1
|
Kanal E, Maki JH, Schramm P, Marti‐Bonmati L. Evolving Characteristics of Gadolinium-Based Contrast Agents for MR Imaging: A Systematic Review of the Importance of Relaxivity. J Magn Reson Imaging 2025; 61:52-69. [PMID: 38699938 PMCID: PMC11645498 DOI: 10.1002/jmri.29367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) are widely and routinely used to enhance the diagnostic performance of magnetic resonance imaging and magnetic resonance angiography examinations. T1 relaxivity (r1) is the measure of their ability to increase signal intensity in tissues and blood on T1-weighted images at a given dose. Pharmaceutical companies have invested in the design and development of GBCAs with higher and higher T1 relaxivity values, and "high relaxivity" is a claim frequently used to promote GBCAs, with no clear definition of what "high relaxivity" means, or general concurrence about its clinical benefit. To understand whether higher relaxivity values translate into a material clinical benefit, well-designed, and properly powered clinical studies are necessary, while mere in vitro measurements may be misleading. This systematic review of relevant peer-reviewed literature provides high-quality clinical evidence showing that a difference in relaxivity of at least 40% between two GBCAs results in superior diagnostic efficacy for the higher-relaxivity agent when this is used at the same equimolar gadolinium dose as the lower-relaxivity agent, or similar imaging performance when used at a lower dose. Either outcome clearly implies a relevant clinical benefit. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Emanuel Kanal
- Department of RadiologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
- Division of Emergency RadiologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Jeffrey H. Maki
- Department of RadiologyUniversity of Colorado Anschutz Medical CenterAuroraColoradoUSA
| | - Peter Schramm
- Department of NeuroradiologyUniversity Luebeck and Universitaetsklinikum Schleswig‐Holstein Campus LuebeckLuebeckGermany
| | - Luis Marti‐Bonmati
- Department of Radiology and GIBI230 Research Group on Biomedical ImagingHospital Universitario y Politécnico de La Fe and Instituto de Investigación Sanitaria La FeValenciaSpain
| |
Collapse
|
2
|
Zhang D, Zhang J, Bian X, Zhang P, Wu W, Zuo X. Iron Oxide Nanoparticle-Based T 1 Contrast Agents for Magnetic Resonance Imaging: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:33. [PMID: 39791792 PMCID: PMC11722098 DOI: 10.3390/nano15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
This review highlights recent progress in utilizing iron oxide nanoparticles (IONPs) as a safer alternative to gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI). It consolidates findings from multiple studies, discussing current T1 contrast agents (CAs), the synthesis techniques for IONPs, the theoretical principles for designing IONP-based MRI CAs, and the key factors that impact their T1 contrast efficacy, such as nanoparticle size, morphology, surface modifications, valence states, and oxygen vacancies. Furthermore, we summarize current strategies to achieve IONP-based responsive CAs, including self-assembly/disassembly and distance adjustment. This review also evaluates the biocompatibility, organ accumulation, and clearance pathways of IONPs for clinical applications. Finally, the challenges associated with the clinical translation of IONP-based T1 CAs are included.
Collapse
Affiliation(s)
- Dongmei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Jing Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xianglin Bian
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Pei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Weihua Wu
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xudong Zuo
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
- The Jiangsu Key Laboratory of Clean Energy Storage and Conversion, Jiangsu University of Technology, Changzhou 213100, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Shahsavari S, Rad MB, Hajiaghajani A, Rostami M, Hakimian F, Jafarzadeh S, Hasany M, Collingwood JF, Aliakbari F, Fouladiha H, Bardania H, Otzen DE, Morshedi D. Magnetoresponsive liposomes applications in nanomedicine: A comprehensive review. Biomed Pharmacother 2024; 181:117665. [PMID: 39541790 DOI: 10.1016/j.biopha.2024.117665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Safe and effective cancer therapy requires a suitable nanocarrier that can target particular sites, such as cancer cells, in a selective manner. With the tremendous growth in nanotechnology, liposomes, among various competing nanocarriers, have shown promising advances in cancer therapy. Magnetic nanoparticles and metal ions are wide-reaching candidates for conferring magnetic properties and for incorporation into liposomes. Combining liposomes with magnetic structures enables construction of magnetoresponsive liposomes, allowing stimuli-responsiveness to an alternating magnetic field, magnetic targeting, and tracking by magnetic resonance imaging, which could all occur in parallel. This review presents a comprehensive analysis of the practical advances and novel aspects of design, synthesis and engineering magnetoresponsive liposomes, emphasizing their diverse properties for various applications. Our work explores the innovative uses of these structures, extending beyond drug delivery to include smart contrast agents, cell labeling, biosensing, separation, and filtering. By comparing new findings with earlier studies, we showcase significant improvements in efficiency and uncover new potentials, setting a new benchmark for future research in the field of magnetoresponsive liposomes.
Collapse
Affiliation(s)
- Shayan Shahsavari
- Iran Nanotechnology Innovation Council, Nanoclub Elites Association, Tehran, Iran
| | - Mohammad Behnam Rad
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Amirhossein Hajiaghajani
- School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | | | - Fatemeh Hakimian
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, Lyngby 2800 Kgs, Denmark
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| | | | - Farhang Aliakbari
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran; Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Hamideh Fouladiha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, Aarhus C DK-8000, Denmark.
| | - Dina Morshedi
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran.
| |
Collapse
|
4
|
Muslu Y, Tamada D, Roberts NT, Cashen TA, Mandava S, Kecskemeti SR, Hernando D, Reeder SB. Free-breathing, fat-corrected T 1 mapping of the liver with stack-of-stars MRI, and joint estimation of T 1, PDFF, R 2 * , and B 1 + . Magn Reson Med 2024; 92:1913-1932. [PMID: 38923009 DOI: 10.1002/mrm.30182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Quantitative T1 mapping has the potential to replace biopsy for noninvasive diagnosis and quantitative staging of chronic liver disease. Conventional T1 mapping methods are confounded by fat andB 1 + $$ {B}_1^{+} $$ inhomogeneities, resulting in unreliable T1 estimations. Furthermore, these methods trade off spatial resolution and volumetric coverage for shorter acquisitions with only a few images obtained within a breath-hold. This work proposes a novel, volumetric (3D), free-breathing T1 mapping method to account for multiple confounding factors in a single acquisition. THEORY AND METHODS Free-breathing, confounder-corrected T1 mapping was achieved through the combination of non-Cartesian imaging, magnetization preparation, chemical shift encoding, and a variable flip angle acquisition. A subspace-constrained, locally low-rank image reconstruction algorithm was employed for image reconstruction. The accuracy of the proposed method was evaluated through numerical simulations and phantom experiments with a T1/proton density fat fraction phantom at 3.0 T. Further, the feasibility of the proposed method was investigated through contrast-enhanced imaging in healthy volunteers, also at 3.0 T. RESULTS The method showed excellent agreement with reference measurements in phantoms across a wide range of T1 values (200 to 1000 ms, slope = 0.998 (95% confidence interval (CI) [0.963 to 1.035]), intercept = 27.1 ms (95% CI [0.4 54.6]), r2 = 0.996), and a high level of repeatability. In vivo imaging studies demonstrated moderate agreement (slope = 1.099 (95% CI [1.067 to 1.132]), intercept = -96.3 ms (95% CI [-82.1 to -110.5]), r2 = 0.981) compared to saturation recovery-based T1 maps. CONCLUSION The proposed method produces whole-liver, confounder-corrected T1 maps through simultaneous estimation of T1, proton density fat fraction, andB 1 + $$ {B}_1^{+} $$ in a single, free-breathing acquisition and has excellent agreement with reference measurements in phantoms.
Collapse
Affiliation(s)
- Yavuz Muslu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daiki Tamada
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | - Diego Hernando
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Emergency Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Vymazal J, Rulseh AM. MRI contrast agents and retention in the brain: review of contemporary knowledge and recommendations to the future. Insights Imaging 2024; 15:179. [PMID: 39060665 PMCID: PMC11282029 DOI: 10.1186/s13244-024-01763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Gadolinium-based contrast agents (GBCA) were introduced with high expectations for favorable efficacy, low nephrotoxicity, and minimal allergic-like reactions. Nephrogenic systemic fibrosis and proven gadolinium retention in the body including the brain has led to the restriction of linear GBCAs and a more prudent approach regarding GBCA indication and dosing. In this review, we present the chemical, physical, and clinical aspects of this topic and aim to provide an equanimous and comprehensive summary of contemporary knowledge with a perspective of the future. In the first part of the review, we present various elements and compounds that may serve as MRI contrast agents. Several GBCAs are further discussed with consideration of their relaxivity, chelate structure, and stability. Gadolinium retention in the brain is explored including correlation with the presence of metalloprotein ferritin in the same regions where visible hyperintensity on unenhanced T1-weighted imaging occurs. Proven interaction between ferritin and gadolinium released from GBCAs is introduced and discussed, as well as the interaction of other elements with ferritin; and manganese in patients with impaired liver function or calcium in Fahr disease. We further present the concept that only high-molecular-weight forms of gadolinium can likely visibly change signal intensity on unenhanced T1-weighted imaging. Clinical data are also presented with respect to potential neurological manifestations originating from the deep-brain nuclei. Finally, new contrast agents with relatively high relaxivity and stability are introduced. CRITICAL RELEVANCE STATEMENT: GBCA may accumulate in the brain, especially in ferritin-rich areas; however, no adverse neurological manifestations have been detected in relation to gadolinium retention. KEY POINTS: Gadolinium currently serves as the basis for MRI contrast agents used clinically. No adverse neurological manifestations have been detected in relation to gadolinium retention. Future contrast agents must advance chelate stability and relativity, facilitating lower doses.
Collapse
Affiliation(s)
- Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Roentgenova 2, Prague, 150 30, Czech Republic
| | - Aaron M Rulseh
- Department of Radiology, Na Homolce Hospital, Roentgenova 2, Prague, 150 30, Czech Republic.
| |
Collapse
|
6
|
Nucera A, Macchia ML, Baranyai Z, Carniato F, Tei L, Ravera M, Botta M. Comprehensive Investigation of [Fe(EDTA)] --Functionalized Derivatives and their Supramolecular Adducts with Human Serum Albumin. Inorg Chem 2024; 63:12992-13004. [PMID: 38949627 DOI: 10.1021/acs.inorgchem.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In recent years, the coordination chemistry of high-spin Fe(III) complexes has increasingly attracted interest due to their potential as effective alternatives to Gd(III)-based MRI contrast agents. This paper discusses the results from our study on Fe(III) complexes with two EDTA derivatives, each modified with either one (EDTA-BOM) or two (EDTA-BOM2) benzyloxymethylene (BOM) groups on the acetic arm(s). These pendant hydrophobic groups enable the complexes to form noncovalent adducts with human serum albumin (HSA), leading to an observed increase in relaxivity due to the reduction in molecular tumbling. Our research involved detailed relaxometric measurements and analyses of both 1H and 17O NMR data at varying temperatures and magnetic field strengths, which is conducted with and without the presence of a protein. A significant finding of this study is the effect of electronic relaxation time on the effectiveness of [Fe(EDTA-BOM)(H2O)]- and [Fe(EDTA-BOM2)(H2O)]- as diagnostic MRI probes. By integrating these relaxometric results with comprehensive thermodynamic, kinetic, and electrochemical data, we have thoroughly characterized how structural modifications to the EDTA base ligand influence the properties of the complexes.
