1
|
Yang L, Zhang Q, Yang Y, Wang Q. PYR-41, an inhibitor of ubiquitin-activating enzyme E1, attenuates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice. FASEB J 2023; 37:e23210. [PMID: 37738047 DOI: 10.1096/fj.202200951rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
PYR-41 is an irreversible and cell permeable inhibitor of ubiquitin-activating enzyme E1, and has been reported to inhibit the degradation of IκB protein. Previous studies have shown that PYR-41 has effects on anti-inflammatory, but whether it has therapeutic effects on allergic dermatitis is unclear. The aim of this research was to explore the therapeutic effects of PYR-41 on atopic dermatitis. The effects of PYR-41 on the activation of NF-κB signaling pathway and the expression of inflammatory genes in HaCat cells were tested by western blot and qPCR. A mouse model was built, and the AD-like skin lesions were induced by 2,4-dinitrochlorobenzene (DNCB). Then, the treatment effects of PYR-41 were examined by skin severity score, ear swelling, ELISA, and qPCR. The results showed that PYR-41 can significantly reduce the K63-linked ubiquitination level of nuclear factor-κB essential modulator (NEMO) and tumor necrosis factor receptor associated factor 6 (TRAF6), inhibit the proteasomal degradation of IκBα, thereby activate TNF-α-induced NF-κB signaling pathway in HaCat cells. In addition, DNCB-treated mice have significant reduction in symptoms after treated by PYR-41, including reduced ear thickening and reduced skin damage. Serum tests showed that PYR-41 significantly reduced the expression of IgE, IFN-γ, and TNF-α. In conclusion, the current results suggest that PYR-41 has potential to reduce the symptoms of atopic dermatitis.
Collapse
Affiliation(s)
- Lian Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Stomatology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yili Yang
- China Regional Research Center, International Center for Genetic Engineering and Biotechnology, Taizhou, P. R. China
| | - Qun Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Kim SH, Baek SI, Jung J, Lee ES, Na Y, Hwang BY, Roh YS, Hong JT, Han SB, Kim Y. Chemical inhibition of TRAF6-TAK1 axis as therapeutic strategy of endotoxin-induced liver disease. Biomed Pharmacother 2022; 155:113688. [PMID: 36150308 DOI: 10.1016/j.biopha.2022.113688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
The liver is exposed to gut-derived bacterial endotoxin via portal circulation, and recognizes it through toll-like receptor 4 (TLR4). Endotoxin lipopolysaccharide (LPS) stimulates the self-ubiquitination of ubiquitin ligase TRAF6, which is linked to scaffold with protein kinase TAK1 for auto-phosphorylation and subsequent activation. TAK1 activity is a signal transducer in the activating pathways of transcription factors NF-κB and AP-1 for production of various cytokines. Here, we hypothesized that TRAF6-TAK1 axis would be implicated in endotoxin-induced liver disease. Following exposure to endotoxin LPS, TLR4-mediated phosphorylation of TAK1 and transcription of cell-death cytokine TNF-α were triggered in Kupffer cells but not in hepatocytes as well as TNF receptor-mediated and caspase-3-executed apoptosis was occurred in D-galactosamine (GalN)-sensitized hepatocytes under co-culture with Kupffer cells. Treatment with pyridinylmethylene benzothiophene (PMBT) improved endotoxin LPS-induced hepatocyte apoptosis in GalN-sensitized C57BL/6 mice via suppressing NF-κB- and AP-1-regulated expression of TNF-α in Kupffer cells, and rescued the mice from hepatic damage-associated bleeding and death. As a mechanism, PMBT directly inhibited Lys 63-linked ubiquitination of TRAF6, and mitigated scaffold assembly between TRAF6 and the TAK1-activator adaptors TAB1 and TAB2 complex in Kupffer cells. Thereby, PMBT interrupted TRAF6 ubiquitination-induced activation of TAK1 activity in the TLR4-mediated signal cascade leading to TNF-α production. However, PMBT did not directly affect the apoptotic activity of TNF-α on GalN-sensitized hepatocytes. Finally, we propose chemical inhibition of TRAF6-TAK1 axis in Kupffer cells as a strategy for treating liver disease due to gut-derived endotoxin or Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Song-Hee Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Seung-Il Baek
