1
|
Xie Z, Yang C, Xu T. Hesperetin attenuates LPS-induced the inflammatory response and apoptosis of H9c2 by activating the AMPK/P53 signaling pathway. Immun Inflamm Dis 2023; 11:e973. [PMID: 37584301 PMCID: PMC10413818 DOI: 10.1002/iid3.973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
INTRODUCTION Hesperetin (HES), whose main pharmacological effects are anti-inflammatory and cardioprotective properties. In our study, we investigated the role of HES in lipopolysaccharide (LPS)-induced inflammation and apoptosis in H9c2 cells. METHODS Cell viability was assessed through MTT assay. Tumor necrosis factor (TNF)-α and interleukin (IL)-β expression were quantified through RT-qPCR assay. Secondly, the apoptosis rate was assessed by Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Finally, B-cell lymphoma 2 (Bcl-2)- associated X protein (Bax), adenosine monophosphate-activated protein kinase (AMPK), and P53 expression were quantified through western blot assay. RESULTS Our results demonstrated that LPS stimulation decreased the cell viability, increased IL-1β and TNF-α expression in H9c2 cells. However, HES treatment significantly increased the cell viability, decreased IL-1β and TNF-α expression in LPS-induced H9c2 cells. In addition, HES significantly increased the phosphorylation level of AMPK. Meanwhile, HES prevented against LPS-mediated the P53 and Bax protein upregulation, and Bcl-2 protein downregulation in H9c2 cells. More interestingly, compound C (an AMPK inhibitor) treatment eliminated the protective effects of HES. CONCLUSION Our findings revealed that HES attenuated the LPS-mediated inflammation and apoptosis of H9c2 cells by activating the AMPK/P53 signaling pathway, suggesting that HES may be a potential cardioprotective agent.
Collapse
Affiliation(s)
- Zan Xie
- Department of Cardiologythe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
| | - Chunxia Yang
- Department of Cardiologythe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
| | - Tingting Xu
- Department of Cardiologythe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
| |
Collapse
|
2
|
Sridharan V, Johnson KA, Landes RD, Cao M, Singh P, Wagoner G, Hayar A, Sprick ED, Eveld KA, Bhattacharyya A, Krager KJ, Aykin-Burns N, Weiler H, Fernández JA, Griffin JH, Boerma M. Sex-dependent effects of genetic upregulation of activated protein C on delayed effects of acute radiation exposure in the mouse heart, small intestine, and skin. PLoS One 2021; 16:e0252142. [PMID: 34029348 PMCID: PMC8143413 DOI: 10.1371/journal.pone.0252142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/10/2021] [Indexed: 11/30/2022] Open
Abstract
Accidental exposure to ionizing radiation may lead to delayed effects of acute radiation exposure (DEARE) in many organ systems. Activated protein C (APC) is a known mitigator of the acute radiation syndrome. To examine the role of APC in DEARE, we used a transgenic mouse model with 2- to 3-fold increased plasma levels of APC (high in APC, APCHi). Male and female APCHi mice and wild-type littermates were exposed to 9.5 Gy γ-rays with their hind-legs (bone marrow) shielded from radiation to allow long-term survival. At 3 and 6 months after irradiation, cardiac function was measured with ultrasonography. At 3 months, radiation increased cardiac dimensions in APCHi males, while decreases were seen in wild-type females. At this early time point, APCHi mice of both sexes were more susceptible to radiation-induced changes in systolic function compared to wild-types. At 6 months, a decrease in systolic function was mainly seen in male mice of both genotypes. At 6 months, specimens of heart, small intestine and dorsal skin were collected for tissue analysis. Female APCHi mice showed the most severe radiation-induced deposition of cardiac collagens but were protected against a radiation-induced loss of microvascular density. Both male and female APCHi mice were protected against a radiation induced upregulation of toll-like receptor 4 in the heart, but this did not translate into a clear protection against immune cell infiltration. In the small intestine, the APCHi genotype had no effect on an increase in the number of myeloperoxidase positive cells (seen mostly in females) or an increase in the expression of T-cell marker CD2 (males). Lastly, both male and female APCHi mice were protected against radiation-induced epidermal thickening and increase in 3-nitrotyrosine positive keratinocytes. In conclusion, prolonged high levels of APC in a transgenic mouse model had little effects on indicators of DEARE in the heart, small intestine and skin, with some differential effects in male compared to female mice.
