1
|
Kravitz MS, Kattouf N, Stewart IJ, Ginde AA, Schmidt EP, Shapiro NI. Plasma for prevention and treatment of glycocalyx degradation in trauma and sepsis. Crit Care 2024; 28:254. [PMID: 39033135 PMCID: PMC11265047 DOI: 10.1186/s13054-024-05026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024] Open
Abstract
The endothelial glycocalyx, a gel-like layer that lines the luminal surface of blood vessels, is composed of proteoglycans, glycoproteins, and glycosaminoglycans. The endothelial glycocalyx plays an essential role in vascular homeostasis, and its degradation in trauma and sepsis can lead to microvascular dysfunction and organ injury. While there are no proven therapies for preventing or treating endothelial glycocalyx degradation, some initial literature suggests that plasma may have a therapeutic role in trauma and sepsis patients. Overall, the literature suggesting the use of plasma as a therapy for endothelial glycocalyx degradation is non-clinical basic science or exploratory. Plasma is an established therapy in the resuscitation of patients with hemorrhage for restoration of coagulation factors. However, plasma also contains other bioactive components, including sphingosine-1 phosphate, antithrombin, and adiponectin, which may protect and restore the endothelial glycocalyx, thereby helping to maintain or restore vascular homeostasis. This narrative review begins by describing the endothelial glycocalyx in health and disease: we discuss the overlapping disease mechanisms in trauma and sepsis that lead to its damage and introduce plasma transfusion as a potential therapy for prevention and treatment of endothelial glycocalyx degradation. Second, we review the literature on plasma as an exploratory therapy for endothelial glycocalyx degradation in trauma and sepsis. Third, we discuss the safety of plasma transfusion by reviewing the adverse events associated with plasma and other blood product transfusions, and we examine modern transfusion precautions that have enhanced the safety of plasma transfusion. We conclude that the literature proposes that plasma may have the potential to prevent and treat endothelial glycocalyx degradation in trauma and sepsis, indicating the need for further research.
Collapse
Affiliation(s)
- M S Kravitz
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - N Kattouf
- Department of Emergency Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - I J Stewart
- Department of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - A A Ginde
- Department of Emergency Medicine, University of Colorado School of Medicines, Aurora, CO, USA
| | - E P Schmidt
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - N I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
van den Brink DP, Kleinveld DJB, Bongers A, Vos J, Roelofs JTH, Weber NC, van Buul JD, Juffermans NP. The Effects of Heparan Sulfate Infusion on Endothelial and Organ Injury in a Rat Pneumosepsis Model. J Clin Med 2023; 12:6438. [PMID: 37892576 PMCID: PMC10607557 DOI: 10.3390/jcm12206438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/15/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Septic shock is characterized by endothelial dysfunction, leading to tissue edema and organ failure. Heparan sulfate (HS) is essential for vascular barrier integrity, possibly via albumin as a carrier. We hypothesized that supplementing fluid resuscitation with HS would improve endothelial barrier function, thereby reducing organ edema and injury in a rat pneumosepsis model. Following intratracheal inoculation with Streptococcus pneumoniae, Sprague Dawley rats were randomized to resuscitation with a fixed volume of either Ringer's Lactate (RL, standard of care), RL supplemented with 7 mg/kg HS, 5% human albumin, or 5% human albumin supplemented with 7 mg/kg HS (n = 11 per group). Controls were sham inoculated animals. Five hours after the start of resuscitation, animals were sacrificed. To assess endothelial permeability, 70 kD FITC-labelled dextran was administered before sacrifice. Blood samples were taken to assess markers of endothelial and organ injury. Organs were harvested to quantify pulmonary FITC-dextran leakage, organ edema, and for histology. Inoculation resulted in sepsis, with increased lactate levels, pulmonary FITC-dextran leakage, pulmonary edema, and pulmonary histologic injury scores compared to healthy controls. RL supplemented with HS did not reduce median pulmonary FITC-dextran leakage compared to RL alone (95.1 CI [62.0-105.3] vs. 87.1 CI [68.9-139.3] µg/mL, p = 0.76). Similarly, albumin supplemented with HS did not reduce pulmonary FITC-dextran leakage compared to albumin (120.0 [93.8-141.2] vs. 116.2 [61.7 vs. 160.8] µg/mL, p = 0.86). No differences were found in organ injury between groups. Heparan sulfate, as an add-on therapy to RL or albumin resuscitation, did not reduce organ or endothelial injury in a rat pneumosepsis model. Higher doses of heparan sulfate may decrease organ and endothelial injury induced by shock.
Collapse
Affiliation(s)
- Daan P. van den Brink
- Amsterdam UMC, Department of Intensive Care Medicine, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
| | - Derek J. B. Kleinveld
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
- Erasmus MC, Department Anesthesiology, Erasmus University of Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Annabel Bongers
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
| | - Jaël Vos
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
| | - Joris T. H. Roelofs
- Amsterdam UMC, Department of Pathology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam UMC, Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Nina C. Weber
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
- Amsterdam UMC, Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Jaap D. van Buul
- Sanquin Research and Landsteiner Laboratory, Molecular Cell Biology Laboratory, Department Molecular Hematology, 1066 CX Amsterdam, The Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Nicole P. Juffermans
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
- Erasmus MC, Department of Intensive Care, Erasmus University of Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
3
|
van den Brink DP, Kleinveld DJB, Bongers A, Vos J, Roelofs JJTH, Weber NC, van Buul JD, Juffermans NP. The effects of resuscitation with different plasma products on endothelial permeability and organ injury in a rat pneumosepsis model. Intensive Care Med Exp 2023; 11:62. [PMID: 37728777 PMCID: PMC10511387 DOI: 10.1186/s40635-023-00549-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Endothelial injury and permeability are a hallmark of sepsis. Initial resuscitation of septic patients with crystalloids is associated with aggravation of endothelial permeability, which may be related either to low protein content or to volume. We investigated whether initial resuscitation with different types of plasma or albumin decreases endothelial dysfunction and organ injury in a pneumosepsis rat model compared to the same volume of crystalloids. STUDY DESIGN AND METHODS Sprague-Dawley rats were intratracheally inoculated with Streptococcus pneumoniae. Twenty-four hours after inoculation, animals were randomized to 2 control groups and 5 intervention groups (n = 11 per group) to receive resuscitation with a fixed volume (8 mL/kg for 1 h) of either Ringer's Lactate, 5% human albumin, fresh frozen plasma derived from syngeneic donor rats (rFFP), human-derived plasma (hFFP) or human-derived solvent detergent plasma (SDP). Controls were non-resuscitated (n = 11) and healthy animals. Animals were sacrificed 5 h after start of resuscitation (T = 5). Pulmonary FITC-dextran leakage as a reflection of endothelial permeability was used as the primary outcome. RESULTS Inoculation with S. Pneumoniae resulted in sepsis, increased median lactate levels (1.6-2.8 mM, p < 0.01), pulmonary FITC-dextran leakage (52-134 µg mL-1, p < 0.05) and lung injury scores (0.7-6.9, p < 0.001) compared to healthy controls. Compared to animals receiving no resuscitation, animals resuscitated with rFFP had reduced pulmonary FITC leakage (134 vs 58 µg/mL, p = 0.011). However, there were no differences in any other markers of organ or endothelial injury. Resuscitation using different human plasma products or 5% albumin showed no differences in any outcome. CONCLUSIONS Resuscitation with plasma did not reduce endothelial and organ injury when compared to an equal resuscitation volume of crystalloids. Rat-derived FFP may decrease pulmonary leakage induced by shock.