Collapse
Affiliation(s)
- Alessandro Nucera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Maria Ludovica Macchia
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, Basovizza, TS 34149, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
- Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
- Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| |
Collapse
|
7
|
Bennett S, Verry C, Kaza E, Miao X, Dufort S, Boux F, Crémillieux Y, de Beaumont O, Le Duc G, Berbeco R, Sudhyadhom A. Quantifying gadolinium-based nanoparticle uptake distributions in brain metastases via magnetic resonance imaging. Sci Rep 2024; 14:11959. [PMID: 38796495 PMCID: PMC11128019 DOI: 10.1038/s41598-024-62389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
AGuIX, a novel gadolinium-based nanoparticle, has been deployed in a pioneering double-blinded Phase II clinical trial aiming to assess its efficacy in enhancing radiotherapy for tumor treatment. This paper moves towards this goal by analyzing AGuIX uptake patterns in 23 patients. A phantom was designed to establish the relationship between AGuIX concentration and longitudinal ( T 1 ) relaxation. A 3T MRI and MP2RAGE sequence were used to generate patient T 1 maps. AGuIX uptake in tumors was determined based on longitudinal relaxivity. AGuIX (or placebo) was administered to 23 patients intravenously at 100 mg/kg 1-5 hours pre-imaging. Each of 129 brain metastases across 23 patients were captured in T 1 maps and examined for AGuIX uptake and distribution. Inferred AGuIX recipients had average tumor uptakes between 0.012 and 0.17 mg/ml, with a mean of 0.055 mg/ml. Suspected placebo recipients appeared to have no appreciable uptake. Tumors presented with varying spatial AGuIX uptake distributions, suspected to be related to differences in accumulation time and patient-specific bioaccumulation factors. This research demonstrates AGuIX's ability to accumulate in brain metastases, with quantifiable uptake via T 1 mapping. Future analyses will extend these methods to complete clinical trial data (~ 134 patients) to evaluate the potential relationship between nanoparticle uptake and possible tumor response following radiotherapy.Clinical Trial Registration Number: NCT04899908.Clinical Trial Registration Date: 25/05/2021.
Collapse
Affiliation(s)
- Stephanie Bennett
- Brigham and Women's Hospital|Dana-Farber Cancer Institute|Harvard Medical School, Boston, MA, USA.
| | - Camille Verry
- Université Grenoble Alpes, CHU Grenoble Alpes, Service de Radiothérapie, Inserm UA7, Grenoble, France
| | - Evangelia Kaza
- Brigham and Women's Hospital|Dana-Farber Cancer Institute|Harvard Medical School, Boston, MA, USA
| | - Xin Miao
- Siemens Medical Solutions USA Inc., Malvern, PA, USA
| | | | | | - Yannick Crémillieux
- NH TherAguix SA, Meylan, France
- Institut des Sciences Moléculaires, UMR5255, Université de Bordeaux, Bordeaux, France
| | | | | | - Ross Berbeco
- Brigham and Women's Hospital|Dana-Farber Cancer Institute|Harvard Medical School, Boston, MA, USA
| | - Atchar Sudhyadhom
- Brigham and Women's Hospital|Dana-Farber Cancer Institute|Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
9
|
Nicasy RJK, Waldner C, Erich SJF, Adan OCG, Hirn U, Huinink HP. Liquid uptake in porous cellulose sheets studied with UFI-NMR: Penetration, swelling and air displacement. Carbohydr Polym 2024; 326:121615. [PMID: 38142096 DOI: 10.1016/j.carbpol.2023.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/25/2023]
Abstract
Liquid penetration in porous cellulosic materials is crucial in many technological fields. The complex geometry, small pore size, and often fast timescale of liquid uptake makes the process hard to capture. Effects such as swelling, vapor transport, film flow and water transport within cellulosic material makes transport deviate from well-known relations such as Lucas-Washburn and Darcy's Law. In this work it is demonstrated how Ultra-Fast Imaging NMR can be used to simultaneously monitor the liquid distribution and swelling during capillary uptake of water with a temporal- and spatial resolution of 10 ms and 14.5-18 μm respectively. The measurements show that in a cellulose fiber sheet, within the first 65 ms, liquid first penetrates the whole sheet before swelling takes place for another 30 s. Furthermore, it was observed that the liquid front traps 15 v% of air which is slowly replaced by water during the final stage of liquid uptake. Our method makes it possible to simultaneously quantify the concentration of all three phases (solid, liquid and air) within porous materials during processes exceeding 50 ms (5 times the temporal resolution). We hence believe that the proposed method should also be useful to study liquid penetration, or water diffusion, into other porous cellulosic materials like foams, membranes, nonwovens, textiles and films.
Collapse
Affiliation(s)
- R J K Nicasy
- Eindhoven University of Technology, Applied Physics Department, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.
| | - C Waldner
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, 8010 Graz, Austria; CD Laboratory for Fiber Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria
| | - S J F Erich
- Eindhoven University of Technology, Applied Physics Department, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands; Organization of Applied Scientific Research, TNO, P.O. Box 49, Delft, 2600 AA, the Netherlands.
| | - O C G Adan
- Eindhoven University of Technology, Applied Physics Department, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands; Organization of Applied Scientific Research, TNO, P.O. Box 49, Delft, 2600 AA, the Netherlands.
| | - U Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, 8010 Graz, Austria; CD Laboratory for Fiber Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria.
| | - H P Huinink
- Eindhoven University of Technology, Applied Physics Department, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.
| |
Collapse
|
10
|
Sung B, Hwang D, Baek A, Yang B, Lee S, Park J, Kim E, Kim M, Lee E, Chang Y. Gadolinium-Based Magnetic Resonance Theranostic Agent with Gallic Acid as an Anti-Neuroinflammatory and Antioxidant Agent. Antioxidants (Basel) 2024; 13:204. [PMID: 38397802 PMCID: PMC10885874 DOI: 10.3390/antiox13020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Studies in the field have actively pursued the incorporation of diverse biological functionalities into gadolinium-based contrast agents, aiming at the amalgamation of MRI imaging and therapeutic capabilities. In this research, we present the development of Gd-Ga, an anti-neuroinflammatory MR contrast agent strategically designed to target inflammatory mediators for comprehensive imaging diagnosis and targeted lesion treatment. Gd-Ga is a gadolinium complex composed of 1,4,7-tris(carboxymethylaza)cyclododecane-10-azaacetylamide (DO3A) conjugated with gallic acid (3,4,5-trihydroxybenzoic acid). Upon intravenous administration in LPS-induced mouse models, Gd-Ga demonstrated a remarkable three-fold increase in signal-to-noise (SNR) variation compared to Gd-DOTA, particularly evident in both the cortex and hippocampus 30 min post-MR monitoring. In-depth investigations, both in vitro and in vivo, into the anti-neuroinflammatory properties of Gd-Ga revealed significantly reduced protein expression levels of pro-inflammatory mediators compared to the LPS group. The alignment between in silico predictions and phantom studies indicates that Gd-Ga acts as an anti-neuroinflammatory agent by directly binding to MD2. Additionally, the robust antioxidant activity of Gd-Ga was confirmed by its effective scavenging of NO and ROS. Our collective findings emphasize the immense potential of this theranostic complex, where a polyphenol serves as an anti-inflammatory drug, presenting an exceptionally efficient platform for the diagnosis and treatment of neuroinflammation.
Collapse
Affiliation(s)
- Bokyung Sung
- ICT Convergence Research Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea;
| | - Dongwook Hwang
- Department of Biomedical Science, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- Theranocure Co., Ltd., 90 Chilgokjungang-daero 136-gil, Buk-gu, Daegu 41405, Republic of Korea; (B.Y.); (S.L.)
| | - Ahrum Baek
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (A.B.); (E.L.)
| | - Byeongwoo Yang
- Theranocure Co., Ltd., 90 Chilgokjungang-daero 136-gil, Buk-gu, Daegu 41405, Republic of Korea; (B.Y.); (S.L.)
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sangyun Lee
- Theranocure Co., Ltd., 90 Chilgokjungang-daero 136-gil, Buk-gu, Daegu 41405, Republic of Korea; (B.Y.); (S.L.)
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jangwoo Park
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; (J.P.); (E.K.)
| | - Eunji Kim
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; (J.P.); (E.K.)
- Center for Data Analytics Innovation, Office of National R&D Evaluation and Analysis, Korea Institute of S&T Evaluation and Planning, 1339, Wonjung-ro, Maengdong-myeon, Eumseong-gun 27740, Republic of Korea
| | - Minsup Kim
- TARS Scientific, Nowon-gu, Seoul 01662, Republic of Korea;
| | - Eunshil Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (A.B.); (E.L.)
| | - Yongmin Chang
- Department of Biomedical Science, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (A.B.); (E.L.)
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Guchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
11
|
Li D, Kirberger M, Qiao J, Gui Z, Xue S, Pu F, Jiang J, Xu Y, Tan S, Salarian M, Ibhagui O, Hekmatyar K, Yang JJ. Protein MRI Contrast Agents as an Effective Approach for Precision Molecular Imaging. Invest Radiol 2024; 59:170-186. [PMID: 38180819 DOI: 10.1097/rli.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
ABSTRACT Cancer and other acute and chronic diseases are results of perturbations of common molecular determinants in key biological and signaling processes. Imaging is critical for characterizing dynamic changes in tumors and metastases, the tumor microenvironment, tumor-stroma interactions, and drug targets, at multiscale levels. Magnetic resonance imaging (MRI) has emerged to be a primary imaging modality for both clinical and preclinical applications due to its advantages over other modalities, including sensitivity to soft tissues, nondepth limitations, and the use of nonionizing radiation. However, extending the application of MRI to achieve both qualitative and quantitative precise molecular imaging with the capability to quantify molecular biomarkers for early detection, staging, and monitoring therapeutic treatment requires the capacity to overcome several major challenges including the trade-off between metal-binding affinity and relaxivity, which is an issue frequently associated with small chelator contrast agents. In this review, we will introduce the criteria of ideal contrast agents for precision molecular imaging and discuss the relaxivity of current contrast agents with defined first shell coordination water molecules. We will then report our advances in creating a new class of protein-targeted MRI contrast agents (ProCAs) with contributions to relaxivity largely derived from the secondary sphere and correlation time. We will summarize our rationale, design strategy, and approaches to the development and optimization of our pioneering ProCAs with desired high relaxivity, metal stability, and molecular biomarker-targeting capability, for precision MRI. From first generation (ProCA1) to third generation (ProCA32), we have achieved dual high r1 and r2 values that are 6- to 10-fold higher than clinically approved contrast agents at magnetic fields of 1.5 T, and their relaxivity values at high field are also significantly higher, which enables high resolution during small animal imaging. Further engineering of multiple targeting moieties enables ProCA32 agents that have strong biomarker-binding affinity and specificity for an array of key molecular biomarkers associated with various chronic diseases, while maintaining relaxation and exceptional metal-binding and selectivity, serum stability, and resistance to transmetallation, which are critical in mitigating risks associated with metal toxicity. Our leading product ProCA32.collagen has enabled the first early detection of liver metastasis from multiple cancers at early stages by mapping the tumor environment and early stage of fibrosis from liver and lung in vivo, with strong translational potential to extend to precision MRI for preclinical and clinical applications for precision diagnosis and treatment.
