1
|
Watanabe M, Shrivastava RK, Balchandani P. Advanced neuroimaging of the trigeminal nerve and the whole brain in trigeminal neuralgia: a systematic review. Pain 2025; 166:282-310. [PMID: 39132931 DOI: 10.1097/j.pain.0000000000003365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT For trigeminal neuralgia (TN), a major role of imaging is to identify the causes, but recent studies demonstrated structural and microstructural changes in the affected nerve. Moreover, an increasing number of studies have reported central nervous system involvement in TN. In this systematic review, recent quantitative magnetic resonance imaging (MRI) studies of the trigeminal nerve and the brain in patients with TN were compiled, organized, and discussed, particularly emphasizing the possible background mechanisms and the interpretation of the results. A systematic search of quantitative MRI studies of the trigeminal nerve and the brain in patients with TN was conducted using PubMed. We included the studies of the primary TN published during 2013 to 2023, conducted for the assessment of the structural and microstructural analysis of the trigeminal nerve, and the structural, diffusion, and functional MRI analysis of the brain. Quantitative MRI studies of the affected trigeminal nerves and the trigeminal pathway demonstrated structural/microstructural alterations and treatment-related changes, which differentiated responders from nonresponders. Quantitative analysis of the brain revealed changes in the brain areas associated with pain processing/modulation and emotional networks. Studies of the affected nerve demonstrated evidence of demyelination and axonal damage, compatible with pathological findings, and have shown its potential value as a tool to assess treatment outcomes. Quantitative MRI has also revealed the possibility of dynamic microstructural, structural, and functional neuronal plasticity of the brain. Further studies are needed to understand these complex mechanisms of neuronal plasticity and to achieve a consensus on the clinical use of quantitative MRI in TN.
Collapse
Affiliation(s)
- Memi Watanabe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raj K Shrivastava
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, United States
| | - Priti Balchandani
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Su X, Wang Z, Wang Z, Cheng M, Du C, Tian Y. A novel indicator to predict the outcome of percutaneous stereotactic radiofrequency rhizotomy for trigeminal neuralgia patients: diffusivity metrics of MR-DTI. Sci Rep 2024; 14:9235. [PMID: 38649718 PMCID: PMC11035693 DOI: 10.1038/s41598-024-59828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Magnetic resonance-diffusion tensor imaging (MR-DTI) has been used in the microvascular decompression and gamma knife radiosurgery in trigeminal neuralgia (TN) patients; however, use of percutaneous stereotactic radiofrequency rhizotomy (PSR) to target an abnormal trigeminal ganglion (ab-TG) is unreported. Fractional anisotropy (FA), mean and radial diffusivity (MD and RD, respectively), and axial diffusivity (AD) of the trigeminal nerve (CNV) were measured in 20 TN patients and 40 healthy control participants immediately post PSR, at 6-months, and at 1 year. Longitudinal alteration of the diffusivity metrics and any correlation with treatment effects, or prognoses, were analyzed. In the TN group, either low FA (value < 0.30) or a decreased range compared to the adjacent FA (dFA) > 17% defined an ab-TG. Two-to-three days post PSR, all 15 patients reported decreased pain scores with increased FA at the ab-TG (P < 0.001), but decreased MD and RD (P < 0.01 each). Treatment remained effective in 10 of 14 patients (71.4%) and 8 of 12 patients (66.7%) at the 6-month and 1-year follow-ups, respectively. In patients with ab-TGs, there was a significant difference in treatment outcomes between patients with low FA values (9 of 10; 90%) and patients with dFA (2 of 5; 40%) (P < 0.05). MR-DTI with diffusivity metrics correlated microstructural CNV abnormalities with PSR outcomes. Of all the diffusivity metrics, FA could be considered a novel objective quantitative indicator of treatment effects and a potential indicator of PSR effectiveness in TN patients.