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Jihye Jung
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, South Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 11160, South Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Youngsoo Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
3
|
Verzella D, Cornice J, Arboretto P, Vecchiotti D, Di Vito Nolfi M, Capece D, Zazzeroni F, Franzoso G. The NF-κB Pharmacopeia: Novel Strategies to Subdue an Intractable Target. Biomedicines 2022; 10:2233. [PMID: 36140335 PMCID: PMC9496094 DOI: 10.3390/biomedicines10092233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022] Open
Abstract
NF-κB transcription factors are major drivers of tumor initiation and progression. NF-κB signaling is constitutively activated by genetic alterations or environmental signals in many human cancers, where it contributes to almost all hallmarks of malignancy, including sustained proliferation, cell death resistance, tumor-promoting inflammation, metabolic reprogramming, tissue invasion, angiogenesis, and metastasis. As such, the NF-κB pathway is an attractive therapeutic target in a broad range of human cancers, as well as in numerous non-malignant diseases. Currently, however, there is no clinically useful NF-κB inhibitor to treat oncological patients, owing to the preclusive, on-target toxicities of systemic NF-κB blockade. In this review, we discuss the principal and most promising strategies being developed to circumvent the inherent limitations of conventional IκB kinase (IKK)/NF-κB-targeting drugs, focusing on new molecules that target upstream regulators or downstream effectors of oncogenic NF-κB signaling, as well as agents targeting individual NF-κB subunits.
Collapse
Affiliation(s)
- Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| |
Collapse
|
4
|
Shi S, Guo J, Fu M, Liao L, Tu J, Xiong J, Liao Q, Chen W, Chen K, Liao Y. Evaluation of the neonatal sequential organ failure assessment and mortality risk in neonates with respiratory distress syndrome: A retrospective cohort study. Front Pediatr 2022; 10:911444. [PMID: 35935348 PMCID: PMC9352873 DOI: 10.3389/fped.2022.911444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Respiratory distress syndrome (RDS) is one of the leading causes of neonatal death in the neonatal intensive care unit (NICU). Previous studies have suggested that the development of neonatal RDS may be associated with inflammation and lead to organ dysfunction. The neonatal sequential organ failure assessment (nSOFA) scoring system is an operational definition of organ dysfunction, but whether it can be used to predict mortality in neonates RDS is unknown. The aim of this study was to clarify the performance of the nSOFA score in predicting mortality in patients with neonatal RDS, with the aim of broadening the clinical application of the nSOFA score. METHODS Neonates with RDS were identified from the Medical Information Mart for Intensive Care (MIMIC)-III database. Cox proportional hazards model were used to assess the association between nSOFA score and mortality. Propensity score matched analysis were used to assess the robustness of the analytical results. RESULTS In this study of 1,281 patients with RDS of which 57.2% were male, death occurred in 40 cases (3.1%). Patients with high nSOFA scores had a higher mortality rate of 10.7% compared with low nSOFA scores at 0.3%. After adjusting for confounding, multivariate Cox proportional risk analysis showed that an increase in nSOFA score was significantly associated with increased mortality in patients with RDS [adjusted Hazards Ratio (aHR): 1.48, 95% Confidence Interval (CI): 1.32-1.67; p < 0.001]. Similarly, the High nSOFA group was significantly associated with higher mortality in RDS patients (aHR: 19.35, 95% CI: 4.41-84.95; p < 0.001) compared with the low nSOFA group. CONCLUSION The nSOFA score was positively associated with the risk of mortality in cases of neonatal RDS in the NICU, where its use may help clinicians to quickly and accurately identify high risk neonates and implement more aggressive intervention.