Collapse
Affiliation(s)
- Daan P van den Brink
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Derek J B Kleinveld
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care Medicine, Erasmus MC, Erasmus University of Rotterdam, Rotterdam, The Netherlands
| | - Annabel Bongers
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaël Vos
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab at Department Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care Medicine, OLVG Hospital, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Wang Z, Guo Z, Wang X, Liao H, Chen F, Liu Y, Wang Z. Reduning alleviates sepsis-induced acute lung injury by reducing apoptosis of pulmonary microvascular endothelial cells. Front Immunol 2023; 14:1196350. [PMID: 37465664 PMCID: PMC10350519 DOI: 10.3389/fimmu.2023.1196350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Sepsis-induced acute lung injury (SALI) is a critical illness with high mortality, and pulmonary microvascular endothelial cells (PMECs) barrier dysfunction is a well-documented pathogenesis of SALI. The current study aimed to investigate the underlying mechanism of Reduning (RDN) in the treatment of SALI. Methods Network pharmacology and molecular dynamics simulation (MDS) were used to confirm the possibility of key active components of RDN combining with AKT1. Hematoxylin-eosin staining (HE) and immunohistochemistry (IHC) were used to investigate the effect of RDN in vivo. Immunofluorescence (IF) and co-immunoprecipitation (CoIP) were used to investigate the relationship between mammalian target of rapamycin (mTOR) and Bax in PMECs. ELISA was used to test the level of TNF-α. Flow cytometry was used to detect apoptosis. JC-1 and electron microscopy were used to evaluate mitochondrial damage. The results showed that RDN likely alleviated SALI via targeting AKT1. Results In vivo, RDN could evidently decrease the expression levels of apoptosis-related proteins, alleviate mitochondrial damage, reduce lung tissue edema, down-regulate the level of TNF-α in the serum, and improve the mortality of sepsis in mice. In vitro, RDN had a significant effect on reducing the level of apoptosis-related proteins and cell apoptosis rate, while also mitigated mitochondrial damage. Furthermore, RDN could effectively lower the level of Bax in PMECs and increase the level of mTOR both in vivo and in vitro. Notably, mTOR has the ability to directly bind to Bax, and RDN can enhance this binding capability. Discussion RDN could attenuate SALI through reducing apoptosis of PMECs, which is a promising therapeutic strategy for SALI prevention.
Collapse
Affiliation(s)
- Ziyi Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhe Guo
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xuesong Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Haiyan Liao
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Feng Chen
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yuxin Liu
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhong Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Tucker H, Brohi K, Tan J, Aylwin C, Bloomer R, Cardigan R, Davenport R, Davies ED, Godfrey P, Hawes R, Lyon R, McCullagh J, Stanworth S, Thompson J, Uprichard J, Walsh S, Weaver A, Green L. Association of red blood cells and plasma transfusion versus red blood cell transfusion only with survival for treatment of major traumatic hemorrhage in prehospital setting in England: a multicenter study. Crit Care 2023; 27:25. [PMID: 36650557 PMCID: PMC9847037 DOI: 10.1186/s13054-022-04279-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In-hospital acute resuscitation in trauma has evolved toward early and balanced transfusion resuscitation with red blood cells (RBC) and plasma being transfused in equal ratios. Being able to deliver this ratio in prehospital environments is a challenge. A combined component, like leukocyte-depleted red cell and plasma (RCP), could facilitate early prehospital resuscitation with RBC and plasma, while at the same time improving logistics for the team. However, there is limited evidence on the clinical benefits of RCP. OBJECTIVE To compare prehospital transfusion of combined RCP versus RBC alone or RBC and plasma separately (RBC + P) on mortality in trauma bleeding patients. METHODS Data were collected prospectively on patients who received prehospital transfusion (RBC + thawed plasma/Lyoplas or RCP) for traumatic hemorrhage from six prehospital services in England (2018-2020). Retrospective data on patients who transfused RBC from 2015 to 2018 were included for comparison. The association between transfusion arms and 24-h and 30-day mortality, adjusting for age, injury mechanism, age, prehospital heart rate and blood pressure, was evaluated using generalized estimating equations. RESULTS Out of 970 recruited patients, 909 fulfilled the study criteria (RBC + P = 391, RCP = 295, RBC = 223). RBC + P patients were older (mean age 42 vs 35 years for RCP and RBC), and 80% had a blunt injury (RCP = 52%, RBC = 56%). RCP and RBC + P were associated with lower odds of death at 24-h, compared to RBC alone (adjusted odds ratio [aOR] 0.69 [95%CI: 0.52; 0.92] and 0.60 [95%CI: 0.32; 1.13], respectively). The lower odds of death for RBC + P and RCP vs RBC were driven by penetrating injury (aOR 0.22 [95%CI: 0.10; 0.53] and 0.39 [95%CI: 0.20; 0.76], respectively). There was no association between RCP or RBC + P with 30-day survival vs RBC. CONCLUSION Prehospital plasma transfusion for penetrating injury was associated with lower odds of death at 24-h compared to RBC alone. Large trials are needed to confirm these findings.
Collapse
Affiliation(s)
- Harriet Tucker
- grid.4868.20000 0001 2171 1133Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT UK
| | - Karim Brohi
- grid.4868.20000 0001 2171 1133Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT UK ,grid.139534.90000 0001 0372 5777Barts Health NHS Trust, London, UK
| | - Joachim Tan
- grid.264200.20000 0000 8546 682XSt George’s University of London, London, UK
| | - Christopher Aylwin
- grid.426467.50000 0001 2108 8951St Mary’s Hospital, Imperial College NHS Foundation Trust, London, UK
| | - Roger Bloomer
- grid.429705.d0000 0004 0489 4320Kings College Hospital NHS Foundation Trust, London, UK
| | - Rebecca Cardigan
- grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge, UK
| | - Ross Davenport
- grid.4868.20000 0001 2171 1133Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT UK ,grid.139534.90000 0001 0372 5777Barts Health NHS Trust, London, UK
| | - Edward D. Davies
- grid.416204.50000 0004 0391 9602Royal Preston Hospital, Preston, UK
| | - Phillip Godfrey
- grid.411812.f0000 0004 0400 2812James Cook University Hospital, Middlesbrough, UK
| | - Rachel Hawes
- Newcastle Upon Tyne NHS Foundation Trust, Newcastle, UK ,Great North Air Ambulance, Stockton-on-Tees, UK
| | | | | | - Simon Stanworth
- grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge, UK ,grid.4991.50000 0004 1936 8948Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Julian Thompson
- grid.416201.00000 0004 0417 1173Southmead Hospital, Bristol, UK ,Great West Air Ambulance, Bristol, UK
| | - James Uprichard
- grid.264200.20000 0000 8546 682XSt George’s University Hospital NHS Foundation Trust, London, UK
| | - Simon Walsh
- grid.426467.50000 0001 2108 8951St Mary’s Hospital, Imperial College NHS Foundation Trust, London, UK ,Essex and Hertfordshire Air Ambulance Trust, Essex, UK
| | - Anne Weaver
- grid.139534.90000 0001 0372 5777Barts Health NHS Trust, London, UK
| | - Laura Green
- grid.4868.20000 0001 2171 1133Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT UK ,grid.139534.90000 0001 0372 5777Barts Health NHS Trust, London, UK ,grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge, UK
| |
Collapse
|
6
|
Barry M, Wu F, Pati S, Chipman A, Geng H, Kozar R. Lyophilized plasma resuscitation downregulates inflammatory gene expression in a mouse model of sepsis. J Trauma Acute Care Surg 2022; 93:S119-S127. [PMID: 35881828 DOI: 10.1097/ta.0000000000003658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Plasma resuscitation may improve outcomes by targeting endotheliopathy induced by severe sepsis or septic shock. Given the logistical constraints of using fresh frozen plasma in military settings or areas with prolonged prehospital care, dried products such as lyophilized plasma (LP) have been developed. We hypothesized that resuscitation with LP would decrease lung injury, inflammation, and mortality in a mouse sepsis model. METHODS Adult male C57BL/6J mice received an intraperitoneal injection of cecal slurry. Twenty-two hours later, the mice were anesthetized, the femoral artery was cannulated, and the mice were randomized to receive resuscitation with LP (10 mL/kg) or lactated Ringer's (LR; 30 mL/kg) for 1 hour. At 48-hours post-cecal slurry injection, bronchoalveolar lavage fluid was collected, the lungs were harvested, and plasma was obtained. Mortality and bronchoalveolar lavage total protein concentration (as an indicator of permeability) were compared between groups. The lungs were analyzed for histopathology and inflammatory gene expression using NanoString, and the plasma was analyzed for biomarkers of inflammation and endothelial function. RESULTS There was no significant difference in short-term mortality between LR and LP mice, 38% versus 47%, respectively ( p = 0.62). Bronchoalveolar lavage protein levels were similar among mice resuscitated with LR or LP, and there was a lack of significant histopathologic lung injury in all groups. However, LP resuscitation resulted in downregulation of pulmonary inflammatory genes, including signaling pathways such as Janus kinase-signal transducer and activator of transcription and nuclear factor κB, and a circulating inflammatory biomarker profile similar to sham animals. CONCLUSION Resuscitation with LP did not improve mortality or reduce permeability or injury in this model compared with LR. However, LP downregulated pulmonary inflammatory gene signaling and may also reduce circulating biomarkers of inflammation. Future studies should evaluate LP resuscitation in combination with antibiotics and other therapeutics to determine whether the anti-inflammatory effects of LP may improve outcomes in sepsis.
