Synthesis and Biological Evaluation of Cyclic [99mTc]-HYNIC-CGPRPPC as a Fibrin-Binding Peptide for Molecular Imaging of Thrombosis and Its Comparison with [99mTc]-HYNIC-GPRPP. Mol Imaging Biol 2016; 19:256-264. [DOI: 10.1007/s11307-016-1004-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging. Sci Rep 2016; 6:25044. [PMID: 27138487 PMCID: PMC4853725 DOI: 10.1038/srep25044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/08/2016] [Indexed: 01/04/2023] Open
Abstract
Early and reliable detection of pulmonary embolism (PE) is critical for improving patient morbidity and mortality. The desire for low-threshold screening for pulmonary embolism is contradicted by unfavorable radiation of currently used computed tomography or nuclear techniques, while standard magnetic resonance imaging still struggles to provide sufficient diagnostic sensitivity in the lung. In this study we evaluate a molecular-targeted contrast agent against activated platelets for non-invasive detection of murine pulmonary thromboembolism using magnetic resonance imaging. By intravenous injection of human thrombin, pulmonary thromboembolism were consistently induced as confirmed by immunohistochemistry of the lung. Magnetic resonance imaging after thrombin injection showed local tissue edema in weighted images which co-localized with the histological presence of pulmonary thromboembolism. Furthermore, injection of a functionalized contrast agent targeting activated platelets provided sensitive evidence of focal accumulation of activated platelets within the edematous area, which, ex vivo, correlated well with the size of the pulmonary embolism. In summary, we here show delivery and specific binding of a functionalized molecular contrast agent against activated platelets for targeting pulmonary thromboembolism. Going forward, molecular imaging may provide new opportunities to increase sensitivity of magnetic resonance imaging for detection of pulmonary embolism.
Collapse
|
48
|
Intravascular NIRF Molecular Imaging Approaches in Coronary Artery Disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2016; 9. [PMID: 30881585 DOI: 10.1007/s12410-016-9374-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Progression of vulnerable coronary atherosclerotic plaques underlies the majority of acute myocardial infarction and sudden cardiac death episodes. Recent advances in biological/molecular imaging technology are now enabling the accurate identification of high-risk plaques and stents in living subjects. Due to their smaller caliber and susceptibility to cardiorespiratory motion, noninvasive molecular imaging of human coronary arteries remains challenging. Therefore, intravascular high-resolution molecular imaging approaches appear necessary to resolve molecular features of human coronary arteries and stents. Here we present recent progress in intravascular near-infrared fluorescence (NIRF) molecular imaging, including the evolution from standalone NIRF systems to those integrated with structural imaging methods including optical coherence tomography and intravascular ultrasound. Preclinical demonstrations of imaging inflammation, fibrin, and endothelial impairment are highlighted. We then close with a discussion of translation of NIRF imaging to the cardiac catheterization laboratory and showcase first-in-human intracoronary imaging results of NIR autofluorescence in CAD.
Collapse
|
49
|
Chan LW, Wang X, Wei H, Pozzo LD, White NJ, Pun SH. A synthetic fibrin cross-linking polymer for modulating clot properties and inducing hemostasis. Sci Transl Med 2016; 7:277ra29. [PMID: 25739763 DOI: 10.1126/scitranslmed.3010383] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Clotting factor replacement is the standard management of acute bleeding in congenital and acquired bleeding disorders. We present a synthetic approach to hemostasis using an engineered hemostatic polymer (PolySTAT) that circulates innocuously in the blood, identifies sites of vascular injury, and promotes clot formation to stop bleeding. PolySTAT induces hemostasis by cross-linking the fibrin matrix within clots, mimicking the function of the transglutaminase factor XIII. Furthermore, synthetic PolySTAT binds specifically to fibrin monomers and is uniformly integrated into fibrin fibers during fibrin polymerization, resulting in a fortified, hybrid polymer network with enhanced resistance to enzymatic degradation. In vivo hemostatic activity was confirmed in a rat model of trauma and fluid resuscitation in which intravenous administration of PolySTAT improved survival by reducing blood loss and resuscitation fluid requirements. PolySTAT-induced fibrin cross-linking is a novel approach to hemostasis using synthetic polymers for noninvasive modulation of clot architecture with potentially wide-ranging therapeutic applications.
Collapse
Affiliation(s)
- Leslie W Chan
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue Northeast, Box 355061, Seattle, WA 98195, USA
| | - Xu Wang
- Division of Emergency Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hua Wei
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue Northeast, Box 355061, Seattle, WA 98195, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Nathan J White
- Division of Emergency Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue Northeast, Box 355061, Seattle, WA 98195, USA.
| |
Collapse
|
50
|
Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, Lee JM, Leiner T, Li KC, Nikolaou K, Prince MR, Schild HH, Weinreb JC, Yoshikawa K, Pietsch H. 25 Years of Contrast-Enhanced MRI: Developments, Current Challenges and Future Perspectives. Adv Ther 2016; 33:1-28. [PMID: 26809251 PMCID: PMC4735235 DOI: 10.1007/s12325-015-0275-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED In 1988, the first contrast agent specifically designed for magnetic resonance imaging (MRI), gadopentetate dimeglumine (Magnevist(®)), became available for clinical use. Since then, a plethora of studies have investigated the potential of MRI contrast agents for diagnostic imaging across the body, including the central nervous system, heart and circulation, breast, lungs, the gastrointestinal, genitourinary, musculoskeletal and lymphatic systems, and even the skin. Today, after 25 years of contrast-enhanced (CE-) MRI in clinical practice, the utility of this diagnostic imaging modality has expanded beyond initial expectations to become an essential tool for disease diagnosis and management worldwide. CE-MRI continues to evolve, with new techniques, advanced technologies, and novel contrast agents bringing exciting opportunities for more sensitive, targeted imaging and improved patient management, along with associated clinical challenges. This review aims to provide an overview on the history of MRI and contrast media development, to highlight certain key advances in the clinical development of CE-MRI, to outline current technical trends and clinical challenges, and to suggest some important future perspectives. FUNDING Bayer HealthCare.
Collapse
Affiliation(s)
- Jessica Lohrke
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany
| | - Thomas Frenzel
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany
| | - Jan Endrikat
- Global Medical Affairs Radiology, Bayer HealthCare, Berlin, Germany
- Saarland University Hospital, Homburg, Germany
| | | | - Thomas M Grist
- Radiology, Medical Physics and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Meng Law
- Radiology and Neurological Surgery, University of South California, Keck School of Medicine, USC University Hospital, Los Angeles, CA, USA
| | - Jeong Min Lee
- College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Tim Leiner
- Radiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Kun-Cheng Li
- Radiology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Konstantin Nikolaou
- Radiology, Ludwig-Maximilians University, University Hospitals, Munich, Germany
| | - Martin R Prince
- Radiology, Weill Cornell Medical College, New York, NY, USA
- Columbia College of Physicians and Surgeons, New York, NY, USA
| | | | | | - Kohki Yoshikawa
- Graduate Division of Medical Health Sciences, Graduate School of Komazawa University, Tokyo, Japan
| | - Hubertus Pietsch
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany.
| |
Collapse
|