1
|
Zhou Z, Xu L, Lv Y, Li L, Yuan H, Hu F. BAX pores facilitate mitochondrial DNA release in wasp sting-induced acute kidney injury. Int Immunopharmacol 2024; 143:113424. [PMID: 39437488 DOI: 10.1016/j.intimp.2024.113424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The role of B-cell lymphoma 2 (BCL2)-associated X (BAX) macropores in the leakage of mitochondrial DNA (mtDNA) and their impact on acute kidney injury (AKI) has recently been brought to the focus of researchers. This study aimed to explore the relationship between mtDNA leakage and BAX macropores during wasp sting-induced AKI. BAX mitochondrial translocation and macropores opening increased in both in vivo and in vitro models of wasp sting-induced AKI. In a mouse model, BAX inhibition dramatically attenuated mitochondrial impairment, cytoplasmic release of mtDNA, and suppressed activation of the mtDNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. This attenuation improved kidney function, reduced inflammatory response, and decreased apoptosis in mouse models. Furthermore, in cultured human proximal tubular epithelial cells (HK-2) treated with myoglobin and subjected to BAX knockdown, quantitative real-time polymerase chain reaction (PCR) directly demonstrated decreased mtDNA release into the cytoplasm. Consistent with in vivo results, downregulation of BAX expression in vitro ameliorated mitochondrial damage and attenuated subsequent inflammation and apoptosis caused by the activation of the mtDNA-cGAS-STING signaling pathway. Our findings revealed that mtDNA is released into the cytoplasm through BAX macropores in wasp sting-induced AKI, which provided an important novel perspective for understanding wasp sting-induced AKI and is conducive for identifying novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Zilin Zhou
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Liang Xu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Lv
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ling Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| |
Collapse
|
2
|
Dennhardt S, Ceanga IA, Baumbach P, Amiratashani M, Kröller S, Coldewey SM. Cell-free DNA in patients with sepsis: long term trajectory and association with 28-day mortality and sepsis-associated acute kidney injury. Front Immunol 2024; 15:1382003. [PMID: 38803503 PMCID: PMC11128621 DOI: 10.3389/fimmu.2024.1382003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Outcome-prediction in patients with sepsis is challenging and currently relies on the serial measurement of many parameters. Standard diagnostic tools, such as serum creatinine (SCr), lack sensitivity and specificity for acute kidney injury (AKI). Circulating cell-free DNA (cfDNA), which can be obtained from liquid biopsies, can potentially contribute to the quantification of tissue damage and the prediction of sepsis mortality and sepsis-associated AKI (SA-AKI). Methods We investigated the clinical significance of cfDNA levels as a predictor of 28-day mortality, the occurrence of SA-AKI and the initiation of renal replacement therapy (RRT) in patients with sepsis. Furthermore, we investigated the long-term course of cfDNA levels in sepsis survivors at 6 and 12 months after sepsis onset. Specifically, we measured mitochondrial DNA (mitochondrially encoded NADH-ubiquinone oxidoreductase chain 1, mt-ND1, and mitochondrially encoded cytochrome C oxidase subunit III, mt-CO3) and nuclear DNA (nuclear ribosomal protein S18, n-Rps18) in 81 healthy controls and all available samples of 150 intensive care unit patients with sepsis obtained at 3 ± 1 days, 7 ± 1 days, 6 ± 2 months and 12 ± 2 months after sepsis onset. Results Our analysis revealed that, at day 3, patients with sepsis had elevated levels of cfDNA (mt-ND1, and n-Rps18, all p<0.001) which decreased after the acute phase of sepsis. 28-day non-survivors of sepsis (16%) had higher levels of cfDNA (all p<0.05) compared with 28-day survivors (84%). Patients with SA-AKI had higher levels of cfDNA compared to patients without AKI (all p<0.05). Cell-free DNA was also significantly increased in patients requiring RRT (all p<0.05). All parameters improved the AUC for SCr in predicting RRT (AUC=0.88) as well as APACHE II in predicting mortality (AUC=0.86). Conclusion In summary, cfDNA could potentially improve risk prediction models for mortality, SA-AKI and RRT in patients with sepsis. The predictive value of cfDNA, even with a single measurement at the onset of sepsis, could offer a significant advantage over conventional diagnostic methods that require repeated measurements or a baseline value for risk assessment. Considering that our data show that cfDNA levels decrease after the first insult, future studies could investigate cfDNA as a "memoryless" marker and thus bring further innovation to the complex field of SA-AKI diagnostics.