Collapse
Affiliation(s)
- Mark Barry
- From the Department of Surgery (M.B., S.P.), University of California, San Francisco, San Francisco, California; Shock Trauma Center (F.W., A.C., R.K.), University of Maryland School of Medicine, Baltimore, Maryland; and Department of Laboratory Medicine (S.P., H.G.), University of California, San Francisco, San Francisco, California
| | | | | | | | | | | |
Collapse
|
7
|
Dietrich M, Hölle T, Lalev LD, Loos M, Schmitt FCF, Fiedler MO, Hackert T, Richter DC, Weigand MA, Fischer D. Plasma Transfusion in Septic Shock—A Secondary Analysis of a Retrospective Single-Center Cohort. J Clin Med 2022; 11:jcm11154367. [PMID: 35955987 PMCID: PMC9369152 DOI: 10.3390/jcm11154367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
In sepsis, both beneficial and detrimental effects of fresh frozen plasma (FFP) transfusion have been reported. The aim of this study was to analyze the indication for and effect of FFP transfusion in patients with septic shock. We performed a secondary analysis of a retrospective single-center cohort of all patients treated for septic shock at the interdisciplinary surgical intensive care unit (ICU) of the Heidelberg University Hospital. Septic shock was defined according to sepsis-3 criteria. To assess the effects of FFP administration in the early phase of septic shock, we compared patients with and without FFP transfusion during the first 48 h of septic shock. Patients who died during the first 48 h of septic shock were excluded from the analysis. Primary endpoints were 30- and 90-day mortality. A total of 261 patients were identified, of which 100 (38.3%) received FFP transfusion within the first 48 h after septic shock onset. The unmatched analysis showed a trend toward higher 30- and 90-d mortality in the FFP group (30 d: +7% p = 0.261; 90 d: +11.9% p = 0.061). In the propensity-matched analysis, 30- and 90-day mortality were similar between groups. Plasma administration did not influence fluid or vasopressor need, lactate levels, ICU stay, or days on a ventilator. We found no significant harm or associated benefit of FFP use in the early phase of septic shock. Finally, plasma should only be used in patients with a strong indication according to current recommendations, as a conclusive evaluation of the risk-benefit ratio for plasma transfusion in septic shock cannot be made based on the current data.
Collapse
Affiliation(s)
- Maximilian Dietrich
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.H.); (L.D.L.); (F.C.F.S.); (M.O.F.); (D.C.R.); (M.A.W.); (D.F.)
- Correspondence:
| | - Tobias Hölle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.H.); (L.D.L.); (F.C.F.S.); (M.O.F.); (D.C.R.); (M.A.W.); (D.F.)
| | - Lazar Detelinov Lalev
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.H.); (L.D.L.); (F.C.F.S.); (M.O.F.); (D.C.R.); (M.A.W.); (D.F.)
| | - Martin Loos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (M.L.); (T.H.)
| | - Felix Carl Fabian Schmitt
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.H.); (L.D.L.); (F.C.F.S.); (M.O.F.); (D.C.R.); (M.A.W.); (D.F.)
| | - Mascha Onida Fiedler
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.H.); (L.D.L.); (F.C.F.S.); (M.O.F.); (D.C.R.); (M.A.W.); (D.F.)
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (M.L.); (T.H.)
| | - Daniel Christoph Richter
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.H.); (L.D.L.); (F.C.F.S.); (M.O.F.); (D.C.R.); (M.A.W.); (D.F.)
| | - Markus Alexander Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.H.); (L.D.L.); (F.C.F.S.); (M.O.F.); (D.C.R.); (M.A.W.); (D.F.)
| | - Dania Fischer
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (T.H.); (L.D.L.); (F.C.F.S.); (M.O.F.); (D.C.R.); (M.A.W.); (D.F.)
| |
Collapse
|
8
|
Wang X, Xu T, Jin J, Ting Gao MM, Wan B, Gong M, Bai L, Lv T, Song Y. Topotecan reduces sepsis-induced acute lung injury and decreases the inflammatory response via the inhibition of the NF-κB signaling pathway. Pulm Circ 2022; 12:e12070. [PMID: 35514783 PMCID: PMC9063966 DOI: 10.1002/pul2.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 11/06/2022] Open
Abstract
This study aims to determine the function of topotecan (TPT) in acute lung injury (ALI) induced by sepsis. The mouse sepsis model was constructed through cecal ligation and puncture (CLP). The ALI score and lung wet/dry (W/D) weight ratio were applied to evaluate the level of lung injury. Hematoxylin-eosin staining was used to examine the role of TPT in lung tissue in a CLP-induced ALI mouse model. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction were used to detect the concentrations of inflammatory factors, such as interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α. Western blot was used to detect relevant protein levels in the nuclear factor-κB (NF-κB) pathway. Moreover, 10-day survival was recorded by constructing the CLP model. The results indicated that TPT could improve lung tissue damage in mice and could significantly reduce lung injury scores (p < 0.01) and the W/D ratio (p < 0.05). Treatment with ammonium pyrrolidinedithiocarbamate obtained the similar results with the TPT treatment. Both significantly reduced the inflammatory response in the lungs, including reducing the number of neutrophils and total cells in the bronchoalveolar lavage fluid (BALF), significantly reducing the total protein concentration of the BALF, and significantly inhibiting the activity of MPO. Both also inhibited inflammatory cytokine expression and the levels of NF-κB pathway proteins induced by sepsis. Furthermore, TPT significantly improved survival in sepsis. TPT improves ALI in the CLP model by inhibiting the NF-κB pathway, preventing fatal inflammation.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Intensive Care Unit, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Tianxiang Xu
- Center of Tumor, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Jiajia Jin
- Department of Respiratory Medicine, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - M. M. Ting Gao
- Baotou medical collegeBaotouInner Mongolia Autonomous RegionChina
| | - Bing Wan
- Department of Respiratory and Critical MedicineJinling HospitalNanjingChina
| | - Mei Gong
- Intensive Care Unit, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Lingxiao Bai
- Intensive Care Unit, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Tangfeng Lv
- Department of Respiratory and Critical MedicineJinling HospitalNanjingChina
| | - Yong Song
- Department of Respiratory and Critical MedicineJinling HospitalNanjingChina
| |
Collapse
|
9
|
Wang L, Wu R. Clinical Effectiveness of Pre-hospital and In-hospital Optimized Emergency Care Procedures for Patients With Acute Craniocerebral Trauma. Front Surg 2022; 8:830571. [PMID: 35111807 PMCID: PMC8801443 DOI: 10.3389/fsurg.2021.830571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Acute craniocerebral injury is a common traumatic disease in clinical practice, characterized by rapid changes in condition and a high rate of death and disability. Early and effective emergency care throughout the pre-hospital and in-hospital period is the key to reducing the rate of death and disability and promoting the recovery of patients. In this study, we conducted an observational study of 130 patients with acute craniocerebral injury admitted between May 2020 and May 2021. Patients were randomly divided into a regular group and an optimization group of 65 patients each, with patients in the regular group receiving the conventional emergency care model and patients in the optimization group receiving the pre-hospital and in-hospital optimal emergency care process for intervention. In this study, we observed and compared the time taken to arrive at the scene, assess the condition, attend to the patient and provide emergency care, the success rate of emergency care within 48 h, the interleukin-6 (IL-6), interleukin-8 (IL-8), and intercellular adhesion molecule-1 (ICAM-1) after admission and 1 day before discharge, the National Institute of Health Stroke Scale (NIHSS) and the Short Form 36-item Health Survey (SF-36) after resuscitation and 1 day before discharge, and the complications of infection, brain herniation, central hyperthermia, and electrolyte disturbances in both groups. We collected and statistically analyzed the recorded data. The results showed that the time taken to arrive at the consultation site, assess the condition, receive the consultation, provide first aid was significantly lower in the optimized group than in the regular group (P < 0.05); the success rate of treatment was significantly higher in the optimized group than in the regular group (P < 0.05). In both groups, IL-6, IL-8, and ICAM-1 decreased on the day before discharge compared with the day of rescue, with the levels of each index lower in the optimization group than in the regular group (P < 0.05); the NIHSS scores decreased and the SF-36 scores increased on the day before discharge compared with the successful rescue in both groups, with the NIHSS scores in the optimization group lower than in the regular group and the SF-36 scores higher than in the control group (P < 0.05). The overall complication rate in the optimization group was significantly lower than that in the regular group (P < 0.05). This shows that optimizing pre-hospital and in-hospital emergency care procedures can significantly shorten the time to emergency care for patients with acute craniocerebral injury, increase the success rate, reduce inflammation, improve neurological function and quality of life, reduce the occurrence of complications, and improve patient prognosis.