Collapse
Affiliation(s)
- Shanshan Shi
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China.,The Third Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Jie Guo
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Minqiang Fu
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Lihua Liao
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China.,The Third Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Jiabin Tu
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China.,The Third Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Jialing Xiong
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China.,The Third Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Quanwang Liao
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Weihua Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China.,The Third Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Kaihong Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Ying Liao
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
5
|
Parihar N, Bhatt LK. Deubiquitylating enzymes: potential target in autoimmune diseases. Inflammopharmacology 2021; 29:1683-1699. [PMID: 34792672 DOI: 10.1007/s10787-021-00890-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
The ubiquitin-proteasome pathway is responsible for the turnover of different cellular proteins, such as transport proteins, presentation of antigens to the immune system, control of the cell cycle, and activities that promote cancer. The enzymes which remove ubiquitin, deubiquitylating enzymes (DUBs), play a critical role in central and peripheral immune tolerance to prevent the development of autoimmune diseases and thus present a potential therapeutic target for the treatment of autoimmune diseases. DUBs function by removing ubiquitin(s) from target protein and block ubiquitin chain elongation. The addition and removal of ubiquitin molecules have a significant impact on immune responses. DUBs and E3 ligases both specifically cleave target protein and modulate protein activity and expression. The balance between ubiquitylation and deubiquitylation modulates protein levels and also protein interactions. Dysregulation of the ubiquitin-proteasome pathway results in the development of various autoimmune diseases such as inflammatory bowel diseases (IBD), psoriasis, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This review summarizes the current understanding of ubiquitination in autoimmune diseases and focuses on various DUBs responsible for the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
6
|
Cicek M, Unsal V, Doganer A, Demir M. Investigation of oxidant/antioxidant and anti-inflammatory effects of apigenin on apoptosis in sepsis-induced rat lung. J Biochem Mol Toxicol 2021; 35:e22743. [PMID: 33605009 DOI: 10.1002/jbt.22743] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/28/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
We suppose that apigenin may inhibit the cellular process of sepsis-induced lung injury, which is considered to be a major cause of morbidity and mortality, and may improve inflammation and oxidative stress. The aim of this study was to investigate the potential protective effect of apigenin in a rat model of polymicrobial sepsis. Eight groups consisting of a total of 64 female Wistar albino rats were used for this study. Pro-inflammatory (TNF-α, IL-1-β, IL-6) and anti-inflammatory (TGF-β, IL-10) cytokine levels were measured with the enzyme-linked immunosorbent assay technique, oxidant/antioxidants parameters were measured using the spectrophotometric method and Bax and Caspase-3 immunohistochemical methods. TNF-α, TGF-β, IL-1β, and IL-6 levels significantly increased in the sepsis-induced group than in the control groups, while IL-10 levels decreased. Lipid peroxidase (LPO), an oxidative stress marker, increased, while the antioxidant defense parameters of superoxide dismutase (SOD), catalase (CAT) activities, glutathione (GSH) levels decreased. Although Bax and Caspase-3 immunoreactivity and H score levels significantly increased in the sepsis group, significant decreases were found in the groups treated with apigenin. In conclusion, we are of the opinion that apigenin treatment improves lung injury by inhibiting oxidative stress and inflammatory cell damage.
Collapse
Affiliation(s)
- Mustafa Cicek
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey
| | - Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| | - Adem Doganer
- Department of Biostatistics, Faculty of Medicine, Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey
| | - Mehmet Demir
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey
| |
Collapse
|
7
|
Nguyen KM, Busino L. Targeting the E3 ubiquitin ligases DCAF15 and cereblon for cancer therapy. Semin Cancer Biol 2020; 67:53-60. [DOI: 10.1016/j.semcancer.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
|
8
|
Vollrath JT, Stoermann P, Becker N, Wutzler S, Hildebrand F, Marzi I, Relja B. Early local neutralization of CC16 in sepsis‑induced ALI following blunt chest trauma leads to delayed mortality without benefitting overall survival. Int J Mol Med 2020; 46:2207-2215. [PMID: 33125155 PMCID: PMC7595659 DOI: 10.3892/ijmm.2020.4767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Blunt thoracic trauma (TxT) is a common injury pattern in polytraumatized patients. When combined with a secondary trigger, TxT often results in acute lung injury (ALI), which negatively affects outcomes. Recent findings suggest that ALI is caused by both local and systemic inflammatory reactions. Club cell protein (CC)16 is an anti‑inflammatory peptide associated with lung injury following TxT. Recently, the anti‑inflammatory properties of endogenous CC16 in a murine model of TxT with subsequent cecal‑ligation and puncture (CLP) as the secondary hit were demonstrated by our group. The present study aimed to determine whether CC16 neutralization improves survival following 'double‑hit'‑induced ALI. For this purpose, a total of 120 C57BL/6N mice were subjected to TxT, followed by CLP after 24 h. Sham‑operated animals underwent anesthesia without the induction of TxT + CLP. CC16 neutralization was performed by providing a CC16 antibody intratracheally following TxT (early) or following CLP (late). Survival was assessed in 48 animals for 6 days after CLP. Sacrifice was performed 6 or 24 h post‑CLP to evaluate the anti‑inflammatory effect of CC16. The results revealed that CC16 neutralization enhanced pro‑inflammatory CXCL1 levels, thereby confirming the anti‑inflammatory characteristics of CC16 in this model. Early CC16 neutralization immediately following TxT significantly prolonged survival within 60 h; however, the survival rate did not change until 6 days post‑trauma. Late CC16 neutralization did not provide any survival benefits. On the whole, the present study demonstrated that neutralizing CC16 confirmed its anti‑inflammatory potential in this double‑hit ALI model. Early CC16 neutralization prolonged survival within 60 h; however, no survival benefits were observed after 6 days post‑CLP in any group.