Collapse
Affiliation(s)
- Dongjun Li
- From the Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Department of Chemistry, Georgia State University, Atlanta, GA (D.L., M.K., J.Q., Z.G., S.X., P.F., J.J., S.T., M.S., O.I., K.H., J.J.Y.); and InLighta BioSciences, LLC, Marietta, GA (Y.X., J.J.Y)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang LLW, Gao Y, Chandran Suja V, Boucher ML, Shaha S, Kapate N, Liao R, Sun T, Kumbhojkar N, Prakash S, Clegg JR, Warren K, Janes M, Park KS, Dunne M, Ilelaboye B, Lu A, Darko S, Jaimes C, Mannix R, Mitragotri S. Preclinical characterization of macrophage-adhering gadolinium micropatches for MRI contrast after traumatic brain injury in pigs. Sci Transl Med 2024; 16:eadk5413. [PMID: 38170792 DOI: 10.1126/scitranslmed.adk5413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
The choroid plexus (ChP) of the brain plays a central role in orchestrating the recruitment of peripheral leukocytes into the central nervous system (CNS) through the blood-cerebrospinal fluid (BCSF) barrier in pathological conditions, thus offering a unique niche to diagnose CNS disorders. We explored whether magnetic resonance imaging of the ChP could be optimized for mild traumatic brain injury (mTBI). mTBI induces subtle, yet influential, changes in the brain and is currently severely underdiagnosed. We hypothesized that mTBI induces sufficient alterations in the ChP to cause infiltration of circulating leukocytes through the BCSF barrier and developed macrophage-adhering gadolinium [Gd(III)]-loaded anisotropic micropatches (GLAMs), specifically designed to image infiltrating immune cells. GLAMs are hydrogel-based discoidal microparticles that adhere to macrophages without phagocytosis. We present a fabrication process to prepare GLAMs at scale and demonstrate their loading with Gd(III) at high relaxivities, a key indicator of their effectiveness in enhancing image contrast and clarity in medical imaging. In vitro experiments with primary murine and porcine macrophages demonstrated that GLAMs adhere to macrophages also under shear stress and did not affect macrophage viability or functions. Studies in a porcine mTBI model confirmed that intravenously administered macrophage-adhering GLAMs provide a differential signal in the ChP and lateral ventricles at Gd(III) doses 500- to 1000-fold lower than those used in the current clinical standard Gadavist. Under the same mTBI conditions, Gadavist did not offer a differential signal at clinically used doses. Our results suggest that macrophage-adhering GLAMs could facilitate mTBI diagnosis.
Collapse
Affiliation(s)
- Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Vineeth Chandran Suja
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Masen L Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Suyog Shaha
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rick Liao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Supriya Prakash
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - John R Clegg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Kaitlyn Warren
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Morgan Janes
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyung Soo Park
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Michael Dunne
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| | - Bolu Ilelaboye
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Andrew Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Solomina Darko
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
| | - Camilo Jaimes
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Emergency Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 20115, USA
| |
Collapse
|
13
|
Anbu S, Kenning L, Stasiuk GJ. ATP-responsive Mn(II)-based T1 contrast agent for MRI. Chem Commun (Camb) 2023; 59:13623-13626. [PMID: 37902503 PMCID: PMC10644988 DOI: 10.1039/d3cc03430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
A novel diacetylpyridylcarbohydrazide-DAPyCOHz-based manganese(II) chelate with dipicolylamine/zinc(II) (DPA/Zn2+) arms (MnLDPA-Zn2) was developed for adenosine triphosphate (ATP) responsive magnetic resonance imaging (MRI) T1 contrast applications. Compound 2 shows enhanced relaxivity (r1 = 11.52 mM-1 s-1) upon selective ATP binding over other phosphates.
Collapse
Affiliation(s)
- Sellamuthu Anbu
- Departments of Chemistry and Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lawerence Kenning
- MRI Centre, Royal Infirmary Hospital NHS Trust, Anlaby Road, Hull, HU3 2JZ, UK
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Fourth Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
14
|
Peng Y, Li Y, Li L, Xie M, Wang Y, Butch CJ. Coating influence on inner shell water exchange: An underinvestigated major contributor to SPIONs relaxation properties. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102713. [PMID: 37839694 DOI: 10.1016/j.nano.2023.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are heavily studied as potential MRI contrast enhancing agents. Every year, novel coatings are reported which yield large increases in relaxivity compared to similar particles. However, the reason for the increased performance is not always well understood mechanistically. In this review, we attempt to relate these advances back to fundamental models of relaxivity, developed for chelated metal ions, primarily gadolinium. We focus most closely on the three-shell model which considers the relaxation of surface-bound, entrained, and bulk water molecules as three distinct contributions to total relaxation. Because SPIONs are larger, more complex, and entrain significantly more water than gadolinium-based contrast agents, we consider how to adapt the application of classical models to SPIONs in a predictive manner. By carefully considering models and previous results, a qualitative model of entrained water interactions emerges, based primarily on the contributions of core size, coating thickness, density, and hydrophilicity.
Collapse
Affiliation(s)
- Yusong Peng
- Department of Material Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Yunlong Li
- Department of Material Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Li Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Manman Xie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China.
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
15
|
Maier KB, Rust LN, Kupara CI, Woods M. Diastereoselective Synthesis of α-Aryl-Substituted LnDOTA Chelates from Achiral Starting Materials by Deracemization Under Mild Conditions. Chemistry 2023; 29:e202301887. [PMID: 37519104 DOI: 10.1002/chem.202301887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Substituted derivatives of the DOTA framework are of general interest to alter chelate properties and facilitate the conjugation of chelates to other molecular structures. However, the scope of substituents that can be introduced into the α-position has traditionally been limited by the availability of a suitable enantiopure starting materials to facilitate a stereoselective synthesis. Tetra-substituted DOTA derivatives with phenyl and benzoate substituents in the α-position have been prepared. Initial syntheses used enantiopure starting materials but did not afford enantiopure products. This indicates that the integrity of the stereocenters was not preserved during synthesis, despite the homo-chiral diastereoisomer being the major reaction product. The homochiral diastereoisomer could be produced as the major or sole reaction product when starting from racemic or even achiral materials. Deracemization was found to occur during chelation through the formation of an enolate stabilized by the aryl substituent. This general ability of aryl groups to enable deracemization greatly increases the range of substituents that can be introduced into DOTA-type ligands with diastereochemical selectivity.
Collapse
Affiliation(s)
- Karley B Maier
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
| | - Lauren N Rust
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
| | - Charlene I Kupara
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
| | - Mark Woods
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
- Advanced Imaging Research Center, Oregon Health and Science University, 1381 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
16
|
Ernenwein D, Geisler I, Pavlishchuk A, Chmielewski J. Metal-Assembled Collagen Peptide Microflorettes as Magnetic Resonance Imaging Agents. Molecules 2023; 28:molecules28072953. [PMID: 37049716 PMCID: PMC10095756 DOI: 10.3390/molecules28072953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a medical imaging technique that provides detailed information on tissues and organs. However, the low sensitivity of the technique requires the use of contrast agents, usually ones that are based on the chelates of gadolinium ions. In an effort to improve MRI signal intensity, we developed two strategies whereby the ligand DOTA and Gd(III) ions are contained within Zn(II)-promoted collagen peptide (NCoH) supramolecular assemblies. The DOTA moiety was included in the assembly either via a collagen peptide sidechain (NHdota) or through metal–ligand interactions with a His-tagged DOTA conjugate (DOTA-His6). SEM verified that the morphology of the NCoH assembly was maintained in the presence of the DOTA-containing peptides (microflorettes), and EDX and ICP-MS confirmed that Gd(III) ions were incorporated within the microflorettes. The Gd(III)-loaded DOTA florettes demonstrated higher intensities for the T1-weighted MRI signal and higher longitudinal relaxivity (r1) values, as compared to the clinically used contrast agent Magnevist. Additionally, no appreciable cellular toxicity was observed with the collagen microflorettes loaded with Gd(III). Overall, two peptide-based materials were generated that have potential as MRI contrast agents.
Collapse
|
17
|
Du H, Wang Q, Liang Z, Li Q, Li F, Ling D. Fabrication of magnetic nanoprobes for ultrahigh-field magnetic resonance imaging. NANOSCALE 2022; 14:17483-17499. [PMID: 36413075 DOI: 10.1039/d2nr04979a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrahigh-field magnetic resonance imaging (UHF-MRI) has been attracting tremendous attention in biomedical imaging owing to its high signal-to-noise ratio, superior spatial resolution, and fast imaging speed. However, at UHF-MRI, there is a lack of proper imaging probes that can impart superior imaging sensitivity of disease lesions because conventional contrast agents generally produce pronounced susceptibility artifacts and induce very strong T2 decay effects, thus hindering satisfactory imaging performance. This review focused on the recent development of high-performance nanoprobes that can improve the sensitivity and specificity of UHF-MRI. Firstly, the contrast enhancement mechanism of nanoprobes at UHF-MRI has been elucidated. In particular, the strategies for modulating nanoprobe performance, including size effects, metal alloying and magnetic-dopant effects, surface effects, and stimuli-response regulation, have been comprehensively discussed. Furthermore, we illustrate the remarkable advances in the design of UHF-MRI nanoprobes for medical diagnosis, such as early-stage primary tumor and metastasis imaging, angiography, and dynamic monitoring of biosignaling factors in vivo. Finally, we provide a summary and outlook on the development of cutting-edge UHF-MRI nanoprobes for advanced biomedical imaging.