Collapse
Affiliation(s)
- Sophie Dennhardt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Iuliana-Andreea Ceanga
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Philipp Baumbach
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Mona Amiratashani
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sarah Kröller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Haeri K, Samiee S, Beigi P, Hajati S, Deyhim MR. A tight interplay between platelet activation and mitochondrial DNA release promotes platelet storage lesion in platelet concentrates. Vox Sang 2024; 119:439-446. [PMID: 38385820 DOI: 10.1111/vox.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND OBJECTIVES Platelet storage lesion (PSL) adversely affects the quality of platelet concentrates (PCs). Platelets are prone to activation during storage. Moreover, elevated free mitochondrial DNA (mtDNA) levels in PCs are associated with a higher risk of adverse transfusion reactions. Therefore, we aimed to evaluate the correlation between platelet activation markers and mtDNA release during PC storage. MATERIALS AND METHODS Six PCs prepared by the platelet-rich plasma method were assessed for free mtDNA copy number using quantitative real-time PCR and CD62P (P-selectin) expression by flow cytometry on days 0 (PC collection day), 3, 5 and 7 of storage. Lactate dehydrogenase (LDH) activity, pH, platelet count, mean platelet volume (MPV) and platelet distribution width (PDW) were measured as well. The correlation between free mtDNA and other PSL parameters, and the correlation between all parameters, was determined. RESULTS Significant increases in free mtDNA, MPV and PDW, and a significant decrease in platelet count and pH were observed. CD62P expression and LDH activity elevated significantly, particularly on storage days 5-7 and 0-3, respectively. Moreover, a moderate positive correlation (r = 0.61) was observed between free mtDNA and CD62P expression. The r values between free mtDNA and LDH, pH, platelet count, MPV and PDW were 0.81, -0.72, -0.49, 0.81 and 0.77, respectively. CONCLUSION The interplay between platelet activation and mtDNA release in promoting PSL in PCs may serve as a promising target for future research on applying additive solutions and evaluating the quality of PCs to improve transfusion and clinical outcomes.
Collapse
Affiliation(s)
- Kamand Haeri
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
- Diabetes Research Center, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Peyman Beigi
- Diabetes Research Center, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Smerdis Hajati
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Reza Deyhim
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
4
|
Song Z, Xia Y, Shi L, Zha H, Huang J, Xiang X, Li H, Huang H, Yue R, Wang H, Zhu J. Inhibition of Drp1- Fis1 interaction alleviates aberrant mitochondrial fragmentation and acute kidney injury. Cell Mol Biol Lett 2024; 29:31. [PMID: 38439028 PMCID: PMC10910703 DOI: 10.1186/s11658-024-00553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common clinical disorder with complex etiology and poor prognosis, and currently lacks specific and effective treatment options. Mitochondrial dynamics dysfunction is a prominent feature in AKI, and modulation of mitochondrial morphology may serve as a potential therapeutic approach for AKI. METHODS We induced ischemia-reperfusion injury (IRI) in mice (bilateral) and Bama pigs (unilateral) by occluding the renal arteries. ATP depletion and recovery (ATP-DR) was performed on proximal renal tubular cells to simulate in vitro IRI. Renal function was evaluated using creatinine and urea nitrogen levels, while renal structural damage was assessed through histopathological staining. The role of Drp1 was investigated using immunoblotting, immunohistochemistry, immunofluorescence, and immunoprecipitation techniques. Mitochondrial morphology was evaluated using confocal microscopy. RESULTS Renal IRI induced significant mitochondrial fragmentation, accompanied by Dynamin-related protein 1 (Drp1) translocation to the mitochondria and Drp1 phosphorylation at Ser616 in the early stages (30 min after reperfusion), when there was no apparent structural damage to the kidney. The use of the Drp1 inhibitor P110 significantly improved kidney function and structural damage. P110 reduced Drp1 mitochondrial translocation, disrupted the interaction between Drp1 and Fis1, without affecting the binding of Drp1 to other mitochondrial receptors such as MFF and Mid51. High-dose administration had no apparent toxic side effects. Furthermore, ATP-DR induced mitochondrial fission in renal tubular cells, accompanied by a decrease in mitochondrial membrane potential and an increase in the translocation of the pro-apoptotic protein Bax. This process facilitated the release of dsDNA, triggering the activation of the cGAS-STING pathway and promoting inflammation. P110 attenuated mitochondrial fission, suppressed Bax mitochondrial translocation, prevented dsDNA release, and reduced the activation of the cGAS-STING pathway. Furthermore, these protective effects of P110 were also observed renal IRI model in the Bama pig and folic acid-induced nephropathy in mice. CONCLUSIONS Dysfunction of mitochondrial dynamics mediated by Drp1 contributes to renal IRI. The specific inhibitor of Drp1, P110, demonstrated protective effects in both in vivo and in vitro models of AKI.
