1
|
Stefano A, Comelli A. Customized Efficient Neural Network for COVID-19 Infected Region Identification in CT Images. J Imaging 2021; 7:131. [PMID: 34460767 PMCID: PMC8404925 DOI: 10.3390/jimaging7080131] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In the field of biomedical imaging, radiomics is a promising approach that aims to provide quantitative features from images. It is highly dependent on accurate identification and delineation of the volume of interest to avoid mistakes in the implementation of the texture-based prediction model. In this context, we present a customized deep learning approach aimed at addressing the real-time, and fully automated identification and segmentation of COVID-19 infected regions in computed tomography images. METHODS In a previous study, we adopted ENET, originally used for image segmentation tasks in self-driving cars, for whole parenchyma segmentation in patients with idiopathic pulmonary fibrosis which has several similarities to COVID-19 disease. To automatically identify and segment COVID-19 infected areas, a customized ENET, namely C-ENET, was implemented and its performance compared to the original ENET and some state-of-the-art deep learning architectures. RESULTS The experimental results demonstrate the effectiveness of our approach. Considering the performance obtained in terms of similarity of the result of the segmentation to the gold standard (dice similarity coefficient ~75%), our proposed methodology can be used for the identification and delineation of COVID-19 infected areas without any supervision of a radiologist, in order to obtain a volume of interest independent from the user. CONCLUSIONS We demonstrated that the proposed customized deep learning model can be applied to rapidly identify, and segment COVID-19 infected regions to subsequently extract useful information for assessing disease severity through radiomics analyses.
Collapse
Affiliation(s)
- Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | | |
Collapse
|
2
|
Comelli A, Coronnello C, Dahiya N, Benfante V, Palmucci S, Basile A, Vancheri C, Russo G, Yezzi A, Stefano A. Lung Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics Studies. J Imaging 2020; 6:125. [PMID: 34460569 PMCID: PMC8321165 DOI: 10.3390/jimaging6110125] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The aim of this work is to identify an automatic, accurate, and fast deep learning segmentation approach, applied to the parenchyma, using a very small dataset of high-resolution computed tomography images of patients with idiopathic pulmonary fibrosis. In this way, we aim to enhance the methodology performed by healthcare operators in radiomics studies where operator-independent segmentation methods must be used to correctly identify the target and, consequently, the texture-based prediction model. METHODS Two deep learning models were investigated: (i) U-Net, already used in many biomedical image segmentation tasks, and (ii) E-Net, used for image segmentation tasks in self-driving cars, where hardware availability is limited and accurate segmentation is critical for user safety. Our small image dataset is composed of 42 studies of patients with idiopathic pulmonary fibrosis, of which only 32 were used for the training phase. We compared the performance of the two models in terms of the similarity of their segmentation outcome with the gold standard and in terms of their resources' requirements. RESULTS E-Net can be used to obtain accurate (dice similarity coefficient = 95.90%), fast (20.32 s), and clinically acceptable segmentation of the lung region. CONCLUSIONS We demonstrated that deep learning models can be efficiently applied to rapidly segment and quantify the parenchyma of patients with pulmonary fibrosis, without any radiologist supervision, in order to produce user-independent results.
Collapse
Affiliation(s)
- Albert Comelli
- Ri.MED Foundation, 90133 Palermo, Italy;
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (V.B.); (G.R.); (A.S.)
| | | | - Navdeep Dahiya
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.D.); (A.Y.)
| | - Viviana Benfante
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (V.B.); (G.R.); (A.S.)
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology Unit I, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy; (S.P.); (A.B.)
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology Unit I, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy; (S.P.); (A.B.)
| | - Carlo Vancheri
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-Vittorio Emanuele, University of Catania, 95123 Catania, Italy;
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (V.B.); (G.R.); (A.S.)
| | - Anthony Yezzi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.D.); (A.Y.)