Collapse
Affiliation(s)
- Vijayalakshmi Sridharan
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Kristin A. Johnson
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Reid D. Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Maohua Cao
- College of Dentistry, Texas A&M University, Dallas, TX, United States of America
| | - Preeti Singh
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Gail Wagoner
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Abdallah Hayar
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Emily D. Sprick
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Kayla A. Eveld
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Anusha Bhattacharyya
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Kimberly J. Krager
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Hartmut Weiler
- Versiti and the Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Jose A. Fernández
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States of America
| | - John H. Griffin
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States of America
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- * E-mail:
| |
Collapse
|
3
|
Blet A, Deniau B, Geven C, Sadoune M, Caillard A, Kounde PR, Polidano E, Pickkers P, Samuel JL, Mebazaa A. Adrecizumab, a non-neutralizing anti-adrenomedullin antibody, improves haemodynamics and attenuates myocardial oxidative stress in septic rats. Intensive Care Med Exp 2019; 7:25. [PMID: 31093784 PMCID: PMC6520420 DOI: 10.1186/s40635-019-0255-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Background Sepsis still represents a major health issue, with persistent high morbidity and mortality rates. Cardiovascular dysfunction occurs frequently during sepsis. Adrenomedullin has been identified as a key mediator in vascular tone regulation. A non-neutralizing anti-adrenomedullin antibody, Adrecizumab, may improve haemodynamic dysfunction during caecal ligation and puncture-induced septic shock in a murine model. Our objective was to determine the role of Adrecizumab on haemodynamics in a rat model of sepsis. Methods For the induction of sepsis, caecal ligation and puncture were performed in Wistar male rats. Single blinded administration of Adrecizumab (2 mg/kg) or placebo was injected i.v. 24 h after the surgery, and norepinephrine was infused as the standard of care. There were > 7 animals per group. Invasive blood pressure and cardiac function (by echocardiography) were assessed until 3 h after Adrecizumab injection. Results A single therapeutic injection of Adrecizumab in septic rats induced rapid haemodynamic benefits with an increase in systolic blood pressure in septic-Adrecizumab rats versus untreated-septic rats (p = 0.049). The shortening fraction did not differ between the untreated-septic and septic-Adrecizumab groups. However, cardiac output increased during the 3 h after a single dose of Adrecizumab compared to untreated septic rats (p = 0.006). A single dose of Adrecizumab resulted in similar haemodynamics to the continuous administration of norepinephrine. Three hours after a single injection of Adrecizumab, there was no change in the inflammatory phenotype (TNFα, IL-10) in the hearts of the septic rats. By contrast, 3 h after a single Adrecizumab injection, free-radical production decreased in the hearts of septic-Adrecizumab vs untreated septic rats (p < 0.05). Conclusions In a rat model of sepsis, a single therapeutic injection of Adrecizumab rapidly restored haemodynamic parameters and blunted myocardial oxidative stress. Currently, a proof-of-concept and dose-finding phase II trial (Adrenoss-2) is ongoing in patients with septic shock and elevated concentrations of circulating bio-adrenomedullin. Electronic supplementary material The online version of this article (10.1186/s40635-019-0255-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alice Blet
- Department of Anesthesia, Burn and Critical Care, University Hospitals Saint-Louis - Lariboisière, AP-HP, Paris, France. .,UMR-S 942, Inserm, Paris, France.
| | - Benjamin Deniau
- Department of Anesthesia, Burn and Critical Care, University Hospitals Saint-Louis - Lariboisière, AP-HP, Paris, France.,UMR-S 942, Inserm, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Christopher Geven
- Department of Intensive Care Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical center, HP: 710, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | | | - Anaïs Caillard
- Department of Anesthesia, Burn and Critical Care, University Hospitals Saint-Louis - Lariboisière, AP-HP, Paris, France.,UMR-S 942, Inserm, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Paul-Robert Kounde
- Department of Anesthesia, Burn and Critical Care, University Hospitals Saint-Louis - Lariboisière, AP-HP, Paris, France.,UMR-S 942, Inserm, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | | | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical center, HP: 710, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | | | - Alexandre Mebazaa
- Department of Anesthesia, Burn and Critical Care, University Hospitals Saint-Louis - Lariboisière, AP-HP, Paris, France.,UMR-S 942, Inserm, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
4
|
Simon TP, Mueckenheim H, Wagner T, Sponholz C, Claus RA, Saenger J, Marx G, Schuerholz T. Organ-specific effects on inflammation and apoptosis of recombinant human activated protein C in a murine model of sepsis. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17721088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is legitimate interest in the effects of recombinant human activated protein C (rhAPC) on various organs and individual patients, but the specific effects on organ tissues during early sepsis remain unknown. Differences in the levels of organ damage may influence responses to drug therapy. We aimed to investigate whether rhAPC induces organ-specific effects on inflammation and apoptosis using randomized, experimental trials with male NMRI mice. Animals underwent caecal ligation and puncture, and after 12 h, sepsis inflammation and apoptosis were assessed by plasma cytokines, gene expression ratios and immunohistochemistry (IHC). RhAPC-treated animals exhibited increased physical activity and decreased cytokine release compared to untreated animals (interleukin-6 reduction 58%, P < 0.001). CD14 expression was higher in the heart and liver and decreased upon rhAPC application in the heart (−35%), liver and kidney (both −60%). Macrophage inflammatory protein 2 (MIP2) expression decreased in the heart (−58%) but not in the liver or kidney. IHC revealed decreased cleaved caspase-3 in the heart and kidney due to rhAPC intervention. Preservation of the endothelial PC receptor was significant only in the heart during sepsis ( P = 0.007). In early polymicrobial sepsis, inflammation was more pronounced in the heart and liver compared to the kidney. RhAPC exhibited protective effects, especially in the heart tissue, and led to reduced plasma levels of pro-inflammatory cytokines and improved physical activity.