Collapse
Affiliation(s)
- Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Qilong Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| |
Collapse
|
18
|
MRI Contrast Agents in Glycobiology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238297. [PMID: 36500389 PMCID: PMC9735696 DOI: 10.3390/molecules27238297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Molecular recognition involving glycoprotein-mediated interactions is ubiquitous in both normal and pathological natural processes. Therefore, visualization of these interactions and the extent of expression of the sugars is a challenge in medical diagnosis, monitoring of therapy, and drug design. Here, we review the literature on the development and validation of probes for magnetic resonance imaging using carbohydrates either as targeting vectors or as a target. Lectins are important targeting vectors for carbohydrate end groups, whereas selectins, the asialoglycoprotein receptor, sialic acid end groups, hyaluronic acid, and glycated serum and hemoglobin are interesting carbohydrate targets.
Collapse
|
19
|
Li Y, Gao S, Jiang H, Ayat N, Laney V, Nicolescu C, Sun W, Tweedle MF, Lu ZR. Evaluation of Physicochemical Properties, Pharmacokinetics, Biodistribution, Toxicity, and Contrast-Enhanced Cancer MRI of a Cancer-Targeting Contrast Agent, MT218. Invest Radiol 2022; 57:639-654. [PMID: 35703463 PMCID: PMC9444296 DOI: 10.1097/rli.0000000000000881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/12/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Preclinical assessments were performed according to the US Food and Drug Administration guidelines to determine the physicochemical properties, pharmacokinetics, clearance, safety, and tumor-specific magnetic resonance (MR) imaging of MT218, a peptidic gadolinium-based MR imaging agent targeting to extradomain B fibronectin for MR molecular imaging of aggressive tumors. MATERIALS AND METHODS Relaxivity, chelation stability, binding affinity, safety-related target profiling, and effects on CYP450 enzymes and transporters were evaluated in vitro. Magnetic resonance imaging was performed with rats bearing prostate cancer xenografts, immunocompetent mice bearing murine pancreatic cancer allografts, and mice bearing lung cancer xenografts at different doses of MT218. Pharmacological effects on cardiovascular, respiratory, and central nervous systems were determined in rats and conscious beagle dogs. Pharmacokinetics were tested in rats and dogs. Biodistribution and excretion were studied in rats. Single and repeated dosing toxicity was evaluated in rats and dogs. In vitro and in vivo genotoxicity, in vitro hemolysis, and anaphylactic reactivity were also performed. RESULTS At 1.4 T, the r1 and r2 relaxivities of MT218 were 5.43 and 7.40 mM -1 s -1 in pure water, 6.58 and 8.87 mM -1 s -1 in phosphate-buffered saline, and 6.54 and 8.70 mM -1 s -1 in aqueous solution of human serum albumin, respectively. The binding affinity of MT218 to extradomain B fragment is 3.45 μM. MT218 exhibited no dissociation of the Gd(III) chelates under physiological conditions. The peptide degradation half-life ( t1/2 ) of MT218 was 1.63, 5.85, and 2.63 hours in rat, dog, and human plasma, respectively. It had little effect on CYP450 enzymes and transporters. MT218 produced up to 7-fold increase of contrast-to-noise ratios in the extradomain B fibronectin-rich tumors with a dose of 0.04 mmol/kg for at least 30 minutes. MT218 had little pharmacological effect on central nervous, cardiovascular, or respiratory systems. MT218 had a mean plasma elimination half-life ( t1/2 ) of 0.31 and 0.89 hours in rats and dogs at 0.1 mmol/kg, respectively. No detectable Gd deposition was observed in the brain at 6 hours postinjection of MT218 at 0.1 mmol/kg in rats. MT218 was not mutagenic and had no mortality or morbidity in the rats or dogs up to 1.39 and 0.70 mmol/kg/d, respectively. The no observed adverse effect level of MT218 in Sprague-Dawley rats was 1.39 mmol/kg for single dosing and 0.46 mmol/kg/d for repeated dosing. The no observed adverse effect level in dogs was 0.07 mmol/kg/d. MT218 exhibited no genotoxicity, hemolysis, and anaphylactic reactivity. CONCLUSION The preclinical assessments showed that the targeted contrast agent MT218 has high r1 and r2 relaxivities, satisfactory physicochemical properties, pharmacokinetic, and safety profiles and produces effective tumor enhancement in multiple cancer types in rats and mice at reduced doses.
Collapse
Affiliation(s)
- Yajuan Li
- From the Molecular Theranostics, LLC, Cleveland
| | - Songqi Gao
- From the Molecular Theranostics, LLC, Cleveland
| | | | - Nadia Ayat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Victoria Laney
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Calin Nicolescu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Michael F. Tweedle
- Wright Center of Innovation, Department of Radiology, the Ohio State University, Columbus
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
20
|
Lohrke J, Berger M, Frenzel T, Hilger CS, Jost G, Panknin O, Bauser M, Ebert W, Pietsch H. Preclinical Profile of Gadoquatrane: A Novel Tetrameric, Macrocyclic High Relaxivity Gadolinium-Based Contrast Agent. Invest Radiol 2022; 57:629-638. [PMID: 35703267 PMCID: PMC9444293 DOI: 10.1097/rli.0000000000000889] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this report was to characterize the key physicochemical, pharmacokinetic (PK), and magnetic resonance imaging (MRI) properties of gadoquatrane (BAY 1747846), a newly designed tetrameric, macrocyclic, extracellular gadolinium-based contrast agent (GBCA) with high relaxivity and stability. MATERIALS AND METHODS The r1-relaxivities of the tetrameric gadoquatrane at 1.41 and 3.0 T were determined in human plasma and the nuclear magnetic relaxation dispersion profiles in water and plasma. The complex stability was analyzed in human serum over 21 days at pH 7.4 at 37°C and was compared with the linear GBCA gadodiamide and the macrocyclic GBCA (mGBCA) gadobutrol. In addition, zinc transmetallation assay was performed to investigate the kinetic inertness. Protein binding and the blood-to-plasma ratio were determined in vitro using rat and human plasma. The PK profile was evaluated in rats (up to 7 days postinjection). Magnetic resonance imaging properties were investigated using a glioblastoma (GS9L) rat model. RESULTS The new chemical entity gadoquatrane is a macrocyclic tetrameric Gd complex with one inner sphere water molecule per Gd ( q = 1). Gadoquatrane showed high solubility in buffer (1.43 mol Gd/L, 10 mM Tris-HCl, pH 7.4), high hydrophilicity (logP -4.32 in 1-butanol/water), and negligible protein binding. The r1-relaxivity of gadoquatrane in human plasma per Gd of 11.8 mM -1 ·s -1 (corresponding to 47.2 mM -1 ·s -1 per molecule at 1.41 T at 37°C, pH 7.4) was more than 2-fold (8-fold per molecule) higher compared with established mGBCAs. Nuclear magnetic relaxation dispersion profiles confirmed the more than 2-fold higher r1-relaxivity in human plasma for the clinically relevant magnetic field strengths from 0.47 to 3.0 T. The complex stability of gadoquatrane at physiological conditions was very high. The observed Gd release after 21 days at 37°C in human serum was below the lower limit of quantification. Gadoquatrane showed no Gd 3+ release in the presence of zinc in the transmetallation assay. The PK profile (plasma elimination, biodistribution, recovery) was comparable to that of gadobutrol. In MRI, the quantitative evaluation of the tumor-to-brain contrast in the rat glioblastoma model showed significantly improved contrast enhancement using gadoquatrane compared with gadobutrol at the same Gd dose administered (0.1 mmol Gd/kg body weight). In comparison to gadoterate meglumine, similar contrast enhancement was reached with gadoquatrane with 75% less Gd dose. In terms of the molecule dose, this was reduced by 90% when compared with gadoterate meglumine. Because of its tetrameric structure and hence lower number of molecules per volume, all prepared formulations of gadoquatrane were iso-osmolar to blood. CONCLUSIONS The tetrameric gadoquatrane is a novel, highly effective mGBCA for use in MRI. Gadoquatrane provides favorable physicochemical properties (high relaxivity and stability, negligible protein binding) while showing essentially the same PK profile (fast extracellular distribution, fast elimination via the kidneys in an unchanged form) to established mGBCAs on the market. Overall, gadoquatrane is an excellent candidate for further clinical development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wolfgang Ebert
- Program Management and Operations, Pharmaceuticals, Bayer AG, Berlin, Germany
| | | |
Collapse
|
21
|
Holzapfel M, Baldau T, Kerpa S, Guadalupi G, Qi B, Liu Y, Parak WJ, Maison W. Solution Structure and Relaxivity of Ln‐DOTXAZA Derivatives. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malte Holzapfel
- Fraunhofer Institute for Applied Polymer Research: Fraunhofer-Institut fur Angewandte Polymerforschung IAP Center for Applied Nanoscience GERMANY
| | - Torben Baldau
- Universität Hamburg: Universitat Hamburg Department of Chemistry GERMANY
| | - Svenja Kerpa
- Universität Hamburg: Universitat Hamburg Department of Chemistry GERMANY
| | | | - Bing Qi
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Yang Liu
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Wolfgang J. Parak
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Wolfgang Maison
- University of Hamburg Chemistry Bundesstr. 45 20146 Hamburg GERMANY
| |
Collapse
|
22
|
Lu CH, Hsiao JK. Diagnostic and therapeutic roles of iron oxide nanoparticles in biomedicine. Tzu Chi Med J 2022; 35:11-17. [PMID: 36866343 PMCID: PMC9972926 DOI: 10.4103/tcmj.tcmj_65_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
Nanotechnology changed our understanding of physics and chemics and influenced the biomedical field. Iron oxide nanoparticles (IONs) are one of the first emerging biomedical applications of nanotechnology. The IONs are composed of iron oxide core exhibiting magnetism and coated with biocompatible molecules. The small size, strong magnetism, and biocompatibility of IONs facilitate the application of IONs in the medical imaging field. We listed several clinical available IONs including Resovist (Bayer Schering Pharma, Berlin, Germany) and Feridex intravenous (I.V.)/Endorem as magnetic resonance (MR) contrast agents for liver tumor detection. We also illustrated GastroMARK as a gastrointestinal contrast agent for MR imaging. Recently, IONs named Feraheme for treating iron-deficiency anemia have been approved by the Food and Drug Administration. Moreover, tumor ablation by IONs named NanoTherm has also been discussed. In addition to the clinical application, several potential biomedical applications of IONs including cancer-targeting capability by conjugating IONs with cancer-specific ligands, cell trafficking tools, or tumor ablation agents have also been discussed. With the growing awareness of nanotechnology, further application of IONs is still on the horizon that would shed light on biomedicine.
