1
|
Fang X, Song T, Zheng L, Weng Y, Gao F, Mo C, Zheng X. Targeting mast cell activation alleviates anti-MHC I antibody and LPS-induced TRALI in mice by pharmacologically blocking the TLR3 and MAPK pathway. Biomed Pharmacother 2024; 180:117456. [PMID: 39326104 DOI: 10.1016/j.biopha.2024.117456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Transfusion-related lung injury (TRALI) poses a significant risk following blood transfusion and remains the primary cause of transfusion-related morbidity and mortality, primarily driven by the activation of immune cells through anti-major histocompatibility complex class I (anti-MHC I) antibody. However, it remains to be defined how immune microenvironmental cue contributes to TRALI. Here, we uncover that activated mast cells within the immune microenvironment promote lung inflammation and injury in antibody-mediated TRALI, both in vitro and in vivo. This was demonstrated by co-culturing lipopolysaccharide (LPS)-pretreated mast cell line with anti-MHC I antibody and establishing a "two-hit" TRALI mouse model through intratracheal injection of LPS followed by tail-vein injection of anti-MHC I antibody. Importantly, mast cell-deficient KitW-sh/W-sh mice exhibited markedly reduced lung inflammation and injury responses in antibody-mediated TRALI compared with wild-type mice. Mechanistically, activation of toll-like receptor 3 (TLR3)/mitogen-activated protein kinase (MAPK) signaling pathway in mast cells contributes to the enhanced production of proinflammatory factors. These excessive proinflammatory factors produced by activated mast cells contribute to lung inflammation and injury in antibody-mediated TRALI. Pharmacologically targeting the TLR3/MAPK pathway to inhibit mast cell activation normalizes the proinflammatory microenvironment and alleviates lung inflammation and injury in the preclinical TRALI mouse model. Overall, we find that activation of mast cells via the TLR3/MAPK pathway contributes to lung inflammation and injury in antibody-mediated TRALI, providing novel insights into its underlying mechanisms. Furthermore, targeting activated mast cells and the associated pathway offers potential therapeutic strategies for antibody-mediated TRALI.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Tianjiao Song
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Yueyi Weng
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaochun Zheng
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road", Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Lei YQ, Wan YT, Liang GT, Huang YH, Dong P, Luo SD, Zhang WJ, Liu WF, Liu KX, Zhang XY. Extracellular RNAs/TLR3 signaling contributes to acute intestinal injury induced by intestinal ischemia reperfusion in mice. Biochim Biophys Acta Mol Basis Dis 2023:166790. [PMID: 37336369 DOI: 10.1016/j.bbadis.2023.166790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Toll-like receptor 3 (TLR3), one pattern recognition receptor activated by viral and endogenous RNA, has been recently reported to regulate ischemia/reperfusion (I/R) injury in various organs. However, the role of TLR3 in the development of intestinal I/R injury remains unclear. The aim of this study is to evaluate the effects of extracellular RNAs/TLR3 signaling in intestinal I/R injury. An intestinal I/R injury model was established with superior mesenteric artery occlusion both in wild-type and TLR3 knockout (KO, -/-) mice, and MODE-K cells were subjected to hypoxia/reoxygenation (H/R) to mimic the I/R model in vivo. Extracellular RNAs (exRNAs), especially double-stranded RNAs (dsRNAs) co-localized with TLR3, were significantly increased both in vitro and in vivo. Compared with wild-type mice, TLR3 knockout obviously attenuated intestinal I/R injury. Both TLR3/dsRNA complex inhibitor and TLR3 siRNA administration reduced TLR3 expressions and subsequently inhibited intestinal inflammatory cytokine production and apoptosis. In conclusion, exRNAs/TLR3 signaling is a key mechanism that regulates intestinal I/R injury in adult mice, and the TLR3/dsRNA complex inhibitor can be an effective approach for attenuating intestinal I/R-induced inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Yu-Qiong Lei
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Tong Wan
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, China
| | - Guang-Tao Liang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Hao Huang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Si-Dan Luo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Juan Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xi-Yang Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Gollmann-Tepeköylü C, Graber M, Pölzl L, Nägele F, Moling R, Esser H, Summerer B, Mellitzer V, Ebner S, Hirsch J, Schäfer G, Hackl H, Cardini B, Oberhuber R, Primavesi F, Öfner D, Bonaros N, Troppmair J, Grimm M, Schneeberger S, Holfeld J, Resch T. Toll-like receptor 3 mediates ischaemia/reperfusion injury after cardiac transplantation. Eur J Cardiothorac Surg 2021; 57:826-835. [PMID: 32040169 DOI: 10.1093/ejcts/ezz383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/12/2019] [Accepted: 12/22/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Ischaemia and subsequent reperfusion during heart transplantation inevitably result in donor organ injury. Toll-like receptor (TLR)-3 is a pattern recognition receptor activated by viral and endogenous RNA released by injured cells. We hypothesized that ischaemia/reperfusion injury (IRI) leads to RNA release with subsequent TLR3 activation in transplanted hearts. METHODS Human endothelial cells were subjected to IRI and treated with TLR3 agonist polyinosinic-polycytidylic acid or a TLR3/double-stranded RNA complex inhibitor. TLR3 activation was analysed using reporter cells. Gene expression profiles were evaluated via next-generation sequencing. Neutrophil adhesion was assessed in vitro. Syngeneic heart transplantation of wild-type or Tlr3-/- mice was performed following 9 h of cold ischaemia. Hearts were analysed for inflammatory gene expression, cardiac damage, apoptosis and infiltrating leucocytes. RESULTS IRI resulted in RNA release with subsequent activation of TLR3. Treatment with a TLR3 inhibitor abrogated the inflammatory response upon IRI. In parallel, TLR3 stimulation caused activation of the inflammasome. Endothelial IRI resulted in TLR3-dependent adhesion of neutrophils. Tlr3-/- animals showed reduced intragraft and splenic messenger ribonucleic acid (mRNA) expression of proinflammatory cytokines, resulting in decreased myocardial damage, apoptosis and infiltrating cells. Tlr3 deficiency protected from cardiac damage, apoptosis and leucocyte infiltration after cardiac transplantation. CONCLUSIONS We uncover the release of RNA by injured cells with subsequent activation of TLR3 as a crucial pathomechanism of IRI. Our data indicate that TLR3 represents a novel target in the prevention of IRI in solid organ transplantation.