Collapse
Affiliation(s)
- Lili Wang
- Department of Emergency, The Nanhua Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Rong Wu
- Department of Outpatients, The Nanhua Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Rong Wu
| |
Collapse
|
10
|
Qin X, Zhang W, Zhu X, Hu X, Zhou W. Early Fresh Frozen Plasma Transfusion: Is It Associated With Improved Outcomes of Patients With Sepsis? Front Med (Lausanne) 2021; 8:754859. [PMID: 34869452 PMCID: PMC8634960 DOI: 10.3389/fmed.2021.754859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background: So far, no study has investigated the effects of plasma transfusion in the patients with sepsis, especially in the terms of prognosis. Therefore, we aimed to explore the association of early fresh frozen plasma (FFP) transfusion with the outcomes of patients with sepsis. Methods: We performed a cohort study using data extracted from the Medical Information Mart for Intensive Care III database (v1.4). External validation was obtained from the First Affiliated Hospital of Wenzhou Medical University, China. We adopted the Sepsis-3 criteria to extract the patients with sepsis and septic shock. The occurrence of transfusion during the first 3-days of intensive care unit (ICU) stay was regarded as early FFP transfusion. The primary outcome was 28-day mortality. We assessed the association of early FFP transfusion with the patient outcomes using a Cox regression analysis. Furthermore, we performed the sensitivity analysis, subset analysis, and external validation to verify the true strength of the results. Results: After adjusting for the covariates in the three models, respectively, the significantly higher risk of death in the FFP transfusion group at 28-days [e.g., Model 2: hazard ratio (HR) = 1.361, P = 0.018, 95% CI = 1.054–1.756] and 90-days (e.g., Model 2: HR = 1.368, P = 0.005, 95% CI = 1.099–1.704) remained distinct. Contrarily, the mortality increased significantly with the increase of FFP transfusion volume. The outcomes of the patients with sepsis with hypocoagulable state after early FFP transfusion were not significantly improved. Similar results can also be found in the subset analysis of the septic shock cohort. The results of external validation exhibited good consistency. Conclusions: Our study provides a new understanding of the rationale and effectiveness of FFP transfusion for the patients with sepsis. After recognizing the evidence of risk-benefit and cost-benefit, it is important to reduce the inappropriate use of FFP and avoid unnecessary adverse transfusion reactions.
Collapse
Affiliation(s)
- Xiaoyi Qin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodan Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Hu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhou
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Vlaar APJ, Dionne JC, de Bruin S, Wijnberge M, Raasveld SJ, van Baarle FEHP, Antonelli M, Aubron C, Duranteau J, Juffermans NP, Meier J, Murphy GJ, Abbasciano R, Müller MCA, Lance M, Nielsen ND, Schöchl H, Hunt BJ, Cecconi M, Oczkowski S. Transfusion strategies in bleeding critically ill adults: a clinical practice guideline from the European Society of Intensive Care Medicine. Intensive Care Med 2021; 47:1368-1392. [PMID: 34677620 PMCID: PMC8532090 DOI: 10.1007/s00134-021-06531-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/04/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop evidence-based clinical practice recommendations regarding transfusion practices and transfusion in bleeding critically ill adults. METHODS A taskforce involving 15 international experts and 2 methodologists used the GRADE approach to guideline development. The taskforce addressed three main topics: transfusion support in massively and non-massively bleeding critically ill patients (transfusion ratios, blood products, and point of care testing) and the use of tranexamic acid. The panel developed and answered structured guideline questions using population, intervention, comparison, and outcomes (PICO) format. RESULTS The taskforce generated 26 clinical practice recommendations (2 strong recommendations, 13 conditional recommendations, 11 no recommendation), and identified 10 PICOs with insufficient evidence to make a recommendation. CONCLUSIONS This clinical practice guideline provides evidence-based recommendations for the management of massively and non-massively bleeding critically ill adult patients and identifies areas where further research is needed.
Collapse
Affiliation(s)
- Alexander P J Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC, Location AMC, Room, C3-430, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Joanna C Dionne
- Department of Medicine, McMaster University, Hamilton, Canada
- The Guidelines in Intensive Care Development and Evaluation (GUIDE) Group, He Research Institute St. Joseph's Healthcare Hamilton, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
- Division of Gastroenterology, McMaster University, Hamilton, ON, Canada
| | - Sanne de Bruin
- Department of Intensive Care Medicine, Amsterdam UMC, Location AMC, Room, C3-430, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marije Wijnberge
- Department of Intensive Care Medicine, Amsterdam UMC, Location AMC, Room, C3-430, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Anaesthesiology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - S Jorinde Raasveld
- Department of Intensive Care Medicine, Amsterdam UMC, Location AMC, Room, C3-430, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Frank E H P van Baarle
- Department of Intensive Care Medicine, Amsterdam UMC, Location AMC, Room, C3-430, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Massimo Antonelli
- Department of Anaesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
- Istituto di Anaesthesiology e Rianimazione Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cecile Aubron
- Department of Intensive Care Medicine, Centre Hospitalier Régional et Universitaire de Brest, site La Cavale Blanche, Université de Bretagne Occidentale, Brest, France
| | - Jacques Duranteau
- Department of Anaesthesia and Intensive Care, Hôpitaux Universitaires Paris Sud (HUPS), Le Kremlin-Bicêtre, France
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- OLVG Hospital, Amsterdam, The Netherlands
| | - Jens Meier
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Kepler University, Linz, Austria
| | - Gavin J Murphy
- NIHR Leicester Biomedical Research Centre-Cardiovascular, Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Riccardo Abbasciano
- NIHR Leicester Biomedical Research Centre-Cardiovascular, Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Marcella C A Müller
- Department of Intensive Care Medicine, Amsterdam UMC, Location AMC, Room, C3-430, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marcus Lance
- Department of Anesthesiology, Intensive Care and Perioperative Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Nathan D Nielsen
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of New Mexico School of Medicine, Albuquerque, USA
| | - Herbert Schöchl
- Department of Anaesthesiology and Intensive Care Medicine, AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Trauma Research Centre, Vienna, Austria
| | - Beverley J Hunt
- Thrombosis and Haemophilia Centre, Guys & St Thomas' NHS Foundation Trust, London, UK
| | - Maurizio Cecconi
- Department of Anaesthesia and Intensive Care Medicine, Humanitas Clinical and Research Centre-IRCCS, Rozzano, MI, Italy
- Humanitas University, via Rita Levi Montalcini, Pieve Emanuele, Milan, Italy
| | - Simon Oczkowski
- Department of Medicine, McMaster University, Hamilton, Canada
- The Guidelines in Intensive Care Development and Evaluation (GUIDE) Group, He Research Institute St. Joseph's Healthcare Hamilton, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| |
Collapse
|
12
|
Tucker H, Davenport R, Green L. The Role of Plasma Transfusion in Pre-Hospital Haemostatic Resuscitation. Transfus Med Rev 2021; 35:91-95. [PMID: 34593289 DOI: 10.1016/j.tmrv.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022]
Abstract
Traumatic haemorrhage remains a major cause of preventable death and early haemostatic resuscitation is now a mainstay of treatment internationally. Recently, 2 randomized control trials (RCTs) - PAMPer (Prehospital Air Medical Plasma) and COMBAT (Control of Major Bleeding After Trauma), evaluating the effect of pre-hospital use of plasma on mortality provided conflicting results, raising important questions on the role of plasma resuscitation in pre-hospital environment. Both PAMPer (n = 501 patients) and COMBAT (n = 144 patients) trials were pragmatic RCTs that evaluated the effect of pre-hospital plasma transfusion (two units) versus standard of care on 28/30 days mortality in trauma patients who presented with clinical signs of haemorrhagic shock (defined as hypotension or tachycardia). The PAMPer trial showed that plasma transfusion reduced 30-day mortality compared with standard of care (23% vs 33%, 95% confidence interval -18.6; -1.0%; P = 0.03), while COMBAT trial showed no difference in 28-day survival. The post-hoc analyses of the 2 trials have suggested that the benefit of pre-hospital plasma transfusion may be greater for patients who are coagulopathic, have blunt injury and have a transport time from the scene of injury to the hospital of >20 minutes. In this review we evaluate strengths and limitations of the two trials and their differences and similarities, which may explain the conflicting results, as well as provide directions for future trials to better define the target population that would most benefit from pre-hospital plasma resuscitation. Further, considering the logistical challenges of carrying any blood components on an aircraft, cost/safety of plasma, and the scarcity of universal blood group donors, there is a need for a health economic evaluation of pre-hospital plasma transfusion in trauma patients, prior to this intervention becoming universal.