Collapse
Affiliation(s)
- Chia-Hung Lu
- Department of Medical Imaging, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Jong-Kia Hsiao, Department of Medical Imaging, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Road, Xindian District, New Taipei, Taiwan. E-mail:
| |
Collapse
|
23
|
Ramirez-Carracedo R, Sanmartin M, Ten A, Hernandez I, Tesoro L, Diez-Mata J, Botana L, Ovejero-Paredes K, Filice M, Alberich-Bayarri A, Martí-Bonmatí L, Largo-Aramburu C, Saura M, Zamorano JL, Zaragoza C. Theranostic Contribution of Extracellular Matrix Metalloprotease Inducer-Paramagnetic Nanoparticles Against Acute Myocardial Infarction in a Pig Model of Coronary Ischemia-Reperfusion. Circ Cardiovasc Imaging 2022; 15:e013379. [PMID: 35678191 PMCID: PMC9213084 DOI: 10.1161/circimaging.121.013379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rapid screening and accurate diagnosis of acute myocardial infarction are critical to reduce the progression of myocardial necrosis, in which proteolytic degradation of myocardial extracellular matrix plays a major role. In previous studies, we found that targeting the extracellular matrix metalloprotease inducer (EMMPRIN) by injecting nanoparticles conjugated with the specific EMMPRIN-binding peptide AP9 significantly improved cardiac function in mice subjected to ischemia/reperfusion.
Collapse
Affiliation(s)
- Rafael Ramirez-Carracedo
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Marcelo Sanmartin
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain (M. Sanmartin, J.L.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Amadeo Ten
- Instituto de Investigación de salud La Fe, Grupo de Investigación Biomédica (GIBI230-PREBI). Nodo de Imagen La Fe en la Red de Imagen Biomédica (ReDIB) de Infraestructuras Científicas Técnicas y Singulares (ICTS), Valencia, Spain (A.T., L.M.-B.)
| | - Ignacio Hernandez
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Laura Tesoro
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.)
| | - Javier Diez-Mata
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.)
| | - Laura Botana
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.)
| | - Karina Ovejero-Paredes
- Grupo de Nanobiotecnología para Ciencias de la Vida, Departamento de Química en Ciencias Farmaceuticas Facultad de Farmacia, Universidad Complutense de Madrid (UCM). Unidad de Microscopia e Imagen Dinamica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (K.O.-P., M.F.)
| | - Marco Filice
- QUIBIM SL - Quantitative Imaging Biomarkers in Medicine, Valencia, Spain (A.A.-B.)
| | - Angel Alberich-Bayarri
- Departamento de Cirugía Experimental, Hospital Universitario La Paz, Madrid, Spain (C.L.-A.)
| | - Luis Martí-Bonmatí
- Instituto de Investigación de salud La Fe, Grupo de Investigación Biomédica (GIBI230-PREBI). Nodo de Imagen La Fe en la Red de Imagen Biomédica (ReDIB) de Infraestructuras Científicas Técnicas y Singulares (ICTS), Valencia, Spain (A.T., L.M.-B.)
| | - Carlota Largo-Aramburu
- Departamento de Cirugía Experimental, Hospital Universitario La Paz, Madrid, Spain (C.L.-A.)
| | - Marta Saura
- Unidad de Fisiología, Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain (M. Saura).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Jose Luis Zamorano
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain (M. Sanmartin, J.L.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Carlos Zaragoza
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| |
Collapse
|
24
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
25
|
Liu K, Cai Z, Chi X, Kang B, Fu S, Luo X, Lin ZW, Ai H, Gao J, Lin H. Photoinduced Superhydrophilicity of Gd-Doped TiO 2 Ellipsoidal Nanoparticles Boosts T1 Contrast Enhancement for Magnetic Resonance Imaging. NANO LETTERS 2022; 22:3219-3227. [PMID: 35380442 DOI: 10.1021/acs.nanolett.1c04676] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The unsatisfactory performance of current gadolinium chelate based T1 contrast agents (CAs) for magnetic resonance imaging (MRI) stimulates the search for better alternatives. Herein, we report a new strategy to substantially improve the capacity of nanoparticle-based T1 CAs by exploiting the photoinduced superhydrophilic assistance (PISA) effect. As a proof of concept, we synthesized citrate-coated Gd-doped TiO2 ellipsoidal nanoparticles (GdTi-SC NPs), whose r1 increases significantly upon UV irradiation. The reduced water contact angle and the increased number of surface hydroxyl groups substantiate the existence of the PISA effect, which considerably promotes the efficiency of paramagnetic relaxation enhancement (PRE) and thus the imaging performance of GdTi-SC NPs. In vivo MRI of SD rats with GdTi-SC NPs further demonstrates that GdTi-SC NPs could serve as a high-performance CA for sensitive imaging of blood vessels and accurate diagnosis of vascular lesions, indicating the success of our strategy.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Bilun Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi-Wei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.,Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
26
|
Karbalaei S, Goldsmith CR. Recent advances in the preclinical development of responsive MRI contrast agents capable of detecting hydrogen peroxide. J Inorg Biochem 2022; 230:111763. [DOI: 10.1016/j.jinorgbio.2022.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/10/2023]
|
27
|
Lu Y, Zhang P, Lin L, Gao X, Zhou Y, Feng J, Zhang H. Ultra-small bimetallic phosphide for dual-modal MRI imaging guided photothermal ablation of tumor. Dalton Trans 2022; 51:4423-4428. [DOI: 10.1039/d1dt03898b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides have been proved to be the potential theranostic agents of tumor. However, the limitation of single-modal imaging or treatment effect of such materials need to be further improved....
Collapse
|
28
|
Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3432. [PMID: 34947781 PMCID: PMC8706278 DOI: 10.3390/nano11123432] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
Collapse
Affiliation(s)
- Pedro Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
29
|
Palagi L, Di Gregorio E, Costanzo D, Stefania R, Cavallotti C, Capozza M, Aime S, Gianolio E. Fe(deferasirox) 2: An Iron(III)-Based Magnetic Resonance Imaging T1 Contrast Agent Endowed with Remarkable Molecular and Functional Characteristics. J Am Chem Soc 2021; 143:14178-14188. [PMID: 34432442 DOI: 10.1021/jacs.1c04963] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The search for alternatives to Gd-containing magnetic resonance imaging (MRI) contrast agents addresses the field of Fe(III)-bearing species with the expectation that the use of an essential metal ion may avoid the issues raised by the exogenous Gd. Attention is currently devoted to highly stable Fe(III) complexes with hexacoordinating ligands, although they may lack any coordinated water molecule. We found that the hexacoordinated Fe(III) complex with two units of deferasirox, a largely used iron sequestering agent, owns properties that can make it a viable alternative to Gd-based agents. Fe(deferasirox)2 displays an outstanding thermodynamic stability, a high binding affinity to human serum albumin (three molecules of complex are simultaneously bound to the protein), and a good relaxivity that increases in the range 20-80 MHz. The relaxation enhancement is due to second sphere water molecules likely forming H-bonds with the coordinating phenoxide oxygens. A further enhancement was observed upon the formation of the supramolecular adduct with albumin. The binding sites of Fe(deferasirox)2 on albumin were characterized by relaxometric competitive assays. Preliminary in vivo imaging studies on a tumor-bearing mouse model indicate that, on a 3 T MRI scanner, the contrast ability of Fe(deferasirox)2 is comparable to the one shown by the commercial Gd(DTPA) agent. ICP-MS analyses on blood samples withdrawn from healthy mice administered with a dose of 0.1 mmol/kg of Fe(deferasirox)2 showed that the complex is completely removed in 24 h.
Collapse
Affiliation(s)
- Lorenzo Palagi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Diana Costanzo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | | | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
- IRCCS SDN, Via E. Gianturco 113, Napoli 80143, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|
30
|
Stinnett G, Taheri N, Villanova J, Bohloul A, Guo X, Esposito EP, Xiao Z, Stueber D, Avendano C, Decuzzi P, Pautler RG, Colvin VL. 2D Gadolinium Oxide Nanoplates as T 1 Magnetic Resonance Imaging Contrast Agents. Adv Healthc Mater 2021; 10:e2001780. [PMID: 33882196 DOI: 10.1002/adhm.202001780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Millions of people a year receive magnetic resonance imaging (MRI) contrast agents for the diagnosis of conditions as diverse as fatty liver disease and cancer. Gadolinium chelates, which provide preferred T1 contrast, are the current standard but face an uncertain future due to increasing concerns about their nephrogenic toxicity as well as poor performance in high-field MRI scanners. Gadolinium-containing nanocrystals are interesting alternatives as they bypass the kidneys and can offer the possibility of both intracellular accumulation and active targeting. Nanocrystal contrast performance is notably limited, however, as their organic coatings block water from close interactions with surface Gadoliniums. Here, these steric barriers to water exchange are minimized through shape engineering of plate-like nanocrystals that possess accessible Gadoliniums at their edges. Sulfonated surface polymers promote second-sphere relaxation processes that contribute remarkable contrast even at the highest fields (r1 = 32.6 × 10-3 m Gd-1 s-1 at 9.4 T). These noncytotoxic materials release no detectable free Gadolinium even under mild acidic conditions. They preferentially accumulate in the liver of mice with a circulation half-life 50% longer than commercial agents. These features allow these T1 MRI contrast agents to be applied for the first time to the ex vivo detection of nonalcoholic fatty liver disease in mice.
Collapse
Affiliation(s)
- Gary Stinnett
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston TX 77030 USA
| | - Nasim Taheri
- Departments of Chemistry and Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Jake Villanova
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| | - Arash Bohloul
- Departments of Chemistry and Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Xiaoting Guo
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| | - Edward P. Esposito
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| | - Zhen Xiao
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| | - Deanna Stueber
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| | - Carolina Avendano
- Departments of Chemistry and Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Paolo Decuzzi
- Department of Translational Imaging and Department of Nanomedicine The Methodist Hospital Research Institute Houston TX 77030 USA
- Laboratory of Nanotechnology for Precision Medicine Fondazione Istituto Italiano di Tecnologia Genoa 16163 Italy
| | - Robia G. Pautler
- Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston TX 77030 USA
| | - Vicki L. Colvin
- Departments of Chemistry and Engineering Brown University Providence RI 02912 USA
| |
Collapse
|
31
|
Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial Nano-Factories: Synthesis and Biomedical Applications. Front Chem 2021; 9:626834. [PMID: 33937188 PMCID: PMC8085502 DOI: 10.3389/fchem.2021.626834] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
In the recent times, nanomaterials have emerged in the field of biology, medicine, electronics, and agriculture due to their immense applications. Owing to their nanoscale sizes, they present large surface/volume ratio, characteristic structures, and similar dimensions to biomolecules resulting in unique properties for biomedical applications. The chemical and physical methods to synthesize nanoparticles have their own limitations which can be overcome using biological methods for the synthesis. Moreover, through the biogenic synthesis route, the usage of microorganisms has offered a reliable, sustainable, safe, and environmental friendly technique for nanosynthesis. Bacterial, algal, fungal, and yeast cells are known to transport metals from their environment and convert them to elemental nanoparticle forms which are either accumulated or secreted. Additionally, robust nanocarriers have also been developed using viruses. In order to prevent aggregation and promote stabilization of the nanoparticles, capping agents are often secreted during biosynthesis. Microbial nanoparticles find biomedical applications in rapid diagnostics, imaging, biopharmaceuticals, drug delivery systems, antimicrobials, biomaterials for tissue regeneration as well as biosensors. The major challenges in therapeutic applications of microbial nanoparticles include biocompatibility, bioavailability, stability, degradation in the gastro-intestinal tract, and immune response. Thus, the current review article is focused on the microbe-mediated synthesis of various nanoparticles, the different microbial strains explored for such synthesis along with their current and future biomedical applications.