Collapse
Affiliation(s)
- Jan Tilmann Vollrath
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, D‑60590 Frankfurt, Germany
| | - Philipp Stoermann
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, D‑60590 Frankfurt, Germany
| | - Nils Becker
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, D‑60590 Frankfurt, Germany
| | - Sebastian Wutzler
- Department of Trauma, Hand and Orthopedic Surgery, Helios Horst Schmidt Clinic, D‑65199 Wiesbaden, Germany
| | - Frank Hildebrand
- Department of Trauma Surgery, RWTH University, D‑52062 Aachen, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, D‑60590 Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, D‑60590 Frankfurt, Germany
| |
Collapse
|
9
|
Nánási P, Imre L, Firouzi Niaki E, Bosire R, Mocsár G, Türk-Mázló A, Ausio J, Szabó G. Doxorubicin induces large-scale and differential H2A and H2B redistribution in live cells. PLoS One 2020; 15:e0231223. [PMID: 32298286 PMCID: PMC7162453 DOI: 10.1371/journal.pone.0231223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
We observed prominent effects of doxorubicin (Dox), an anthracycline widely used in anti-cancer therapy, on the aggregation and intracellular distribution of both partners of the H2A-H2B dimer, with marked differences between the two histones. Histone aggregation, assessed by Laser Scanning Cytometry via the retention of the aggregates in isolated nuclei, was observed in the case of H2A. The dominant effect of the anthracycline on H2B was its massive accumulation in the cytoplasm of the Jurkat leukemia cells concomitant with its disappearance from the nuclei, detected by confocal microscopy and mass spectrometry. A similar effect of the anthracycline was observed in primary human lymphoid cells, and also in monocyte-derived dendritic cells that harbor an unusually high amount of H2B in their cytoplasm even in the absence of Dox treatment. The nucleo-cytoplasmic translocation of H2B was not affected by inhibitors of major biochemical pathways or the nuclear export inhibitor leptomycin B, but it was completely diminished by PYR-41, an inhibitor with pleiotropic effects on protein degradation pathways. Dox and PYR-41 acted synergistically according to isobologram analyses of cytotoxicity. These large-scale effects were detected already at Dox concentrations that may be reached in the typical clinical settings, therefore they can contribute both to the anti-cancer mechanism and to the side-effects of this anthracycline.