Collapse
Affiliation(s)
- Harriet Tucker
- Blizard Institute, Queen Mary University of London, London, UK
| | - Ross Davenport
- Blizard Institute, Queen Mary University of London, London, UK; Departmen of Trauma, Barts Health NHS Trust, London, UK
| | - Laura Green
- Blizard Institute, Queen Mary University of London, London, UK; Departmen of Trauma, Barts Health NHS Trust, London, UK; Blood Component division, NHS Blood and Transplant, London, UK.
| |
Collapse
|
13
|
Tang X, Xu Y, Dai X, Xing Y, Yang D, Huang Q, Li H, Lv X, Wang Y, Lu D, Wang H. The Long-term Effect of Dobutamine on Intrinsic Myocardial Function and Myocardial Injury in Septic Rats with Myocardial Dysfunction. Shock 2021; 56:582-592. [PMID: 34524268 DOI: 10.1097/shk.0000000000001718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ABSTRACT Dobutamine (DOB) is recommended as an inotrope for septic patients with low cardiac output, but its long-term impact on sepsis-induced cardiomyopathy remains unclear. This study investigated the long-term effect of DOB on septic myocardial dysfunction and injury. Rats were exposed to cecal ligation and puncture (CLP), the intrinsic myocardial function, other organ functions, hemodynamics, inflammatory response, serum myocardial injury biomarkers, myocardial apoptosis, and vascular permeability were determined. At 6 h after CLP, the left ventricular ±dP/dt were significantly depressed, cardiac tumor necrosis factor-α and vascular cell adhesion molecule-1 expression were increased, but not serum cardiac troponin I (cTnI), N-terminal pro-brain natriuretic peptide (NT-proBNP), heart-type fatty acid-binding protein (H-FABP), creatinine, and urea nitrogen concentrations in CLP group compared with controls. At 9 h after CLP, hepatic dysfunction was present in CLP rats compared with controls. At 6 h after CLP, DOB treatment did not affect hemodynamics, the left ventricular ±dP/dt, cytokine levels in serum and myocardium, as well as cardiomyocyte apoptosis and cardiac vascular hyperpermeability at 20 h after CLP. However, DOB (10.0 μg/kg) increased serum IL-10 level and improved survival in septic rats. These results indicate that the intrinsic myocardial depression occurs earlier than hepatic and renal dysfunction in sepsis and serum cTnI, NT-proBNP, and H-FABP are not suitable as early biomarkers for sepsis-induced myocardial dysfunction. Although DOB treatment (10.0 μg/kg) in the presence of myocardial dysfunction improves survival in septic rats, it neither improves myocardial function and hemodynamics nor attenuates myocardial injury at the later stage of sepsis.
Collapse
Affiliation(s)
- Xiangxu Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kleinveld DJB, Simons DDG, Dekimpe C, Deconinck SJ, Sloos PH, Maas MAW, Kers J, Muia J, Brohi K, Voorberg J, Vanhoorelbeke K, Hollmann MW, Juffermans NP. Plasma and rhADAMTS13 reduce trauma-induced organ failure by restoring the ADAMTS13-VWF axis. Blood Adv 2021; 5:3478-3491. [PMID: 34505883 PMCID: PMC8525227 DOI: 10.1182/bloodadvances.2021004404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022] Open
Abstract
Trauma-induced organ failure is characterized by endothelial dysfunction. The aim of this study was to investigate the role of von Willebrand factor (VWF) and its cleaving enzyme, ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13) in the occurrence of endothelial permeability and organ failure in trauma. In an observational study in a level-1 trauma center, 169 adult trauma patients with clinical signs of shock and/or severe injuries were included. Trauma was associated with low ADAMTS13 and high VWF antigen levels, thus generating an imbalance of ADAMTS13 to VWF. Patients who developed organ failure (23%) had greater ADAMTS13-to-VWF imbalances, persistently lower platelet counts, and elevated levels of high-molecular-weight VWF multimers compared with those without organ failure, suggesting microthrombi formation. To investigate the effect of replenishing low ADAMTS13 levels on endothelial permeability and organ failure using either recombinant human ADAMTS13 (rhADAMTS13) or plasma transfusion, a rat model of trauma-induced shock and transfusion was used. Rats in traumatic hemorrhagic shock were randomized to receive crystalloids, crystalloids supplemented with rhADAMTS13, or plasma transfusion. A 70-kDa fluorescein isothiocyanate-labeled dextran was injected to determine endothelial leakage. Additionally, organs were histologically assessed. Both plasma transfusion and rhADAMTS13 were associated with a reduction in pulmonary endothelial permeability and organ injury when compared with resuscitation with crystalloids, but only rhADAMTS13 resulted in significant improvement of a trauma-induced decline in ADAMTS13 levels. We conclude that rhADAMTS13 and plasma transfusion can reduce organ failure following trauma. These findings implicate the ADAMTS13-VWF axis in the pathogenesis of organ failure.
Collapse
Affiliation(s)
- Derek J B Kleinveld
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Derek D G Simons
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Shannen J Deconinck
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Pieter H Sloos
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M Adrie W Maas
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joshua Muia
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK
| | - Karim Brohi
- Centre for Trauma Sciences, Queen Mary University of London, London, United Kingdom
| | - Jan Voorberg
- Sanquin, Department of Cellular Hemostasis, Amsterdam, The Netherlands
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Pati S, Fennern E, Holcomb JB, Barry M, Trivedi A, Cap AP, Martin MJ, Wade C, Kozar R, Cardenas JC, Rappold JF, Spiegel R, Schreiber MA. Treating the endotheliopathy of SARS-CoV-2 infection with plasma: Lessons learned from optimized trauma resuscitation with blood products. Transfusion 2021; 61 Suppl 1:S336-S347. [PMID: 34269437 PMCID: PMC8446992 DOI: 10.1111/trf.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Shibani Pati
- Department of Lab MedicineUniversity of California San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Erin Fennern
- Department of SurgeryMount Sinai Icahn School of MedicineNew YorkNew YorkUSA
| | | | - Mark Barry
- Department of SurgeryUniversity of California San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Alpa Trivedi
- Department of Lab MedicineUniversity of California San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Andrew P. Cap
- U.S. Army Institute of Surgical ResearchJBSA‐FT Sam HoustonSan AntonioTexasUSA
| | | | - Charles Wade
- Department of Surgery McGovern School of MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rosemary Kozar
- Department of SurgeryUniversity of MarylandBaltimoreMarylandUSA
| | - Jessica C. Cardenas
- Department of Surgery McGovern School of MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Joseph F. Rappold
- Department of Surgery Maine Medical CenterTufts University School of MedicinePortlandMaineUSA
| | - Renee Spiegel
- Department of SurgeryElmhurst Hospital CenterElmhurstNew YorkUSA
| | | |
Collapse
|
16
|
van den Brink DP, Kleinveld DJB, Sloos PH, Thomas KA, Stensballe J, Johansson PI, Pati S, Sperry J, Spinella PC, Juffermans NP. Plasma as a resuscitation fluid for volume-depleted shock: Potential benefits and risks. Transfusion 2021; 61 Suppl 1:S301-S312. [PMID: 34057210 PMCID: PMC8361764 DOI: 10.1111/trf.16462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Daan P. van den Brink
- Department of Intensive Care MedicineAmsterdam UMCAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | - Derek J. B. Kleinveld
- Department of Intensive Care MedicineAmsterdam UMCAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
- Department of Trauma SurgeryAmsterdam UMCAmsterdamThe Netherlands
| | - Pieter H. Sloos
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
- Department of Trauma SurgeryAmsterdam UMCAmsterdamThe Netherlands
| | | | - Jakob Stensballe
- Department of Anesthesia and Trauma Center, Centre of Head and OrthopedicsRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
- Department of Clinical immunologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Pär I. Johansson
- Department of Clinical immunologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Shibani Pati
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jason Sperry
- Department of Surgery and Critical Care MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | | | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
- Department of Intensive CareOLVG HospitalAmsterdamThe Netherlands
| |
Collapse
|
17
|
Abstract
Clinical data has supported the early use of plasma in high ratios of plasma to red cells to patients in hemorrhagic shock. The benefit from plasma seems to extend beyond its hemostatic effects to include protection to the post-shock dysfunctional endothelium. Resuscitation of the endothelium by plasma and one of its major constituents, fibrinogen, involves cell surface stabilization of syndecan-1, a transmembrane proteoglycan and the protein backbone of the endothelial glycocalyx. The pathogenic role of miRNA-19b to the endothelium is explored along with the PAK-1-mediated intracellular pathway that may link syndecan-1 to cytoskeletal protection. Additionally, clinical studies using fibrinogen and cyroprecipitate to aid in hemostasis of the bleeding patient are reviewed and new data to suggest a role for plasma and its byproducts to treat the dysfunctional endothelium associated with nonbleeding diseases is presented.