Collapse
Affiliation(s)
- Shubhrima Ghosh
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Science, King Khalid University (KKU), Khamis Mushait, Abha, Saudi Arabia
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
32
|
Khan M, Boumati S, Arib C, Thierno Diallo A, Djaker N, Doan BT, Spadavecchia J. Doxorubicin (DOX) Gadolinium-Gold-Complex: A New Way to Tune Hybrid Nanorods as Theranostic Agent. Int J Nanomedicine 2021; 16:2219-2236. [PMID: 33762822 PMCID: PMC7982711 DOI: 10.2147/ijn.s295809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/06/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION In this paper, we have designed and formulated, a novel synthesis of doxorubicin (DOX) loaded bimetallic gold nanorods in which gold salt (HAuCl4) is chelated with anthracycline (DOX), diacid polyethylene-glycol (PEG-COOH) and gadolinium salt (GdCl3 * 6 H2O) to form DOX IN-Gd-AuNRs compared with DOX ON-Gd-AuNRs in which the drug was grafted onto the bimetallic pegylated nanoparticle surface by electrostatic adsorption. MATERIAL AND METHOD The physical and chemical evaluation was performed by spectroscopic analytical techniques (Raman spectroscopy, UV-Visible and transmission electron microscopy (TEM)). Magnetic features at 7T were also measured. Photothermal abilities were assessed. Cytotoxicity studies on MIA PaCa-2, human pancreatic carcinoma and TIB-75 hepatocytes cell lines were carried out to evaluate their biocompatibility and showed a 320 fold higher efficiency for DOX after encapsulation. RESULTS Exhaustive physicochemical characterization studies were conducted showing a mid size of 20 to 40 nm diameters obtained with low polydispersity, efficient synthesis using seed mediated synthesis with chelation reaction with high scale-up, long duration stability, specific doxorubicin release with acidic pH, strong photothermal abilities at 808 nm in the NIR transparency window, strong magnetic r1 relaxivities for positive MRI, well adapted for image guided therapy and therapeutical purpose in biological tissues. CONCLUSION In this paper, we have developed a novel theranostic nanoparticle composed of gadolinium complexes to gold ions, with a PEG biopolymer matrix conjugated with antitumoral doxorubicin, providing multifunctional therapeutic features. Particularly, these nano conjugates enhanced the cytotoxicity toward tumoral MIAPaCa-2 cells by a factor of 320 compared to doxorubicin alone. Moreover, MRI T1 features at 7T enables interesting positive contrast for bioimaging and their adapted size for potential passive targeting to tumors by Enhanced Permeability Retention. Given these encouraging antitumoral and imaging properties, this bimetallic theranostic nanomaterial system represents a veritable promise as a therapeutic entity in the field of medicinal applications.
Collapse
Affiliation(s)
- Memona Khan
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d’Agents Thérapeutiques, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Sarah Boumati
- CNRS UMR 8060, iCLeHS, Synthèse, Electrochimie, Imagerie et Systèmes Analytiques Pour le Diagnostic SEISAD, Chimie ParisTech, Université PSL, Paris, 75231, France
| | - Celia Arib
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d’Agents Thérapeutiques, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Amadou Thierno Diallo
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d’Agents Thérapeutiques, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Nadia Djaker
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d’Agents Thérapeutiques, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Bich-thuy Doan
- CNRS UMR 8060, iCLeHS, Synthèse, Electrochimie, Imagerie et Systèmes Analytiques Pour le Diagnostic SEISAD, Chimie ParisTech, Université PSL, Paris, 75231, France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d’Agents Thérapeutiques, Université Sorbonne Paris Nord, Bobigny, 93000, France
| |
Collapse
|
33
|
Lee BH, Hasan MT, Lichthardt D, Gonzalez-Rodriguez R, Naumov AV. Manganese-nitrogen and gadolinium-nitrogen Co-doped graphene quantum dots as bimodal magnetic resonance and fluorescence imaging nanoprobes. NANOTECHNOLOGY 2021; 32:095103. [PMID: 33126228 DOI: 10.1088/1361-6528/abc642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Graphene quantum dots (GQDs) are unique derivatives of graphene that show promise in multiple biomedical applications as biosensors, bioimaging agents, and drug/gene delivery vehicles. Their ease in functionalization, biocompatibility, and intrinsic fluorescence enable those modalities. However, GQDs lack deep tissue magnetic resonance imaging (MRI) capabilities desirable for diagnostics. Considering that the drawbacks of MRI contrast agent toxicity are still poorly addressed, we develop novel Mn2+ or Gd3+ doped nitrogen-containing graphene quantum dots (NGQDs) to equip the GQDs with MRI capabilities and at the same time render contrast agents biocompatible. Water-soluble biocompatible Mn-NGQDs and Gd-NGQDs synthesized via single-step microwave-assisted scalable hydrothermal reaction enable dual MRI and fluorescence modalities. These quasi-spherical 3.9-6.6 nm average-sized structures possess highly crystalline graphitic lattice structure with 0.24 and 0.53 atomic % for Mn2+ and Gd3+ doping. This structure ensures high in vitro biocompatibility of up to 1.3 mg ml-1 and 1.5 mg ml-1 for Mn-NGQDs and Gd-NGQDs, respectively, and effective internalization in HEK-293 cells traced by intrinsic NGQD fluorescence. As MRI contrast agents with considerably low Gd and Mn content, Mn-NGQDs exhibit substantial transverse/longitudinal relaxivity (r 2/r 1) ratios of 11.190, showing potential as dual-mode longitudinal or transverse relaxation time (T 1 or T 2) contrast agents, while Gd-NGQDs possess r 2/r 1 of 1.148 with high r 1 of 9.546 mM-1 s-1 compared to commercial contrast agents, suggesting their potential as T1 contrast agents. Compared to other nanoplatforms, these novel Mn2+ and Gd3+ doped NGQDs not only provide scalable biocompatible alternatives as T1/T2 and T1 contrast agents but also enable in vitro intrinsic fluorescence imaging.
Collapse
Affiliation(s)
- Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
| | - Md Tanvir Hasan
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, United States of America
| | - Denise Lichthardt
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Friedrich-Alexander University Erlangen-Nürnberg, Schlossplatz 4, 91054 Erlangen, Germany
| | - Roberto Gonzalez-Rodriguez
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Department of Physics, University of North Texas, 210 Avenue A, Denton, TX 76201, United States of America
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
| |
Collapse
|
34
|
Wang J, Jia Y, Wang Q, Liang Z, Han G, Wang Z, Lee J, Zhao M, Li F, Bai R, Ling D. An Ultrahigh-Field-Tailored T 1 -T 2 Dual-Mode MRI Contrast Agent for High-Performance Vascular Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004917. [PMID: 33263204 DOI: 10.1002/adma.202004917] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Indexed: 05/20/2023]
Abstract
The assessment of vascular anatomy and functions using magnetic resonance imaging (MRI) is critical for medical diagnosis, whereas the commonly used low-field MRI system (≤3 T) suffers from low spatial resolution. Ultrahigh field (UHF) MRI (≥7 T), with significantly improved resolution and signal-to-noise ratio, shows great potential to provide high-resolution vasculature images. However, practical applications of UHF MRI technology for vascular imaging are currently limited by the low sensitivity and accuracy of single-mode (T1 or T2 ) contrast agents. Herein, a UHF-tailored T1 -T2 dual-mode iron oxide nanoparticle-based contrast agent (UDIOC) with extremely small core size and ultracompact hydrophilic surface modification, exhibiting dually enhanced T1 -T2 contrast effect under the 7 T magnetic field, is reported. The UDIOC enables clear visualization of microvasculature as small as ≈140 µm in diameter under UHF MRI, extending the detection limit of the 7 T MR angiography. Moreover, by virtue of high-resolution UHF MRI and a simple double-checking process, UDIOC-based dual-mode dynamic contrast-enhanced MRI is successfully applied to detect tumor vascular permeability with extremely high sensitivity and accuracy, providing a novel paradigm for the precise medical diagnosis of vascular-related diseases.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yinhang Jia
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Qiyue Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zeyu Liang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Guangxu Han
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Zejun Wang
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Meng Zhao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
- Department of Physical Medicine and Rehabilitation of The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
35
|
Tear LR, Carrera C, Dhakan CB, Cavallari E, Travagin F, Calcagno C, Aime S, Gianolio E. An albumin-binding Gd-HPDO3A contrast agent for improved intravascular retention. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00128k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new Gd-HPDO3A derivative with improved MR contrast enhancing efficiency, demonstrated in a murine tumor model and in mouse models for stable and vulnerable atherosclerotic plaques, due to increased intravascular retention.
Collapse
Affiliation(s)
- Louise R. Tear
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino Via Nizza 52, 10126 Torino, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Chetan B. Dhakan
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
- University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino Via Nizza 52, 10126 Torino, Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco (DSF), Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino Via Nizza 52, 10126 Torino, Italy
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino Via Nizza 52, 10126 Torino, Italy
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| |
Collapse
|
36
|
Vazquez-Prada KX, Lam J, Kamato D, Xu ZP, Little PJ, Ta HT. Targeted Molecular Imaging of Cardiovascular Diseases by Iron Oxide Nanoparticles. Arterioscler Thromb Vasc Biol 2020; 41:601-613. [PMID: 33356385 DOI: 10.1161/atvbaha.120.315404] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease is one of the major contributors to global disease burden. Atherosclerosis is an inflammatory process that involves the accumulation of lipids and fibrous elements in the large arteries, forming an atherosclerotic plaque. Rupture of unstable plaques leads to thrombosis that triggers life-threatening complications such as myocardial infarction. Current diagnostic methods are invasive as they require insertion of a catheter into the coronary artery. Molecular imaging techniques, such as magnetic resonance imaging, have been developed to image atherosclerotic plaques and thrombosis due to its high spatial resolution and safety. The sensitivity of magnetic resonance imaging can be improved with contrast agents, such as iron oxide nanoparticles. This review presents the most recent advances in atherosclerosis, thrombosis, and myocardial infarction molecular imaging using iron oxide-based nanoparticles. While some studies have shown their effectiveness, many are yet to undertake comprehensive testing of biocompatibility. There are still potential hazards to address and complications to diagnosis, therefore strategies for overcoming these challenges are required.