Collapse
Affiliation(s)
- Zhixia Song
- Department of Nephrology, Center People's Hospital of Yichang, The First Clinical Medical College of Three Gorges University, Yichang, 443000, Hubei, China.
- Kidney Disease Research Institute of Three Gorges University, Yichang, 443000, Hubei, China.
| | - Yao Xia
- Department of Nephrology, Center People's Hospital of Yichang, The First Clinical Medical College of Three Gorges University, Yichang, 443000, Hubei, China
- Kidney Disease Research Institute of Three Gorges University, Yichang, 443000, Hubei, China
| | - Lang Shi
- Kidney Disease Research Institute of Three Gorges University, Yichang, 443000, Hubei, China
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hongchu Zha
- Department of Nephrology, Center People's Hospital of Yichang, The First Clinical Medical College of Three Gorges University, Yichang, 443000, Hubei, China
- Kidney Disease Research Institute of Three Gorges University, Yichang, 443000, Hubei, China
| | - Jing Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaohong Xiang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Huiming Li
- Department of Nephrology, Center People's Hospital of Yichang, The First Clinical Medical College of Three Gorges University, Yichang, 443000, Hubei, China
- Kidney Disease Research Institute of Three Gorges University, Yichang, 443000, Hubei, China
| | - Hua Huang
- Department of Nephrology, Center People's Hospital of Yichang, The First Clinical Medical College of Three Gorges University, Yichang, 443000, Hubei, China
- Kidney Disease Research Institute of Three Gorges University, Yichang, 443000, Hubei, China
| | - Ruchi Yue
- Department of Nephrology, Center People's Hospital of Yichang, The First Clinical Medical College of Three Gorges University, Yichang, 443000, Hubei, China
- Kidney Disease Research Institute of Three Gorges University, Yichang, 443000, Hubei, China
| | - Hongtao Wang
- Department of Nephrology, Center People's Hospital of Yichang, The First Clinical Medical College of Three Gorges University, Yichang, 443000, Hubei, China
- Kidney Disease Research Institute of Three Gorges University, Yichang, 443000, Hubei, China
| | - Jiefu Zhu
- Kidney Disease Research Institute of Three Gorges University, Yichang, 443000, Hubei, China.
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Zhou M, Zhang H, Xu X, Chen H, Qi B. Association between circulating cell-free mitochondrial DNA and inflammation factors in noninfectious diseases: A systematic review. PLoS One 2024; 19:e0289338. [PMID: 38241222 PMCID: PMC10798522 DOI: 10.1371/journal.pone.0289338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/18/2023] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVE This study aimed to assess the correlation between the circulating cell-free mitochondria DNA and inflammation factors in noninfectious disease by meta-analysis of data from eligible studies. MATERIALS AND METHODS Through a comprehensive searching of pubmed, embase, web of science, cochrane from establishment of the database to October 31, 2022, studies were selected that investigated the association of circulating cell free mitochondria DNA with inflammatory factors in non-infectious diseases. Studies that met the inclusion criteria and were published in English or Chinese were included. Data of each correlation coefficients were extracted from the paper and 95% confidence intervals were calculated. Sensitivity and heterogeneity tests were carried out for each data. RESULTS A total of 660 articles were retrieved and 22 were included in this meta-analysis, including 2600 patients. A fixed effects model was employed to examine ISS and IL-8, others were analyzed using random effects models. The correlation coefficient between mtDNA and ISS score was 0.37 (95%CI = [0.232;0.494]), p<0.0001, heterogeneity I2 = 46%, p = 0.11). The correlation coefficients between mtDNA and inflammatory factors are as follows: TNFα, 0.405 [(95%CI = [0.253;0.538], p<0.0001, heterogeneity I2 = 77%, p = 0.0001]. IL-6, 0.469 [(95%CI = [0.296;0.612]), p = 0.0001, heterogeneity I2 = 93%, p<0.0001]. CRP, 0.333[(95%CI = [0.149;0.494]), p = 0.005, heterogeneity I2 = 85%, p<0.0001]. IL-8, 0.343[(95%CI = [0.233;0.524]), p = 0.001, heterogeneity I2 = 50%, p = 0.09]. PCT, 0.333 [(95%CI = [0.06;0.64]), p = 0.09,heterogeneity I2 = 64%,p = 0.06]. There were no significant publication bias for TNFα, IL-6 and CRP. CONSLUSION Circulating cell free mtDNA was moderate positively correlated with the expression of inflammatory factors and the degree of trauma.