Collapse
|
18
|
Gruen DS, Guyette FX, Brown JB, Okonkwo DO, Puccio AM, Campwala IK, Tessmer MT, Daley BJ, Miller RS, Harbrecht BG, Claridge JA, Phelan HA, Neal MD, Zuckerbraun BS, Yazer MH, Billiar TR, Sperry JL. Association of Prehospital Plasma With Survival in Patients With Traumatic Brain Injury: A Secondary Analysis of the PAMPer Cluster Randomized Clinical Trial. JAMA Netw Open 2020; 3:e2016869. [PMID: 33057642 PMCID: PMC7563075 DOI: 10.1001/jamanetworkopen.2020.16869] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE Prehospital plasma administration improves survival in injured patients at risk for hemorrhagic shock and transported by air ambulance. Traumatic brain injury (TBI) is a leading cause of death following trauma, but few early interventions improve outcomes. OBJECTIVE To assess the association between prehospital plasma and survival in patients with TBI. DESIGN, SETTING, AND PARTICIPANTS The Prehospital Air Medical Plasma (PAMPer) trial was a pragmatic, multicenter, phase 3, cluster randomized clinical trial involving injured patients who were at risk for hemorrhagic shock during air medical transport to a trauma center. The trial was conducted at 6 US sites with 9 level-I trauma centers (comprising 27 helicopter emergency services bases). The original trial analyzed 501 patients, including 230 patients who were randomized to receive plasma and 271 randomized to standard care resuscitation. This secondary analysis of a predefined subgroup included patients with TBI. Data analysis was performed from October 2019 to February 2020. INTERVENTIONS Patients were randomized to receive standard care fluid resuscitation or 2 units of thawed plasma. MAIN OUTCOMES AND MEASURES The primary outcome was mortality at 30 days. Patients with TBI were prespecified as a subgroup for secondary analysis and for measurement of markers of brain injury. The 30-day survival benefit of prehospital plasma in subgroups with and without TBI as diagnosed by computed tomography was characterized using Kaplan-Meier survival analysis and Cox proportional hazard regression. RESULTS In total, 166 patients had TBI (median [interquartile range] age, 43.00 [25.00-59.75] years; 125 men [75.3%]). When compared with the 92 patients who received standard care, the 74 patients with TBI who received prehospital plasma had improved 30-day survival even after adjustment for multiple confounders and assessment of the degree of brain injury with clinical variables and biomarkers (hazard ratio [HR], 0.55; 95% CI, 0.33-0.94; P = .03). Receipt of prehospital plasma was associated with improved survival among patients with TBI with a prehospital Glasgow Coma Scale score of less than 8 (HR, 0.56; 95% CI, 0.35-0.91) and those with polytrauma (HR, 0.50; 95% CI, 0.28-0.89). Patients with TBI transported from the scene of injury had improved survival following prehospital plasma administration (HR, 0.45; 95% CI, 0.26-0.80; P = .005), whereas patients who were transferred from an outside hospital showed no difference in survival for the plasma intervention (HR, 1.00; 95% CI, 0.33-3.00; P = .99). CONCLUSIONS AND RELEVANCE These findings are exploratory, but they suggest that receipt of prehospital plasma is associated with improved survival in patients with computed tomography-positive TBI. The prehospital setting may be a critical period to intervene in the care of patients with TBI. Future studies are needed to confirm the clinical benefits of early plasma resuscitation following TBI and concomitant polytrauma. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01818427.
Collapse
Affiliation(s)
- Danielle S. Gruen
- Department of Surgery and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Pittsburgh, Pennsylvania
| | - Francis X. Guyette
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joshua B. Brown
- Department of Surgery and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Pittsburgh, Pennsylvania
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Insiyah K. Campwala
- Department of Surgery and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Pittsburgh, Pennsylvania
| | - Matthew T. Tessmer
- Department of Surgery and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Pittsburgh, Pennsylvania
| | - Brian J. Daley
- Department of Surgery, University of Tennessee Health Science Center, Knoxville
| | - Richard S. Miller
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Jeffrey A. Claridge
- MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Herb A. Phelan
- Department of Surgery, University of Texas Southwestern, Dallas
| | - Matthew D. Neal
- Department of Surgery and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Pittsburgh, Pennsylvania
| | - Brian S. Zuckerbraun
- Department of Surgery and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Pittsburgh, Pennsylvania
| | - Mark H. Yazer
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Pittsburgh, Pennsylvania
| | - Jason L. Sperry
- Department of Surgery and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Scheck M, Velten M, Klaschik S, Soehle M, Frede S, Gehlen J, Hoch J, Mustea A, Hoeft A, Hilbert T. Differential modulation of endothelial cell function by fresh frozen plasma. Life Sci 2020; 254:117780. [PMID: 32407844 DOI: 10.1016/j.lfs.2020.117780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/17/2022]
Abstract
AIMS In vivo studies suggest a positive influence of fresh frozen plasma (FFP) on endothelial properties and vascular barrier function, leading to improved outcomes in animal sepsis models as well as in major abdominal surgery. However, those effects are incompletely described. It was our aim to evaluate in vitro effects of FFP on endothelial key functions and to identify underlying mechanisms. MATERIALS AND METHODS Human pulmonary microvascular endothelial cells (HPMECs) were prestimulated with LPS, followed by incubation with FFP. Permeability for FITC-dextran was assessed, and intercellular gap formation was visualized. NF-κB nuclear translocation and expression of pro-inflammatory, pro-adhesion, and leakage-related genes were evaluated, and monocyte adhesion to ECs was assessed. Intracellular cAMP levels as well as phosphorylation of functional proteins were analyzed. In patients undergoing major abdominal surgery, Syndecan-1 serum levels were assessed prior to and following FFP transfusion. KEY FINDINGS Post-incubation of HPMVECs with FFP increased intracellular cAMP levels that had been decreased by preceding LPS stimulation. On one hand, this reduced endotoxin-mediated upregulation of IL-8, ICAM-1, VCAM-1, VEGF, and ANG-2. Impaired phosphorylation of functional proteins was restored, and intercellular cohesion and barrier function were rescued. On the other hand, NF-κB nuclear translocation as well as monocyte adhesion was markedly increased by the combination of LPS and FFP. Syndecan-1 serum levels were lower in surgery patients that were transfused with FFP compared to those that were not. SIGNIFICANCE Our data provide evidence for a differential modulation of crucial endothelial properties by FFP, potentially mediated by elevation of intracellular cAMP levels.
Collapse
Affiliation(s)
- Marcel Scheck
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sven Klaschik
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Soehle
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jennifer Gehlen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jochen Hoch
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynecology and Obstetrics, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Tobias Hilbert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
20
|
Contemporary resuscitation of hemorrhagic shock: What will the future hold? Am J Surg 2020; 220:580-588. [PMID: 32409009 PMCID: PMC7211588 DOI: 10.1016/j.amjsurg.2020.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Resuscitation of the critically ill patient with fluid and blood products is one of the most widespread interventions in medicine. This is especially relevant for trauma patients, as hemorrhagic shock remains the most common cause of preventable death after injury. Consequently, the study of the ideal resuscitative product for patients in shock has become an area of great scientific interest and investigation. Recently, the pendulum has swung towards increased utilization of blood products for resuscitation. However, pathogens, immune reactions and the limited availability of this resource remain a challenge for clinicians. Technologic advances in pathogen reduction and innovations in blood product processing will allow us to increase the safety profile and efficacy of blood products, ultimately to the benefit of patients. The purpose of this article is to review the current state of blood product based resuscitative strategies as well as technologic advancements that may lead to safer resuscitation.