Collapse
Affiliation(s)
- Karla X Vazquez-Prada
- Australian Institute for Bioengineering and Nanotechnology (K.X.V.-P., Z.P.X., H.T.T.), the University of Queensland, Australia.,School of Pharmacy, Pharmacy Australia Centre of Excellence (K.X.V.-P., J.L., D.K., P.J.L.), the University of Queensland, Australia.,Queensland Micro- and Nanotechnology (K.X.V.-P., H.T.T.), Griffith University, Brisbane, Australia
| | - Jacinta Lam
- School of Pharmacy, Pharmacy Australia Centre of Excellence (K.X.V.-P., J.L., D.K., P.J.L.), the University of Queensland, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence (K.X.V.-P., J.L., D.K., P.J.L.), the University of Queensland, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (K.X.V.-P., Z.P.X., H.T.T.), the University of Queensland, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence (K.X.V.-P., J.L., D.K., P.J.L.), the University of Queensland, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, China (P.J.L.)
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology (K.X.V.-P., Z.P.X., H.T.T.), the University of Queensland, Australia.,Queensland Micro- and Nanotechnology (K.X.V.-P., H.T.T.), Griffith University, Brisbane, Australia.,School of Environment and Science (H.T.T.), Griffith University, Brisbane, Australia
| |
Collapse
|
37
|
Xie M, Wang Z, Lu Q, Nie S, Butch CJ, Wang Y, Dai B. Ultracompact Iron Oxide Nanoparticles with a Monolayer Coating of Succinylated Heparin: A New Class of Renal-Clearable and Nontoxic T 1 Agents for High-Field MRI. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53994-54004. [PMID: 33210906 DOI: 10.1021/acsami.0c12454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we present a new magnetic iron oxide nanoparticle (MION) with a succinylated heparin monolayer coating, which exhibits the highest T1 relaxivity at 7 T and the lowest r2/r1 reported for any MION at these high-field conditions. While the recent proliferation of 7 T MRI instruments in hospitals worldwide has enabled widespread access to higher quality, more finely detailed, diagnostic imaging, clinically available contrast agents have not kept pace due to the general phenomenon of reduced efficacy of T1 relaxation as magnetic field strength is increased. Development of new MION agents is one strategy to address this need, and to this end, we demonstrate the in vitro magnetic properties of the MIONs reported here to extend to in vivo applications, providing greatly increased contrast in tumor imaging in a murine xenograft subject at 7 T. While MION-based contrast agents can have side effects in clinical application, these are generally thought to be less than those of gadolinium-based agents and here are further reduced by the small size allowing direct glomerular filtration from the blood followed by renal-excretion. Finally, we show the succinylated heparin monolayer coating to provide class leading magnetic properties over a homologous series of particles with core size ranging from 2 to 18 nm and show the properties to be strongly related to the surface area. We suggest the increased porosity and hydrophilicity of the coating to increase water accessibility to the surface resulting in the increased magnetic properties.
Collapse
Affiliation(s)
- Manman Xie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Ziyang Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Qian Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Shuming Nie
- Department of Biomedical Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Bo Dai
- Department of Cardio-Thoracic Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, China
| |
Collapse
|
38
|
Mohanta Z, Gaonkar SK, Kumar M, Saini J, Tiwari V, Srivastava C, Atreya HS. Influence of Oxidation Degree of Graphene Oxide on Its Nuclear Relaxivity and Contrast in MRI. ACS OMEGA 2020; 5:22131-22139. [PMID: 32923771 PMCID: PMC7482091 DOI: 10.1021/acsomega.0c02220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) serves as a versatile platform for various applications, with the oxygen content of GO playing an important role in governing its properties. In the present study, different GO types covering a wide range of oxidation degree were prepared using our newly developed two-step method involving ball milling of graphite followed by its oxidation to GO. In addition to the variations in their physicochemical properties, the different GO types exhibited differences in proton relaxivity due to their paramagnetic nature. Nuclear magnetic resonance spectroscopy studies showed that the degree of oxidation of GO perturbs its nuclear relaxation properties and, together with intercalated Mn2+ ions, provides large contrast variation in magnetic resonance imaging (MRI). The study for the first time reveals that the surface chemistry of GO affects its relaxivity and opens up new avenues for developing tunable GO-based contrast agents in magnetic resonance imaging for diagnostics and therapies.
Collapse
Affiliation(s)
- Zinia Mohanta
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Sumana K. Gaonkar
- Nuclear
Magnetic Resonance Research Centre, Indian
Institute of Science, Bengaluru 560012, India
| | - Manoj Kumar
- Department
of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Jitender Saini
- Department
of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Vivek Tiwari
- Centre
for Brain Research, Indian Institute of
Science, Bengaluru 560012, India
| | - Chandan Srivastava
- Department
of Materials Engineering, Indian Institute
of Science, Bengaluru 560012, India
| | - Hanudatta S. Atreya
- Nuclear
Magnetic Resonance Research Centre, Indian
Institute of Science, Bengaluru 560012, India
| |
Collapse
|
39
|
Oprea M, Panaitescu DM. Nanocellulose Hybrids with Metal Oxides Nanoparticles for Biomedical Applications. Molecules 2020; 25:E4045. [PMID: 32899710 PMCID: PMC7570792 DOI: 10.3390/molecules25184045] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cellulose is one of the most affordable, sustainable and renewable resources, and has attracted much attention especially in the form of nanocellulose. Bacterial cellulose, cellulose nanocrystals or nanofibers may serve as a polymer support to enhance the effectiveness of metal nanoparticles. The resultant hybrids are valuable materials for biomedical applications due to the novel optical, electronic, magnetic and antibacterial properties. In the present review, the preparation methods, properties and application of nanocellulose hybrids with different metal oxides nanoparticles such as zinc oxide, titanium dioxide, copper oxide, magnesium oxide or magnetite are thoroughly discussed. Nanocellulose-metal oxides antibacterial formulations are preferred to antibiotics due to the lack of microbial resistance, which is the main cause for the antibiotics failure to cure infections. Metal oxide nanoparticles may be separately synthesized and added to nanocellulose (ex situ processes) or they can be synthesized using nanocellulose as a template (in situ processes). In the latter case, the precursor is trapped inside the nanocellulose network and then reduced to the metal oxide. The influence of the synthesis methods and conditions on the thermal and mechanical properties, along with the bactericidal and cytotoxicity responses of nanocellulose-metal oxides hybrids were mainly analyzed in this review. The current status of research in the field and future perspectives were also signaled.
Collapse
Affiliation(s)
- Madalina Oprea
- National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania;
| |
Collapse
|
40
|
Caspani S, Magalhães R, Araújo JP, Sousa CT. Magnetic Nanomaterials as Contrast Agents for MRI. MATERIALS 2020; 13:ma13112586. [PMID: 32517085 PMCID: PMC7321635 DOI: 10.3390/ma13112586] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 01/17/2023]
Abstract
Magnetic Resonance Imaging (MRI) is a powerful, noninvasive and nondestructive technique, capable of providing three-dimensional (3D) images of living organisms. The use of magnetic contrast agents has allowed clinical researchers and analysts to significantly increase the sensitivity and specificity of MRI, since these agents change the intrinsic properties of the tissues within a living organism, increasing the information present in the images. Advances in nanotechnology and materials science, as well as the research of new magnetic effects, have been the driving forces that are propelling forward the use of magnetic nanostructures as promising alternatives to commercial contrast agents used in MRI. This review discusses the principles associated with the use of contrast agents in MRI, as well as the most recent reports focused on nanostructured contrast agents. The potential applications of gadolinium- (Gd) and manganese- (Mn) based nanomaterials and iron oxide nanoparticles in this imaging technique are discussed as well, from their magnetic behavior to the commonly used materials and nanoarchitectures. Additionally, recent efforts to develop new types of contrast agents based on synthetic antiferromagnetic and high aspect ratio nanostructures are also addressed. Furthermore, the application of these materials in theragnosis, either as contrast agents and controlled drug release systems, contrast agents and thermal therapy materials or contrast agents and radiosensitizers, is also presented.
Collapse
|
41
|
Gd(DOTA)-grafted submicronic polysaccharide-based particles functionalized with fucoidan as potential MR contrast agent able to target human activated platelets. Carbohydr Polym 2020; 245:116457. [PMID: 32718599 DOI: 10.1016/j.carbpol.2020.116457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022]
Abstract
Early detection of thrombotic events remains a big medical challenge. Dextran-based submicronic particles bearing Gd(DOTA) groups and functionalized with fucoidan have been produced via a simple and green water-in-oil emulsification/co-crosslinking process. Their capacity to bind to human activated platelets was evidenced in vitro as well as their cytocompatibility with human endothelial cells. The presence of Gd(DOTA) moieties was confirmed by elemental analysis and total reflection X-ray fluorescence (TRXF) spectrometry. Detailed characterization of particles was performed in terms of size distribution, morphology, and relaxation rates. In particular, longitudinal and transversal proton relaxivities were respectively 1.7 and 5.0 times higher than those of DOTAREM. This study highlights their potential as an MRI diagnostic platform for atherothrombosis.
Collapse
|
42
|
Kostevšek N, Cheung CCL, Serša I, Kreft ME, Monaco I, Comes Franchini M, Vidmar J, Al-Jamal WT. Magneto-Liposomes as MRI Contrast Agents: A Systematic Study of Different Liposomal Formulations. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E889. [PMID: 32384645 PMCID: PMC7279489 DOI: 10.3390/nano10050889] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
The majority of the clinically approved iron oxide nanoparticles (IO NPs) used as contrast agents for magnetic resonance imaging (MRI) have been withdrawn from the market either due to safety concerns or lack of profits. To address this challenge, liposomes have been used to prepare IO-based T2 contrast agents. We studied the influence of different phospholipids on the relaxivity (r2) values of magneto-liposomes (MLs) containing magnetic NPs in the bilayer, where a strong correlation between the bilayer fluidity and r2 is clearly shown. Embedding 5-nm IO NPs in the lipid bilayer leads to a significant improvement in their relaxivity, where r2 values range from 153 ± 5 s-1 mM-1 for DPPC/cholesterol/DSPE-PEG (96/50/4) up to 673 ± 12 s-1 mM-1 for DOPC/DSPE-PEG (96/4), compared to "free" IO NPs with an r2 value of 16 s-1 mM-1, measured at 9.4 T MRI scanner. In vitro MRI measurements, together with the ICP-MS analysis, revealed MLs as highly selective contrast agents that were preferentially taken up by cancerous T24 cells, which led to an improvement in the contrast and an easier distinction between the healthy and the cancerous cells. A careful selection of the lipid bilayer to prepare MLs could offer efficient MRI contrast agents, even at very low IO NP concentrations.