Collapse
Affiliation(s)
- Xu Su
- Departments of Neurosurgery, The Third Hospital of Jilin University and China-Japan Union Hospital, 126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China
- Departments of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Zhengming Wang
- Departments of Trauma Center, The Third Hospital of Jilin University and China‑Japan Union Hospital, Changchun, 130033, Jilin, People's Republic of China
| | - Zhijia Wang
- Departments of Radiation, The Third Hospital of Jilin University and China‑Japan Union Hospital, Changchun, 130033, Jilin, People's Republic of China
| | - Min Cheng
- Departments of Radiation, The Third Hospital of Jilin University and China‑Japan Union Hospital, Changchun, 130033, Jilin, People's Republic of China
| | - Chao Du
- Departments of Neurosurgery, The Third Hospital of Jilin University and China-Japan Union Hospital, 126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China.
| | - Yu Tian
- Departments of Neurosurgery, The Third Hospital of Jilin University and China-Japan Union Hospital, 126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Latypov TH, So MC, Hung PSP, Tsai P, Walker MR, Tohyama S, Tawfik M, Rudzicz F, Hodaie M. Brain imaging signatures of neuropathic facial pain derived by artificial intelligence. Sci Rep 2023; 13:10699. [PMID: 37400574 DOI: 10.1038/s41598-023-37034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
Advances in neuroimaging have permitted the non-invasive examination of the human brain in pain. However, a persisting challenge is in the objective differentiation of neuropathic facial pain subtypes, as diagnosis is based on patients' symptom descriptions. We use artificial intelligence (AI) models with neuroimaging data to distinguish subtypes of neuropathic facial pain and differentiate them from healthy controls. We conducted a retrospective analysis of diffusion tensor and T1-weighted imaging data using random forest and logistic regression AI models on 371 adults with trigeminal pain (265 classical trigeminal neuralgia (CTN), 106 trigeminal neuropathic pain (TNP)) and 108 healthy controls (HC). These models distinguished CTN from HC with up to 95% accuracy, and TNP from HC with up to 91% accuracy. Both classifiers identified gray and white matter-based predictive metrics (gray matter thickness, surface area, and volume; white matter diffusivity metrics) that significantly differed across groups. Classification of TNP and CTN did not show significant accuracy (51%) but highlighted two structures that differed between pain groups-the insula and orbitofrontal cortex. Our work demonstrates that AI models with brain imaging data alone can differentiate neuropathic facial pain subtypes from healthy data and identify regional structural indicates of pain.
Collapse
Affiliation(s)
- Timur H Latypov
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Matthew C So
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Shih-Ping Hung
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Pascale Tsai
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew R Walker
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sarasa Tohyama
- A.A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Marina Tawfik
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Frank Rudzicz
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Zhang Y, Sun D, Xie Y, Li R, Zhao H, Wang Z, Feng L. Predictive value of preoperative magnetic resonance imaging structural and diffusion indices for the results of trigeminal neuralgia microvascular decompression surgery. Neuroradiology 2023:10.1007/s00234-023-03155-4. [PMID: 37140598 DOI: 10.1007/s00234-023-03155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE To explore the predictive value of preoperative magnetic resonance imaging structural and diffusion indices of the spinal trigeminal tract (SpTV) on the results of microvascular decompression (MVD) in patients with trigeminal neuralgia (TN). METHODS This retrospective study included patients diagnosed with TN and treated with MVD in the Jining First People's Hospital between January 2020 and January 2021. The patients were divided into good and poor results groups according to postoperative pain relief. Logistic regression analysis was performed to explore independent risk factors for poor results of MVD, and their predictive value was examined using receiver operating characteristic (ROC) curves. RESULTS A total of 97 TN cases were included, 24 cases with a poor result and 73 with a good result. They were comparable in demographic characteristics. Fractional anisotropy (FA) was lower (P < 0.001), and radial diffusivity (RD) was higher (P < 0.001) in the poor result group compared to the good result group. Patients in the good result group showed a higher proportion of grade 3 neurovascular contact (NVC) (39.7% vs. 16.7%, P = 0.001) and a lower RD (P < 0.001). The multivariate analysis showed that the RD of SpTV (OR = 0.000016, 95% CI: 0.000-0.004, P < 0.001) and NVC (OR = 8.07, 95% CI: 1.67-38.93, P = 0.009) were independently associated with poor results. The area under the curve (AUC) of RD and NVC were 0.848 and 0.710, and their combination achieved an AUC of 0.880. CONCLUSION NVC and RD of SpTV are independent risk factors for poor results after MVD surgery, and combining the NVC and RD might achieve relatively high predictive value for poor results.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong, 272001, People's Republic of China
| | - Dengbin Sun
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong, 272001, People's Republic of China
| | - Yunjie Xie
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong, 272001, People's Republic of China
| | - Rui Li
- Department of Radiology, Jining No. 1 People's Hospital, Jining, Shandong, 272001, People's Republic of China
| | - Hang Zhao
- Department of Radiology, Jining No. 1 People's Hospital, Jining, Shandong, 272001, People's Republic of China
| | - Zhaoping Wang
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong, 272001, People's Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong, 272001, People's Republic of China.