Collapse
Affiliation(s)
- Péter Nánási
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
| | - László Imre
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
| | - Erfaneh Firouzi Niaki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
| | - Rosevalentine Bosire
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
| | - Anett Türk-Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Cell and Immune Biology, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
10
|
Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin-Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel) 2020; 12:cancers12040902. [PMID: 32272746 PMCID: PMC7226376 DOI: 10.3390/cancers12040902] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
11
|
Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020; 5:11. [PMID: 32296023 PMCID: PMC7048745 DOI: 10.1038/s41392-020-0107-0] [Citation(s) in RCA: 429] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Ubiquitination, an important type of protein posttranslational modification (PTM), plays a crucial role in controlling substrate degradation and subsequently mediates the "quantity" and "quality" of various proteins, serving to ensure cell homeostasis and guarantee life activities. The regulation of ubiquitination is multifaceted and works not only at the transcriptional and posttranslational levels (phosphorylation, acetylation, methylation, etc.) but also at the protein level (activators or repressors). When regulatory mechanisms are aberrant, the altered biological processes may subsequently induce serious human diseases, especially various types of cancer. In tumorigenesis, the altered biological processes involve tumor metabolism, the immunological tumor microenvironment (TME), cancer stem cell (CSC) stemness and so on. With regard to tumor metabolism, the ubiquitination of some key proteins such as RagA, mTOR, PTEN, AKT, c-Myc and P53 significantly regulates the activity of the mTORC1, AMPK and PTEN-AKT signaling pathways. In addition, ubiquitination in the TLR, RLR and STING-dependent signaling pathways also modulates the TME. Moreover, the ubiquitination of core stem cell regulator triplets (Nanog, Oct4 and Sox2) and members of the Wnt and Hippo-YAP signaling pathways participates in the maintenance of CSC stemness. Based on the altered components, including the proteasome, E3 ligases, E1, E2 and deubiquitinases (DUBs), many molecular targeted drugs have been developed to combat cancer. Among them, small molecule inhibitors targeting the proteasome, such as bortezomib, carfilzomib, oprozomib and ixazomib, have achieved tangible success. In addition, MLN7243 and MLN4924 (targeting the E1 enzyme), Leucettamol A and CC0651 (targeting the E2 enzyme), nutlin and MI-219 (targeting the E3 enzyme), and compounds G5 and F6 (targeting DUB activity) have also shown potential in preclinical cancer treatment. In this review, we summarize the latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance. Moreover, potential therapeutic targets for cancer are reviewed, as are the therapeutic effects of targeted drugs.
Collapse
Affiliation(s)
- Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China.
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
12
|
Quzhou Fructus Aurantii Extract suppresses inflammation via regulation of MAPK, NF-κB, and AMPK signaling pathway. Sci Rep 2020; 10:1593. [PMID: 32005962 PMCID: PMC6994495 DOI: 10.1038/s41598-020-58566-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/15/2020] [Indexed: 01/11/2023] Open
Abstract
The anti-inflammatory activity of Quzhou Fructus Aurantii Extract (QFAE) has been reported recently. Thus, present study aims to explore the mechanism of anti-inflammation of QFAE in vitro and in vivo to develop a lung phylactic agent. The anti-inflammatory mechanism of QFAE in RAW 264.7 cells and acute lung injury (ALI) mice model was determined by cytokines analysis, histopathological examination, Western blot assay, immunofluorescence, and immunohistochemistry analysis. The results showed that QFAE restrained mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways in LPS-induced RAW 264.7 cells, whereas AMP-activated protein kinase (AMPK) signaling pathways were activated, as revealed by prominent attenuation of phosphorylation of ERK, JNK, p38, p65, IκBα, RSK and MSK, and overt enhancement of phosphorylation of ACC and AMPKα. The levels of pro-inflammatory cytokines TNF, IL-6, and IL-1β were suppressed, whereas the level of anti-inflammatory cytokine IL-10 increased after pretreatment with QFAE in vivo and in vitro. Moreover, QFAE prevented mice from LPS-provoked ALI, bases on alleviating neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF) and mitigatingpulmonary histological alters, as well as hematological change. The MAPK and NF-κB signaling pathways in LPS-stimulated ALI mice were dampened by QFAE pretreatment, whereas AMPK signaling pathways were accelerated, as testify by significant restraint of phosphorylation of ERK, JNK, p38, p65, and IκBα, and distinct elevation of phosphorylation of ACC and AMPKα. The remarkable anti-inflammatory effect of QFAE is associated with the suppression of MAPK and NF-κB signaling pathways and the initiation of AMPK signaling pathway.