Collapse
Affiliation(s)
- Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | | | - Igor Serša
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Ilaria Monaco
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy; (I.M.); (M.C.F.)
| | - Mauro Comes Franchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, 40136 Bologna, Italy; (I.M.); (M.C.F.)
| | - Janja Vidmar
- Department for Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
| | - Wafa T. Al-Jamal
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
43
|
Comparison of the Relaxivities of Macrocyclic Gadolinium-Based Contrast Agents in Human Plasma at 1.5, 3, and 7 T, and Blood at 3 T. Invest Radiol 2020; 54:559-564. [PMID: 31124800 DOI: 10.1097/rli.0000000000000577] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE The relaxivities of 3 macrocyclic gadolinium-based contrast agents (GBCAs) were determined in human plasma and blood under standardized and clinically relevant laboratory conditions. METHODS The T1 relaxivity, r1, was determined in human plasma at 1.5, 3, and 7 T, and in human blood at 3 T at 37°C in phantoms containing 4 different concentrations of the macrocyclic GBCAs gadobutrol, gadoteridol, and gadoterate. An inversion recovery turbo spin echo sequence was used to generate images with several inversion times. The T1-times were obtained by fitting the signal intensities to the signal equation. r1 was obtained by a 1/y-weighted regression of the T1-rates over the concentration of the GBCAs. RESULTS For gadobutrol, the obtained r1 [L/(mmol·s)] in human plasma at 1.5 T, 3 T, and 7 T, and in human blood at 3 T was 4.78 ± 0.12, 4.97 ± 0.59, 3.83 ± 0.24, and 3.47 ± 0.16. For gadoteridol, r1 was 3.80 ± 0.10, 3.28 ± 0.09, 3.21 ± 0.07, and 2.61 ± 0.16, and for gadoterate, 3.32 ± 0.13, 3.00 ± 0.13, 2.84 ± 0.09, and 2.72 ± 0.17. CONCLUSIONS The relaxivity of gadobutrol is significantly higher than that of gadoteridol and gadoterate at all magnetic field strengths and in plasma as well as in blood, whereas that of gadoteridol was higher than gadoterate only in plasma at 1.5 and 7 T. This is in accordance with results from 3 previous studies obtained in different media.
Collapse
|
44
|
Peixoto L, Magalhães R, Navas D, Moraes S, Redondo C, Morales R, Araújo JP, Sousa CT. Magnetic nanostructures for emerging biomedical applications. APPLIED PHYSICS REVIEWS 2020; 7. [DOI: 10.1063/1.5121702] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Magnetic nanostructures have been widely studied due to their potential applicability into several research fields such as data storage, sensing and biomedical applications. Focusing on the biomedical aspect, some new approaches deserve to be mentioned: cell manipulation and separation, contrast-enhancing agents for magnetic resonance imaging, and magnetomechanically induced cell death. This work focuses on understanding three different magnetic nanostructures, disks in the vortex state, synthetic antiferromagnetic particles and nanowires, first, by explaining their interesting properties and how they behave under an applied external field, before reviewing their potential applications for each of the aforementioned techniques.
Collapse
Affiliation(s)
- L. Peixoto
- IFIMUP-Faculdade de Ciências da Universidade do Porto 1 , Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - R. Magalhães
- IFIMUP-Faculdade de Ciências da Universidade do Porto 1 , Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - D. Navas
- IFIMUP-Faculdade de Ciências da Universidade do Porto 1 , Rua do Campo Alegre, 4169-007 Porto, Portugal
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC 2 , Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - S. Moraes
- IFIMUP-Faculdade de Ciências da Universidade do Porto 1 , Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - C. Redondo
- UPV-Dpto. de Química-Física, Universidad del País Vasco UPV/EHU 3 , 48940 Leioa, Spain
| | - R. Morales
- Dpto. de Química-Física & BCMaterials, Universidad del País Vasco UPV/EHU 4 , 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science 5 , 48011 Bilbao, Spain
| | - J. P. Araújo
- IFIMUP-Faculdade de Ciências da Universidade do Porto 1 , Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - C. T. Sousa
- IFIMUP-Faculdade de Ciências da Universidade do Porto 1 , Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
45
|
Li H, Luo Q, Zhu H, Li Z, Wang X, Roberts N, Zhang H, Gong Q, Gu Z, Luo K. An advanced micelle-based biodegradable HPMA polymer-gadolinium contrast agent for MR imaging of murine vasculatures and tumors. Polym Chem 2020. [DOI: 10.1039/d0py01133a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A biodegradable HPMA polymeric micelle-based MR contrast agent containing gadolinium (Gd3+) for imaging murine vascular structures and tumors.
Collapse
|
46
|
Perry HL, Botnar RM, Wilton-Ely JDET. Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy. Chem Commun (Camb) 2020; 56:4037-4046. [DOI: 10.1039/d0cc00196a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An overview of recent progress in the design of gadolinium-functionalised gold nanoparticles for use in MRI, multimodal imaging and theranostics.
Collapse
Affiliation(s)
- Hannah L. Perry
- Molecular Sciences Research Hub
- Department of Chemistry
- White City Campus
- Imperial College London
- London
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences
- King's College London
- London
- UK
| | - James D. E. T. Wilton-Ely
- Molecular Sciences Research Hub
- Department of Chemistry
- White City Campus
- Imperial College London
- London
| |
Collapse
|
47
|
Maheshwaran D, Nagendraraj T, Sekar Balaji T, Kumaresan G, Senthil Kumaran S, Mayilmurugan R. Smart dual T1 MRI-optical imaging agent based on a rhodamine appended Fe(iii)-catecholate complex. Dalton Trans 2020; 49:14680-14689. [DOI: 10.1039/d0dt02364g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The high spin Fe(iii) complex Fe(RhoCat)3 is reported as a smart dual-modal T1 MRI-optical imaging probe to visualize the NO molecule and an acidic pH environment.
Collapse
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Thavasilingam Nagendraraj
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - T. Sekar Balaji
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Ganesan Kumaresan
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - S. Senthil Kumaran
- Department of NMR
- All India Institute of Medical Sciences
- New Delhi 110 029
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| |
Collapse
|
48
|
Fe-HBED Analogs: A Promising Class of Iron-Chelate Contrast Agents for Magnetic Resonance Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:8356931. [PMID: 31969797 PMCID: PMC6961518 DOI: 10.1155/2019/8356931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022]
Abstract
Contrast-enhanced magnetic resonance imaging is an essential tool for disease diagnosis and management; all marketed clinical magnetic resonance imaging (MRI) contrast agents (CAs) are gadolinium (Gd) chelates and most are extracellular fluid (ECF) agents. After intravenous injection, these agents rapidly distribute to the extracellular space and are also characterized by low serum protein binding and predominant renal clearance. Gd is an abiotic element with no biological recycling processes; low levels of Gd have been detected in the central nervous system and bone long after administration. These observations have prompted interest in the development of new MRI contrast agents based on biotic elements such as iron (Fe); Fe-HBED (HBED = N,N′-bis(2-hydroxyphenyl)ethylenediamine-N,N′-diacetic acid), a coordinatively saturated iron chelate, is an attractive MRI CA platform suitable for modification to adjust relaxivity and biodistribution. Compared to the parent Fe-HBED, the Fe-HBED analogs reported here have lower serum protein binding and higher relaxivity as well as lower relative liver enhancement in mice, comparable to that of a representative gadolinium-based contrast agent (GBCA). Fe-HBED analogs are therefore a promising class of non-Gd ECF MRI CA.
Collapse
|
49
|
Akakuru OU, Iqbal MZ, Saeed M, Liu C, Paunesku T, Woloschak G, Hosmane NS, Wu A. The Transition from Metal-Based to Metal-Free Contrast Agents for T1 Magnetic Resonance Imaging Enhancement. Bioconjug Chem 2019; 30:2264-2286. [PMID: 31380621 DOI: 10.1021/acs.bioconjchem.9b00499] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide. Some of these CAs have led to cytotoxicities such as the incurable Nephrogenic Systemic Fibrosis (NSF), resulting in their removal from the market. On the other hand, CAs based on organic nitroxide radicals, by virtue of their structural composition, are metal free and without the aforementioned drawbacks. They also have improved biocompatibility, ease of functionalization, and long blood circulation times, and have been proven to offer tissue contrast enhancement with longitudinal relaxivities comparable with those for the metal-containing CAs. Thus, this Review highlights the recent progress in metal-based CAs and their shortcomings. In addition, the remarkable goals achieved by the organic nitroxide radical CAs in the enhancement of MR images have also been discussed extensively. The focal point of this Review is to emphasize or demonstrate the crucial need for transition into the use of organic nitroxide radicals-metal-free CAs-as against the metal-containing CAs, with the aim of achieving safer application of MRI for early disease diagnosis and image-guided therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,Department of Materials Engineering, College of Materials and Textiles , Zhejiang Sci-Tech University , No. 2 Road of Xiasha , Hangzhou 310018 , P.R. China
| | - Madiha Saeed
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Tatjana Paunesku
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Gayle Woloschak
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
| |
Collapse
|
50
|
Woods M, Payne KM, Valente EJ, Kucera BE, Young VG. Crystal Structures of DOTMA Chelates from Ce 3+ to Yb 3+ : Evidence for a Continuum of Metal Ion Hydration States. Chemistry 2019; 25:9997-10005. [PMID: 31121070 DOI: 10.1002/chem.201902068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 01/09/2023]
Abstract
The crystal structures of chelates formed between each stable paramagnetic lanthanide ion and the octadentate polyamino carboxylate ligand DOTMA are described. A total of 23 individual chelates structures were obtained; in each chelate the coordination geometry around the metal ion is best described as a twisted square antiprism (torsion angle -25.0°--31.4°). Despite the uniformity of the general coordination geometry provided by the DOTMA ligand, there is a considerable variation in the hydration state of each chelate. The early Ln3+ chelates are associated with a single inner sphere water molecule; the Ln-OH2 interaction is remarkable for being very long. After a clear break at gadolinium, the number of chelates in the unit cell that have a water molecule interacting with the Ln3+ decreases linearly until at Tm3+ no water is found to interact with the metal ion. The Ln-OH2 distance observed in the chelates of the later Ln3+ ions are also extremely long and increase as the ions contract (2.550-2.732 Å). No clear break between hydrated and dehydrated chelates is observed; rather this series of chelates appear to represent a continuum of hydration states in which the ligand gradually closes around the metal ion as its ionic radius decreases (with decreased hydration) and the metal drops down into the coordination cage.
Collapse
Affiliation(s)
- Mark Woods
- Advanced Imaging Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.,Department of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, OR, 97201, USA
| | - Katherine M Payne
- Department of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, OR, 97201, USA
| | - Edward J Valente
- Department of Chemistry, University of Portland, 5000 N. Willamette Boulevard, Portland, OR, 97203, USA
| | - Benjamin E Kucera
- Department of Chemistry, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN, 55455, USA
| | - Victor G Young
- Department of Chemistry, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN, 55455, USA
| |
Collapse
|