| |
Collapse
|
5
|
Brain White Matter Structural Alteration in Hemifacial Spasm: A Diffusion Tensor Imaging Study. J Craniofac Surg 2023; 34:674-679. [PMID: 36730451 DOI: 10.1097/scs.0000000000009083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To analyze the changes in the white matter structure of the whole brain in hemifacial spasm (HFS) patients by using the tract-based spatial statistics (TBSS) method. MATERIALS AND METHODS 29 HFS patients without anxiety and depression and 29 healthy controls with matching age, sex, and education were selected. All subjects received a 3.0T magnetic resonance (MR) brain diffusion tensor imaging scan. Tract-based spatial statistics method was used to analyze the changes in white matter structure in the whole brain and obtained the cerebral white matter fibrous areas exhibiting significant intergroup differences. The fractional anisotropy (FA), mean diffusivity, axial diffusivity, and radial diffusivity of these areas were abstracted. Analyzed the correlation between these diffusion metrics and clinical variables (disease duration, spasm severity). RESULTS Compared with the healthy controls group, the HFS group exhibited significantly lower FA in the forceps minor, bilateral anterior thalamic radiation, and right superior longitudinal fasciculus ( P <0.05, threshold-free cluster enhancement corrected). Cohen grading scale of HFS patients was negatively correlated with FA of forceps minor. CONCLUSION Based on TBSS analysis, the injury of white matter fiber tracts in HFS patients was found, including forceps minor, bilateral anterior thalamic radiation, and right superior longitudinal fasciculus. The changes of FA values in forceps minor were negatively correlated with the Cohen grading scale, suggesting that the alteration of white matter fiber in the genu-of-corpus-callosum-cortex circuit plays an important role in the neuro-pathological mechanism of HFS. Combined with previous research, it is also necessary to further explore the change of the superior longitudinal fasciculus in the future.
Collapse
|
6
|
Ge X, Wang L, Wang M, Pan L, Ye H, Zhu X, Fan S, Feng Q, Du Q, Wenhua Y, Ding Z. Alteration of brain network centrality in CTN patients after a single triggering pain. Front Neurosci 2023; 17:1109684. [PMID: 36875648 PMCID: PMC9978223 DOI: 10.3389/fnins.2023.1109684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Objective The central nervous system may also be involved in the pathogenesis of classical trigeminal neuralgia (CTN). The present study aimed to explore the characteristics of static degree centrality (sDC) and dynamic degree centrality (dDC) at multiple time points after a single triggering pain in CTN patients. Materials and methods A total of 43 CTN patients underwent resting-state function magnetic resonance imaging (rs-fMRI) before triggering pain (baseline), within 5 s after triggering pain (triggering-5 s), and 30 min after triggering pain (triggering-30 min). Voxel-based degree centrality (DC) was used to assess the alteration of functional connection at different time points. Results The sDC values of the right caudate nucleus, fusiform gyrus, middle temporal gyrus, middle frontal gyrus, and orbital part were decreased in triggering-5 s and increased in triggering-30 min. The sDC value of the bilateral superior frontal gyrus were increased in triggering-5 s and decreased in triggering-30 min. The dDC value of the right lingual gyrus was gradually increased in triggering-5 s and triggering-30 min. Conclusion Both the sDC and dDC values were changed after triggering pain, and the brain regions were different between the two parameters, which supplemented each other. The brain regions which the sDC and dDC values were changing reflect the global brain function of CTN patients, and provides a basis for further exploration of the central mechanism of CTN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengze Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Pan
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Haiqi Ye
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Xiaofen Zhu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sandra Fan
- Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Feng
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Wenhua