Collapse
|
21
|
Gruen DS, Brown JB, Guyette FX, Vodovotz Y, Johansson PI, Stensballe J, Barclay DA, Yin J, Daley BJ, Miller RS, Harbrecht BG, Claridge JA, Phelan HA, Neal MD, Zuckerbraun BS, Billiar TR, Sperry JL. Prehospital plasma is associated with distinct biomarker expression following injury. JCI Insight 2020; 5:135350. [PMID: 32229722 DOI: 10.1172/jci.insight.135350] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDPrehospital plasma improves survival in severely injured patients transported by air ambulance. We hypothesized that prehospital plasma would be associated with a reduction in immune imbalance and endothelial damage.METHODSWe sampled blood from 405 trauma patients enrolled in the Prehospital Air Medical Plasma (PAMPer) trial upon hospital admission (0 hours) and 24 hours post admission across 6 U.S. sites. We assayed samples for 21 inflammatory mediators and 7 markers associated with endothelial function and damage. We performed hierarchical clustering analysis (HCA) of these biomarkers of the immune response and endothelial injury. Regression analysis was used to control for differences across study and to assess any association with prehospital plasma resuscitation.RESULTSHCA distinguished two patient clusters with different injury patterns and outcomes. Patients in cluster A had greater injury severity and incidence of blunt trauma, traumatic brain injury, and mortality. Cluster A patients that received prehospital plasma showed improved 30-day survival. Prehospital plasma did not improve survival in cluster B patients. In an adjusted analysis of the most seriously injured patients, prehospital plasma was associated with an increase in adiponectin, IL-1β, IL-17A, IL-23, and IL-17E upon admission, and a reduction in syndecan-1, TM, VEGF, IL-6, IP-10, MCP-1, and TNF-α, and an increase in IL-33, IL-21, IL-23, and IL-17E 24 hours later.CONCLUSIONPrehospital plasma may ameliorate immune dysfunction and the endotheliopathy of trauma. These effects of plasma may contribute to improved survival in injured patients.TRIAL REGISTRATIONNCT01818427.FUNDINGDepartment of Defense; National Institutes of Health, U.S. Army.
Collapse
Affiliation(s)
- Danielle S Gruen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Joshua B Brown
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | | | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA.,Department of Computational and Systems Biology, and.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Jakob Stensballe
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Anesthesia and Trauma Center, Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Emergency Medical Services, The Capital Region of Denmark, Denmark
| | - Derek A Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Brian J Daley
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Richard S Miller
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brian G Harbrecht
- Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Jeffrey A Claridge
- MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Herb A Phelan
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, USA
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA
| | - Jason L Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, Pennsylvania, USA.,Department of Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
22
|
Abstract
Sepsis morbidity and mortality exacts a toll on patients and contributes significantly to healthcare costs. Preclinical models of sepsis have been used to study disease pathogenesis and test new therapies, but divergent outcomes have been observed with the same treatment even when using the same sepsis model. Other disorders such as diabetes, cancer, malaria, obesity, and cardiovascular diseases have used standardized, preclinical models that allow laboratories to compare results. Standardized models accelerate the pace of research and such models have been used to test new therapies or changes in treatment guidelines. The National Institutes of Health mandated that investigators increase data reproducibility and the rigor of scientific experiments and has also issued research funding announcements about the development and refinement of standardized models. Our premise is that refinement and standardization of preclinical sepsis models may accelerate the development and testing of potential therapeutics for human sepsis, as has been the case with preclinical models for other disorders. As a first step toward creating standardized models, we suggest standardizing the technical standards of the widely used cecal ligation and puncture model and creating a list of appropriate organ injury and immune dysfunction parameters. Standardized sepsis models could enhance reproducibility and allow comparison of results between laboratories and may accelerate our understanding of the pathogenesis of sepsis.
Collapse
|
23
|
Chen J, Gu X, Zhou L, Wang S, Zhu L, Huang Y, Cao F. Long non-coding RNA-HOTAIR promotes the progression of sepsis by acting as a sponge of miR-211 to induce IL-6R expression. Exp Ther Med 2019; 18:3959-3967. [PMID: 31656541 PMCID: PMC6812472 DOI: 10.3892/etm.2019.8063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/29/2019] [Indexed: 12/18/2022] Open
Abstract
Sepsis remains the primary cause of death in intensive care units and multiple long non-coding RNAs (lncRNAs) have been demonstrated to be dysregulated in samples of patients with sepsis. However, whether lncRNA-HOTAIR is involved in the etiology of sepsis remains unclear. The aim of the present study was to investigate the role of HOTAIR in sepsis and to reveal the associated mechanisms. A bioinformatics analysis and dual-luciferase reporter assay was performed to evaluate the interaction between HOTAIR and miR-211, as well as miR-211 and IL-6R. An animal model of sepsis was established in mice via cecal ligation and puncture. Interferon (IFN)-γ, interleukin (IL)-6, IL-17, tumor necrosis factor (TNF)-α, IL-1β, IL-6 receptor (R), microRNA (miR)-211 and HOTAIR expression was measured using reverse transcription-quantitative PCR. Cellular proliferation and apoptosis of monocytes were assessed using cell counting kit-8 assay and flow cytometry, respectively. miR-211 was revealed to be targeted by HOTAIR and IL-6R. The expression of IFN-γ, IL-6, IL-17, TNF-α, IL-1β, IL-6R and HOTAIR was significantly upregulated in the septic mice, whereas miR-211 expression was downregulated. The overexpression of hox transcript antisense RNA (HOTAIR) and knockdown of miR-211 were associated with an increased expression of IFN-γ, IL-6, IL-17, TNF-α, IL-1β and IL-6R in monocytes, while the overexpression of miR-211 exhibited the opposite effect. HOTAIR overexpression and miR-211 knockdown significantly inhibited cellular proliferation and promoted monocyte apoptosis, whereas the overexpression of miR-211 exhibited the opposite effects in monocytes. Therefore, HOTAIR may promote the progression of sepsis by indirectly regulating the expression of IL-6R via miR-211.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Emergency Intensive Care Unit, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Xingsheng Gu
- Department of Emergency, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Li Zhou
- Department of Emergency Intensive Care Unit, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Shuguang Wang
- Department of Emergency Intensive Care Unit, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Limei Zhu
- Department of Trauma Orthopedics, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yangneng Huang
- Department of Emergency, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Feng Cao
- Department of Emergency, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
24
|
Song L, Chu R, Cao Z. The effects of scopolamine on the survival time and microcirculation of septic shock rats. Eur J Pharm Sci 2019; 141:105062. [PMID: 31525434 DOI: 10.1016/j.ejps.2019.105062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Shock has been established as a disorder of the microcirculation. Despite various treatments, the mortality rate of infectious shocks remains 30-50%. The study was designed to explore the effects of scopolamine on the survival time, microcirculation and inflammatory cytokine secretion in rats with septic shock. METHODS SD rats were randomly divided into seven groups: a sham group, a control group, a saline group and four scopolamine group. The rat septic shock model was induced by cecal ligation, perforation and drainage, while the operation in the sham group involved opening and closing the abdominal cavity. The survival time was recorded to determine a suitable dose for the subsequent experiments. The microcirculation of the terminal ileum was observed. The concentrations of IL-10, IL-6 and TNF-α in the plasma and lungs were detected by ELISA, and the wet-dry ratio of the lung was calculated. RESULTS Compared to the control and saline group, the septic shock rats treated in the scopolamine group had a longer survival time, a lower reduction in arteriolar blood flow, and a decreased change in the average diameter of arterioles and venules. The rat wet-dry lung ratio was less in the sham, control and scopolamine groups compared to the saline group. The plasma and lung cytokine concentrations of the rats belonging to the scopolamine group were less than those of the control and saline groups; however, all of the cytokine concentrations were higher than those of the sham group. CONCLUSIONS Scopolamine reduced the plasma and lung concentrations of specific cytokines, improved the function of the microcirculation and prolonged the survival time of rats with septic shock.
Collapse
Affiliation(s)
- Linlin Song
- Department of Anesthesia, the special characteristic medicine center of Chinese People Armed Police Force, Tianjin 300162, China
| | - Rai Chu
- The Hebei University of Technology, Tianjin 300401, China
| | - Zhongping Cao
- Department of Anesthesia, the special characteristic medicine center of Chinese People Armed Police Force, Tianjin 300162, China.
| |
Collapse
|
25
|
Zhao X, Qi H, Zhou J, Xu S, Gao Y. Treatment with Recombinant Interleukin-15 (IL-15) Increases the Number of T Cells and Natural Killer (NK) Cells and Levels of Interferon-γ (IFN-γ) in a Rat Model of Sepsis. Med Sci Monit 2019; 25:4450-4456. [PMID: 31201735 PMCID: PMC6590098 DOI: 10.12659/msm.914026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effects of treatment with recombinant interleukin-15 (IL-15) on T cells, natural killer (NK) cells, and interferon-γ (IFN-γ) on the immune response in a rat cecal ligation and perforation model of sepsis. MATERIAL AND METHODS Sprague-Dawley rats (n=120) were divided into four groups (n=30). A rat model of clinical sepsis was created using cecal ligation and perforation, and 109 rats successfully developed sepsis. Rats were then injected intraperitoneally with 0.5, 1.0, and 1.5 μg of recombinant rat IL-15 or saline. Survival was determined, and the numbers of T cells and NK cells, and the expression levels of IL-15 and IFN-γ were detected in the peripheral blood of rats in each group at 24 h and 48 h. RESULTS The levels of IL-15 and IFN-γ, as well as the numbers of T cells and NK cells, were significantly increased in the IL-15-treated groups compared with the control group at both 24 h and 48 h (P<0.05). Levels of IL-15 and IFN-γ were significantly increased in the IL-15-treated groups at 48 h compared with 24 h in the control group. Levels of IL-15, the numbers of T cells and NK cells, and the levels of IFN-γ in peripheral blood were significantly lower at 48 h when compared with 24 h (P<0.05). CONCLUSIONS In a rat model of sepsis, treatment with recombinant IL-15 significantly increased T cell and NK cell numbers, and levels of IFN-γ, and prolonged the survival of rats with sepsis.