Collapse
|
13
|
Li K, Mohammed MAA, Zhou Y, Tu H, Zhang J, Liu C, Chen Z, Burns R, Hu D, Ruso JM, Tang Z, Liu Z. Recent progress in the development of immobilized penicillin G acylase for chemical and industrial applications: A mini‐review. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ke Li
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Monier Alhadi Abdelrahman Mohammed
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Yongshan Zhou
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Hongyi Tu
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Jiachen Zhang
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Chunli Liu
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Zhenbin Chen
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Robert Burns
- Department of Physics and EngineeringFrostburg State University Frostburg Maryland
| | - Dongdong Hu
- State Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied PhysicsUniversity of Santiago de Compostela Santiago de Compostela Spain
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy MaterialsNew Energy Research Institute School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou China
- Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy MaterialsSchool of Environment and Energy South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
| | - Zhen Liu
- Department of Physics and EngineeringFrostburg State University Frostburg Maryland
| |
Collapse
|
14
|
From Discovery to Bedside: Targeting the Ubiquitin System. Cell Chem Biol 2018; 26:156-177. [PMID: 30554913 DOI: 10.1016/j.chembiol.2018.10.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/21/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
The ubiquitin/proteasome system is a primary conduit for selective intracellular protein degradation. Since its discovery over 30 years ago, this highly regulated system continues to be an active research area for drug discovery that is exemplified by several approved drugs. Here we review compounds in preclinical testing, clinical trials, and approved drugs, with the aim of highlighting innovative discoveries and breakthrough therapies that target the ubiquitin system.
Collapse
|
15
|
Administration of ubiquitin-activating enzyme UBA1 inhibitor PYR-41 attenuates angiotensin II-induced cardiac remodeling in mice. Biochem Biophys Res Commun 2018; 505:317-324. [DOI: 10.1016/j.bbrc.2018.09.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 11/19/2022]
|
16
|
Wu M, Gui H, Feng Z, Xu H, Li G, Li M, Chen T, Wu Y, Huang J, Bai Z, Li Y, Pan J, Wang J, Zhou H. KPT-330, a potent and selective CRM1 inhibitor, exhibits anti-inflammation effects and protection against sepsis. Biochem Biophys Res Commun 2018; 503:1773-1779. [PMID: 30064906 DOI: 10.1016/j.bbrc.2018.07.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Sepsis, a systemic inflammatory response caused by infection or injury, is still one of the most important causes of death in clinical patients. The ongoing search for the pathogenesis of sepsis and novel therapeutic methods are highly urgent. In this study, we hypothesized that KPT330, a potent and specific small molecule inhibitor of CRM1, could reduce inflammation and attenuate the severity of sepsis. In LPS-induced sepsis model in vivo, administration of KPT330 increased survival rate and ameliorated LPS-induced lung injury, with suppressed levels of TNF-α, IL-6 and HMGB1 in the circulation and decreased macrophage and PMN subpopulations in peritoneal cavity. In vitro investigations showed that KPT330 dose-dependently inhibited LPS-triggered proinflammatory cytokines production including TNF-α, IL-6 and HMGB1 in macrophages. Furthermore, KPT330 treatment significantly suppressed TNF-α and IL-6 mRNA expression and inhibited HMGB1 necleocytoplasmic translocation by inhibiting CRM1 distribution. Moreover, the mechanism analysis demonstrated that KPT330 exerted anti-inflammation effects by inhibiting the production of pro-inflammatory cytokines through suppressing activation of NF-κB and p38 signaling. Thus, pharmacologic stimulation of KPT330 may present a promising therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Ming Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Huan Gui
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Zongtai Feng
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Hua Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Gang Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Ting Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yi Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Jie Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Zhenjiang Bai
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yanhong Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Jian Wang
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
17
|
Matsuo S, Chaung A, Liou D, Wang P, Yang WL. Inhibition of ubiquitin-activating enzyme protects against organ injury after intestinal ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2018; 315:G283-G292. [PMID: 29771572 PMCID: PMC6139649 DOI: 10.1152/ajpgi.00024.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal ischemia-reperfusion (I/R) occurs in various clinical settings, such as transplantation, acute mesenteric arterial occlusion, trauma, and shock. I/R injury causes severe systemic inflammation, leading to multiple organ dysfunction associated with high mortality. The ubiquitin proteasome pathway has been indicated in the regulation of inflammation, particularly through the NF-κB signaling pathway. PYR-41 is a small molecular compound that selectively inhibits ubiquitin-activating enzyme E1. A mouse model of intestinal I/R injury by clamping the superior mesenteric artery for 45 min was performed to evaluate the effect of PYR-41 treatment on organ injury and inflammation. PYR-41 was administered intravenously at the beginning of reperfusion. Blood and organ tissues were harvested at 4 h after reperfusion. PYR-41 treatment improved the morphological structure of gut and lung after I/R, as judged by hematoxylin and eosin staining. It also reduced the number of apoptotic terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells and caspase-3 activity in the organs. PYR-41 treatment decreased the expression of proinflammatory cytokines IL-6 and IL-1β as well as chemokines keratinocyte chemoattractant and macrophage inflammatory protein-2 in the gut and lung, which leads to inhibition of neutrophils infiltrating into these organs. The serum levels of IL-6, aspartate aminotransferase, and lactate dehydrogenase were reduced by the treatment. The IκB degradation in the gut increased after I/R was inhibited by PYR-41 treatment. Thus, ubiquitination may be a potential therapeutic target for treating patients suffering from intestinal I/R. NEW & NOTEWORTHY Excessive inflammation contributes to organ injury from intestinal ischemia-reperfusion (I/R) in many clinical conditions. NF-κB signaling is very important in regulating inflammatory response. In an experimental model of gut I/R injury, we demonstrate that administration of a pharmacological inhibitor of ubiquitination process attenuates NF-κB activation, leading to reduction of inflammation, tissue damage, and apoptosis in the gut and lungs. Therefore, ubiquitination process may serve as a therapeutic target for treating patients with intestinal I/R injury.