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Robertson JW, Aristi G, Hashmi JA. White matter microstructure predicts measures of clinical symptoms in chronic back pain patients. Neuroimage Clin 2023; 37:103309. [PMID: 36621020 PMCID: PMC9850203 DOI: 10.1016/j.nicl.2022.103309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Chronic back pain (CBP) has extensive clinical and social implications for its sufferers and is a major source of disability. Chronic pain has previously been shown to have central neural factors underpinning it, including the loss of white matter (WM), however traditional methods of analyzing WM microstructure have produced mixed and unclear results. To better understand these factors, we assessed the WM microstructure of 50 patients and 40 healthy controls (HC) using diffusion-weighted imaging. The data were analyzed using fixel-based analysis (FBA), a higher-order diffusion modelling technique applied to CBP for the first time here. Subjects also answered questionnaires relating to pain, disability, catastrophizing, and mood disorders, to establish the relationship between fixelwise metrics and clinical symptoms. FBA determined that, compared to HC, CBP patients had: 1) lower fibre density (FD) in several tracts, specifically the right anterior and bilateral superior thalamic radiations, right spinothalamic tract, right middle cerebellar peduncle, and the body and splenium of corpus callosum; 2) higher FD in the genu of corpus callosum; and 3) lower FDC - a combined fibre density and cross-section measure - in the bilateral spinothalamic tracts and right anterior thalamic radiation. Exploratory correlations showed strong negative relationships between fixelwise metrics and clinical questionnaire scores, especially pain catastrophizing. These results have important implications for the intake and processing of sensory data in CBP that warrant further investigation.
Collapse
Affiliation(s)
- Jason W Robertson
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada.
| | - Guillermo Aristi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada
| | - Javeria A Hashmi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada.
| |
Collapse
|
8
|
Budd AS, Huynh TKT, Seres P, Beaulieu C, Armijo-Olivo S, Cummine J. White Matter Diffusion Properties in Chronic Temporomandibular Disorders: An Exploratory Analysis. FRONTIERS IN PAIN RESEARCH 2022; 3:880831. [PMID: 35800990 PMCID: PMC9254396 DOI: 10.3389/fpain.2022.880831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Objective To determine differences in diffusion metrics in key white matter (WM) tracts between women with chronic temporomandibular disorders (TMDs) and age- and sex-matched healthy controls. Design Cross sectional study compared diffusion metrics between groups and explored their associations with clinical variables in subjects with TMDs. Methods In a total of 33 subjects with TMDs and 33 healthy controls, we performed tractography to obtain diffusion metrics (fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) from the cingulum near the cingulate gyrus (CGC), the cingulum near the hippocampus (CGH), the fornix, the anterior limb of the internal capsule (ALIC), the posterior limb of the internal capsule (PLIC), and the uncinate fasciculus (UF). We compared diffusion metrics across groups and explored the relationships between diffusion metrics and clinical measures (pain chronicity and intensity, central sensitization, somatization, depression, orofacial behavior severity, jaw function limitations, disability, and interference due to pain) in subjects with TMDs. Results We observed differences in diffusion metrics between groups, primarily in the right side of the brain, with the right CGC having lower FA and the right UF having lower FA and higher MD and RD in subjects with TMDs compared to healthy controls. No clinical measures were consistently associated with diffusion metrics in subjects with TMDs. Conclusion The UF showed potential microstructural damage in subjects with TMDs, but further studies are needed to confirm any associations between diffusion changes and clinical measures.
Collapse
Affiliation(s)
- Alexandra S. Budd
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thi K. T. Huynh
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Susan Armijo-Olivo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Faculty of Business and Social Sciences, University of Applied Sciences Osnabrück, Osnabrück, Germany
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Susan Armijo-Olivo
| | - Jacqueline Cummine
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|