Collapse
Affiliation(s)
- Tim-Philipp Simon
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Hendrik Mueckenheim
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tobias Wagner
- Department of Anesthesiology and Intensive Care, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Christoph Sponholz
- Department of Anesthesiology and Intensive Care, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ralf Alexander Claus
- Department of Anesthesiology and Intensive Care, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tobias Schuerholz
- Department of Anesthesiology and Intensive Care, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Beneficial Effects of Norepinephrine Alone on Cardiovascular Function and Tissue Oxygenation in a Pig Model of Cardiogenic Shock. Shock 2016; 46:214-8. [DOI: 10.1097/shk.0000000000000579] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Hanaa-Mansour A, Hassan WA, Georgy GS. Dexamethazone protects against Escherichia coli induced sickness behavior in rats. Brain Res 2016; 1630:198-207. [DOI: 10.1016/j.brainres.2015.10.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022]
|
7
|
Yuan Y, Zhou H, Wu QQ, Li FF, Bian ZY, Deng W, Zhou MQ, Tang QZ. Puerarin attenuates the inflammatory response and apoptosis in LPS-stimulated cardiomyocytes. Exp Ther Med 2015; 11:415-420. [PMID: 26893624 PMCID: PMC4734177 DOI: 10.3892/etm.2015.2910] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/26/2015] [Indexed: 01/04/2023] Open
Abstract
Patients with septic shock suffer from high mortality rates, particularly when complicated by severe myocardial depression which is characterized by hypotension and a reduction in cardiac output. Inflammation is an important factor involved in the early stages of sepsis. The aim of the present study was to investigate the effect of the Chinese herbal compound puerarin (1, 5, 10, 20 and 40 µM) on cardiomyocyte inflammatory response in a sepsis model using H9c2 cardiomyocytes stimulated with 1 µg/ml lipopolysaccharide (LPS). The mRNA expression levels of tumor necrosis factor (TNF)-α and interleukin (IL)-β were evaluated using reverse transcription-quantitative polymerase chain reaction. In addition, the protein expression levels of various factors were determined using western blot analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was used to evaluate the apoptosis rates in the various groups, and immunocytochemical analysis was employed to determine the effect of puerarin on the nuclear translocation of p65 protein. The present study demonstrated that LPS stimulation increased IL-1β and TNF-α mRNA expression levels, as compared with the controls (P<0.05). Following treatment with various concentrations of puerarin, the expression levels of IL-1β and TNF-α were markedly blunted, particularly in the LPS + 40 µM puerarin group (P<0.05 vs. the LPS group). Furthermore, puerarin administration significantly inhibited LPS-induced apoptosis in H9c2 cardiomyocytes, as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining (TUNEL positive cells: LPS + 40 µM puerarin group, 5.5% vs. LPS group, 10.5%; P<0.01). In addition, puerarin significantly decreased LPS-induced phosphorylated nuclear factor (p-NF)-κB p65 and Bax expression levels, and increased the expression levels of Bcl-2, as compared with the LPS group (P<0.05). These data indicated that puerarin may serve as a valuable protective agent against cardiovascular inflammatory diseases.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qiao Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
What’s New in Shock? June 2014. Shock 2014. [DOI: 10.1097/shk.0000000000000185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|