Collapse
Affiliation(s)
| | - Michael Graber
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Nägele
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rafael Moling
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannah Esser
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Bianca Summerer
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Vanessa Mellitzer
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Primavesi
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaos Bonaros
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Troppmair
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate target gene expression by binding to sequences in messenger RNA processing. Inflammation is a protective reaction from harmful stimuli. MiRNAs can be biomarkers of diseases related to inflammation and are widely expressed in serum. However, overall changes in serum miRNA levels during inflammation have yet to be observed. Here, we selected studies published until 20 January 2020 that examined miRNAs in mouse models of inflammation. Serum microRNA, inflammation, inflammatory and mouse were used as search terms to select articles from PubMed and MEDLINE. Among the articles, sepsis and 18 related miRNAs were mainly examined. Eleven miRNAs were related to brain disease and 10 with fibrosis. Seventeen injury-induced inflammatory disease studies were included, as well as other inflammatory diseases, such as metabolic disease, vascular disease, arthritis, asthma, autoimmune disease, inflammatory bowel disease, and thyroiditis. The data described miRNA-associated downstream pathways associated with inflammation as well as mitochondrial responses, oxidative responses, apoptosis, cell signalling, and cell differentiation. We expect that the data will inform future animal inflammation-related miRNA studies.
Collapse
Affiliation(s)
- Areum Lee
- College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
5
|
Nan Z, Jin Z, Huijuan C, Tiezheng Z, Keyan C. Effects of TLR3 and TLR9 Signaling Pathway on Brain Protection in Rats Undergoing Sevoflurane Pretreatment during Cardiopulmonary Bypass. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4286738. [PMID: 29445737 PMCID: PMC5763070 DOI: 10.1155/2017/4286738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/22/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effects of TLR3 and TLR9 signaling pathway on brain injury during CPB in rats pretreated with sevoflurane and its possible molecular mechanism. METHODS SD rats were randomly assigned to sham group, CPB group, and Sev group. Brain tissue was obtained at before CPB (T0), at CPB for 30 minutes (T1), 1 hour after CPB (T3), and 3 hours after CPB (T5). ELISA was used to measure S100-β and IL-6. Western blot was utilized to determine TLR3 and TLR9 expression. TUNEL was applied to detect neuronal apoptosis. RESULTS Compared with CPB group, at T1, at termination after 1 hour of CPB (T2), T3, 2 hours after CPB (T4) and T5, S100-β and IL-6 decreased in Sev group. Compared with CPB group, IFN-β were increased in Sev group, except T0. Compared with CPB group, TLR3 expression increased, and TLR9 and NF-κB decreased in Sev group. The apoptotic neurons were less in Sev group than in CPB group (P < 0.05). CONCLUSION Sevoflurane intervention can activate TLR3 and TLR9 signaling pathway, upregulate TLR3 expression and downstream TRIF expression, decrease TLR9 expression, and downregulate downstream NF-κB expression in CPB rat models, thereby mitigating brain injury induced by inflammatory response during CPB.
Collapse
Affiliation(s)
- Zhou Nan
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, No. 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Zhou Jin
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, No. 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Cao Huijuan
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, No. 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Zhang Tiezheng
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, No. 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chen Keyan
- Department of Laboratory Animal Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| |
Collapse
|
6
|
Hsiao HM, Scozzi D, Gauthier JM, Kreisel D. Mechanisms of graft rejection after lung transplantation. Curr Opin Organ Transplant 2017; 22:29-35. [PMID: 27861263 PMCID: PMC5443682 DOI: 10.1097/mot.0000000000000371] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To date, outcomes after lung transplantation are far worse than after transplantation of other solid organs. New insights into mechanisms that contribute to graft rejection and tolerance after lung transplantation remain of great interest. This review examines the recent literature on the role of innate and adaptive immunity in shaping the fate of lung grafts. RECENT FINDINGS Innate and adaptive immune cells orchestrate allograft rejection after transplantation. Innate immune cells such as neutrophils are recruited to the lung graft early after reperfusion and subsequently promote allograft rejection. Although it is widely recognized that CD4 T lymphocytes in concert with CD8 T cells promote graft rejection, regulatory Foxp3 CD4 T, central memory CD8 T cells, and natural killer cells can facilitate tolerance. SUMMARY This review highlights interactions between innate and adaptive immune pathways and how they contribute to lung allograft rejection. These findings lay a foundation for the design of new therapeutic strategies that target both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hsi-Min Hsiao
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Davide Scozzi
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Jason M. Gauthier
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
7
|
What's New in Shock, October 2016? Shock 2016; 46:339-40. [PMID: 27635980 DOI: 10.1097/shk.0000000000000690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|