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (V.B.); (G.R.); (A.S.)
| |
Collapse
|
3
|
Stefano A, Gioè M, Russo G, Palmucci S, Torrisi SE, Bignardi S, Basile A, Comelli A, Benfante V, Sambataro G, Falsaperla D, Torcitto AG, Attanasio M, Yezzi A, Vancheri C. Performance of Radiomics Features in the Quantification of Idiopathic Pulmonary Fibrosis from HRCT. Diagnostics (Basel) 2020; 10:E306. [PMID: 32429182 PMCID: PMC7277964 DOI: 10.3390/diagnostics10050306] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Our study assesses the diagnostic value of different features extracted from high resolution computed tomography (HRCT) images of patients with idiopathic pulmonary fibrosis. These features are investigated over a range of HRCT lung volume measurements (in Hounsfield Units) for which no prior study has yet been published. In particular, we provide a comparison of their diagnostic value at different Hounsfield Unit (HU) thresholds, including corresponding pulmonary functional tests. METHODS We consider thirty-two patients retrospectively for whom both HRCT examinations and spirometry tests were available. First, we analyse the HRCT histogram to extract quantitative lung fibrosis features. Next, we evaluate the relationship between pulmonary function and the HRCT features at selected HU thresholds, namely -200 HU, 0 HU, and +200 HU. We model the relationship using a Poisson approximation to identify the measure with the highest log-likelihood. RESULTS Our Poisson models reveal no difference at the -200 and 0 HU thresholds. However, inferential conclusions change at the +200 HU threshold. Among the HRCT features considered, the percentage of normally attenuated lung at -200 HU shows the most significant diagnostic utility. CONCLUSIONS The percentage of normally attenuated lung can be used together with qualitative HRCT assessment and pulmonary function tests to enhance the idiopathic pulmonary fibrosis (IPF) diagnostic process.
Collapse
Affiliation(s)
- Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (A.S.); (A.C.); (V.B.)
| | - Mauro Gioè
- Department of Economics, Business, and Statistics (DSEAS), University of Palermo, 90133 Palermo, Italy; (M.G.); (M.A.)
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (A.S.); (A.C.); (V.B.)
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology Unit I, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy; (S.P.); (A.B.); (G.S.); (D.F.); (A.G.T.)
| | - Sebastiano Emanuele Torrisi
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-Vittorio Emanuele, University of Catania, 95123 Catania, Italy; (S.E.T.); (C.V.)
| | - Samuel Bignardi
- Laboratory of Computational Computer Vision (LCCV), School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.B.); (A.Y.)
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology Unit I, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy; (S.P.); (A.B.); (G.S.); (D.F.); (A.G.T.)
| | - Albert Comelli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (A.S.); (A.C.); (V.B.)
- Ri.Med Foundation, 90133 Palermo, Italy
| | - Viviana Benfante
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (A.S.); (A.C.); (V.B.)
| | - Gianluca Sambataro
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology Unit I, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy; (S.P.); (A.B.); (G.S.); (D.F.); (A.G.T.)
- Artroreuma S.R.L., Rheumatology Outpatient Clinic Associated with the National Health System, 95030 Mascalucia (Catania), Italy
| | - Daniele Falsaperla
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology Unit I, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy; (S.P.); (A.B.); (G.S.); (D.F.); (A.G.T.)
| | - Alfredo Gaetano Torcitto
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology Unit I, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy; (S.P.); (A.B.); (G.S.); (D.F.); (A.G.T.)
| | - Massimo Attanasio
- Department of Economics, Business, and Statistics (DSEAS), University of Palermo, 90133 Palermo, Italy; (M.G.); (M.A.)
| | - Anthony Yezzi
- Laboratory of Computational Computer Vision (LCCV), School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.B.); (A.Y.)
| | - Carlo Vancheri
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-Vittorio Emanuele, University of Catania, 95123 Catania, Italy; (S.E.T.); (C.V.)
| |
Collapse
|