Collapse
Affiliation(s)
- Shingo Matsuo
- 1Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Andrew Chaung
- 1Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Deanna Liou
- 1Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Ping Wang
- 1Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York,2Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Weng-Lang Yang
- 1Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York,2Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| |
Collapse
|
18
|
Magnani ND, Dada LA, Sznajder JI. Ubiquitin-proteasome signaling in lung injury. Transl Res 2018; 198:29-39. [PMID: 29752900 PMCID: PMC6986356 DOI: 10.1016/j.trsl.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
Cell homeostasis requires precise coordination of cellular proteins function. Ubiquitination is a post-translational modification that modulates protein half-life and function and is tightly regulated by ubiquitin E3 ligases and deubiquitinating enzymes. Lung injury can progress to acute respiratory distress syndrome that is characterized by an inflammatory response and disruption of the alveolocapillary barrier resulting in alveolar edema accumulation and hypoxemia. Ubiquitination plays an important role in the pathobiology of acute lung injury as it regulates the proteins modulating the alveolocapillary barrier and the inflammatory response. Better understanding of the signaling pathways regulated by ubiquitination may lead to novel therapeutic approaches by targeting specific elements of the ubiquitination pathways.
Collapse
Affiliation(s)
- Natalia D Magnani
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Laura A Dada
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Jacob I Sznajder
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
19
|
|
20
|
Role of Quzhou Fructus Aurantii Extract in Preventing and Treating Acute Lung Injury and Inflammation. Sci Rep 2018; 8:1698. [PMID: 29374248 PMCID: PMC5785969 DOI: 10.1038/s41598-018-20083-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023] Open
Abstract
Quzhou Fructus Aurantii (QFA) is an authentic herb of local varieties in Zhejiang, China, which is usually used to treat gastrointestinal illnesses, but its effects on respiratory inflammation have not been reported yet. In our study, the anti-inflammatory activity of QFA extract (QFAE) was evaluated on copper sulfate pentahydrate (CuSO4·5H2O)-induced transgenic neutrophil fluorescent zebrafish model. QFAE showed a significant effect of anti-inflammation in CuSO4·5H2O-induced zebrafish by reducing the neutrophil number in the inflammatory site. We investigated the anti-inflammatory activity of QFAE on lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice models and RAW 264.7 cells. QFAE had an anti-inflammatory effect on reducing total cells, neutrophils, and macrophages in BALF and attenuated alveolus collapse, neutrophils infiltration, lung W/D ratio, myeloperoxidase (MPO) protein expression and other pulmonary histological changes in lung tissues, as well as hematological changes. Levels of pro-inflammatory cytokines, including TNF, IL-6, IFN-γ, MCP-1, and IL-12p70, were decreased, whereas anti-inflammatory cytokine IL-10 was increased after treatment with QFAE both in vivo and in vitro. In summary, our results suggested that QFAE had apparent anti-inflammatory effects on CuSO4·5H2O-induced zebrafish, LPS-induced ALI mice, and RAW 264.7 cells. Furthermore, QFAE may be a therapeutic drug to treat ALI/ARDS and other respiratory inflammations.
Collapse
|