Collapse
Affiliation(s)
- Xianyuan Zhao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Hong Qi
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Jiamin Zhou
- Department of Hepatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Shuqi Xu
- Department of Gastroenterology, Shidong Hospital, Anhui University School of Medicine, Hefei, Anhui, P.R. China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| |
Collapse
|
26
|
Diebel LN, Liberati DM, Martin JV. Acute hyperglycemia increases sepsis related glycocalyx degradation and endothelial cellular injury: A microfluidic study. Am J Surg 2019; 217:1076-1082. [PMID: 30635208 DOI: 10.1016/j.amjsurg.2018.12.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/16/2018] [Accepted: 12/29/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hyperglycemia promotes vascular inflammation; however its effect on endothelial dysfunction in sepsis is unknown. Microfluidic devices (MFD) may closely mimic the in vivo endothelial cell microenvironment. We hypothesized that stress glucose concentrations would increase sepsis related endothelial injury/activation. METHODS Human umbilical vein endothelial cell (HUVEC) monolayers were established in microfluidic channels. TNF was added followed by glucose. Endothelial glycocalyx (EG) integrity was indexed by shedding of the EG components as well as thickness. Endothelial cell (EC) injury/activation was indexed by soluble biomarkers. Intracellular reactive oxygen species (ROS) was by fluorescence. RESULTS TNF increased glycocalyx degradation and was associated with biomarkers of EC injury. These vascular barrier derangements were further increased by hyperglycemia. This may be related to increase ROS species generated followed by the combined insults. CONCLUSION MFD technology may be a useful platform to study endothelial barrier function and stress conditions and allow preclinical assessment of potential therapies.
Collapse
Affiliation(s)
- Lawrence N Diebel
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI, USA.
| | - David M Liberati
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI, USA.
| | - Jonathan V Martin
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
27
|
Wei S, Kao LS, Wang HE, Chang R, Podbielski J, Holcomb JB, Wade CE. Protocol for a pilot randomized controlled trial comparing plasma with balanced crystalloid resuscitation in surgical and trauma patients with septic shock. Trauma Surg Acute Care Open 2018; 3:e000220. [PMID: 30271882 PMCID: PMC6157534 DOI: 10.1136/tsaco-2018-000220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022] Open
Abstract
Background Septic shock is a public health problem with high mortality. There remains a knowledge gap regarding the optimal resuscitation fluid to improve clinical outcomes, and the underlying mechanism by which fluids exert their effect. Shock-induced endotheliopathy (SHINE) is thought to be a shared pathophysiologic mechanism associated with worsened outcomes in critically ill trauma and sepsis patients. SHINE is characterized by breakdown of the glycocalyx—a network of membrane-bound proteoglycans and glycoproteins that covers the endothelium. This has been associated with capillary leakage and microvascular thrombosis, organ dysfunction, and mortality. Biomarkers of SHINE have been shown to correlate with clinical outcomes in patients with septic shock. Interventions to mitigate SHINE may improve outcomes in patients with septic shock. In surgical/trauma patients with septic shock, initial plasma resuscitation as compared with balanced crystalloid (BC) resuscitation will mitigate biomarkers of SHINE and improve clinical outcomes. Methods A pilot, single-center randomized controlled trial (RCT) will compare initial plasma to BC resuscitation in surgical and trauma patients with septic shock. Patients will be enrolled based on a Sepsis Screening Score of ≥4 with a suspected source of infection. Patient randomization only occurs if they meet the criteria: (1) hypotension with mean arterial pressure <65 mm Hg, and (2) evidence of hypoperfusion including lactic acid >4 mmol/L, altered mental status or decreased urine output of <0.5 mL/kg in the past hour. Results The primary outcome is a reduction in serum biomarkers at 6 hours. Secondary outcomes will include clinical outcomes such as intensive care unit-free days, organ dysfunction, and in-hospital mortality. Discussion This trial will provide insights into the effects of initial plasma resuscitation on SHINE. Furthermore, it will provide unbiased estimates regarding the feasibility, safety, and clinical efficacy of plasma resuscitation in septic shock on which to base subsequent adequately powered multicenter RCTs. Trail registration number ClinicalTrials.gov (NCT03366220).
Collapse
Affiliation(s)
- Shuyan Wei
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Center for Surgical Trials and Evidence-based Practice, Departments of Surgery and Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lillian S Kao
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Center for Surgical Trials and Evidence-based Practice, Departments of Surgery and Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Henry E Wang
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Emergency Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Ronald Chang
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Jeanette Podbielski
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - John B Holcomb
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Charles E Wade
- Center for Translational Injury Research, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
28
|
Wei S, Gonzalez Rodriguez E, Chang R, Holcomb JB, Kao LS, Wade CE. Elevated Syndecan-1 after Trauma and Risk of Sepsis: A Secondary Analysis of Patients from the Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) Trial. J Am Coll Surg 2018; 227:587-595. [PMID: 30243993 DOI: 10.1016/j.jamcollsurg.2018.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Endotheliopathy of trauma is characterized by breakdown of the endothelial glycocalyx. Elevated biomarkers of endotheliopathy, such as serum syndecan-1 (Synd-1) ≥ 40 ng/mL, have been associated with increased need for transfusions, complications, and mortality. We hypothesized that severely injured trauma patients who exhibit elevated Synd-1 levels shortly after admission have an increased likelihood of developing sepsis. STUDY DESIGN We analyzed a subset of patients from the Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) trial who survived at least 72 hours after hospital admission, and we determined elevated Synd-1 levels (≥ 40 ng/mL) 4 hours after hospital arrival. Sepsis was defined a priori as meeting systemic inflammatory response criteria and having a known or suspected infection. Univariate analysis was performed to identify variables associated with elevated Synd-1 levels and sepsis. Significant variables at a value of p < 0.2 in the univariate analysis were chosen by purposeful selection and analyzed in a mixed effects multivariate logistic regression model to account for the 12 different study sites. RESULTS We included 512 patients. Of these, 402 (79%) had elevated Synd-1 levels, and 180 (35%) developed sepsis. Median Synd-1 levels at 4 hours after admission were 70 ng/dL (interquartile range [IQR] 36 to 157 ng/dL) in patients who did not develop sepsis, and 165 ng/dL [IQR 67 to 336 ng/dL] in those who did (p < 0.001). Adjusting for treatment arm and site, multivariable analyses revealed that elevated Synd-1 status, Injury Severity Score (ISS), and total blood transfused were significantly associated with an increased likelihood of developing sepsis. CONCLUSIONS Elevated Synd-1 levels 4 hours after admission in severely injured adult trauma patients who survived the initial 72 hours after hospital admission are associated with subsequent sepsis.
Collapse
Affiliation(s)
- Shuyan Wei
- Center for Translational Injury Research, University of Texas Health Science Center, Houston, TX; Department of Surgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX.
| | - Erika Gonzalez Rodriguez
- Center for Translational Injury Research, University of Texas Health Science Center, Houston, TX; Department of Surgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX
| | - Ronald Chang
- Center for Translational Injury Research, University of Texas Health Science Center, Houston, TX; Department of Surgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX
| | - John B Holcomb
- Center for Translational Injury Research, University of Texas Health Science Center, Houston, TX; Department of Surgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX
| | - Lillian S Kao
- Center for Translational Injury Research, University of Texas Health Science Center, Houston, TX; Department of Surgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX
| | - Charles E Wade
- Center for Translational Injury Research, University of Texas Health Science Center, Houston, TX; Department of Surgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX
| | | |
Collapse
|
29
|
Comparison of two different models of sepsis induced by cecal ligation and puncture in rats. J Surg Res 2018; 229:277-282. [DOI: 10.1016/j.jss.2018.03.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 11/21/2022]
|
30
|
Glycocalyx Shedding is Enhanced by Age and Correlates with Increased Fluid Requirement in Patients with Major Burns. Shock 2018; 50:60-65. [DOI: 10.1097/shk.0000000000001028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
What's New in SHOCK, January 2018? Shock 2017; 49:1-3. [PMID: 29251662 DOI: 10.1097/shk.0000000000001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|