Collapse
Affiliation(s)
- Min Zhou
- Department of Orthopeadics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hao Zhang
- Department of Orthopeadics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Xu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hairen Chen
- Department of Orthopeadics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Baiwen Qi
- Department of Orthopeadics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Sun C, Shi H, Zhao X, Chang YL, Wang X, Zhu S, Sun S. The Activation of cGAS-STING in Acute Kidney Injury. J Inflamm Res 2023; 16:4461-4470. [PMID: 37842189 PMCID: PMC10576462 DOI: 10.2147/jir.s423232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
The activation of the cGAS-STING pathway is associated with many sterile inflammatory and inflammatory conditions, including acute kidney injury. As a cytoplasmic DNA sensor, sensitization of the cGAS-STING pathway can ignite the innate immune response in vivo and trigger a series of biological effects. In recent years, there is increasing evidence showing that the cGAS-STING pathway plays a vital role in acute kidney injury, a non-inflammatory disease induced by activation of innate immune cells, and closely related to intracellular reactive oxygen species, mitochondrial DNA, and the cGAS-STING pathway. This review provides a prospect of the cGAS-STING pathway and its relationship to acute kidney injury.
Collapse
Affiliation(s)
- Chuanchuan Sun
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Heng Shi
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Xinhai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Yu-Ling Chang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Xianghong Wang
- Department of Endocrinology and Metabolism, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Shiping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Shengyun Sun
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Gomchok D, Ge RL, Wuren T. Platelets in Renal Disease. Int J Mol Sci 2023; 24:14724. [PMID: 37834171 PMCID: PMC10572297 DOI: 10.3390/ijms241914724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney disease is a major global health concern, affecting millions of people. Nephrologists have shown interest in platelets because of coagulation disorders caused by renal diseases. With a better understanding of platelets, it has been found that these anucleate and abundant blood cells not only play a role in hemostasis, but also have important functions in inflammation and immunity. Platelets are not only affected by kidney disease, but may also contribute to kidney disease progression by mediating inflammation and immune effects. This review summarizes the current evidence regarding platelet abnormalities in renal disease, and the multiple effects of platelets on kidney disease progression. The relationship between platelets and kidney disease is still being explored, and further research can provide mechanistic insights into the relationship between thrombosis, bleeding, and inflammation related to kidney disease, and elucidate targeted therapies for patients with kidney disease.
Collapse
Affiliation(s)
- Drolma Gomchok
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| |
Collapse
|
8
|
Hu Z, Zhang F, Brenner M, Jacob A, Wang P. The protective effect of H151, a novel STING inhibitor, in renal ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2023; 324:F558-F567. [PMID: 37102684 PMCID: PMC10228668 DOI: 10.1152/ajprenal.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with high morbidity and mortality. Stimulator of interferon (IFN) genes (STING) is the cytosolic DNA-activated signaling pathway that mediates inflammation and injury. Our recent study showed that extracellular cold-inducible RNA-binding protein (eCIRP), a newly identified damage-associated molecular pattern, activates STING and exacerbates hemorrhagic shock. H151 is a small molecule that selectively binds to STING and inhibits STING-mediated activity. We hypothesized that H151 attenuates eCIRP-induced STING activation in vitro and inhibits RIR-induced AKI in vivo. In vitro, renal tubular epithelial cells incubated with eCIRP showed increased levels of IFN-β, STING pathway downstream cytokine, IL-6, tumor necrosis factor-α, and neutrophil gelatinase-associated lipocalin, whereas coincubation with eCIRP and H151 diminished those increases in a dose-dependent manner. In vivo, 24 h after bilateral renal ischemia-reperfusion, glomerular filtration rate was decreased in RIR-vehicle-treated mice, whereas glomerular filtration rate was unchanged in RIR-H151-treated mice. In contrast to sham, serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin were increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. In contrast to sham, kidney IFN-β mRNA, histological injury score, and TUNEL staining were also increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. Importantly, in contrast to sham, in a 10-day survival study, survival decreased to 25% in RIR-vehicle, but RIR-H151 had a survival of 63%. In conclusion, H151 inhibits eCIRP-induced STING activation in renal tubular epithelial cells. Therefore, STING inhibition by H151 can be a promising therapeutic intervention for RIR-induced AKI.NEW & NOTEWORTHY Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with a high morbidity and mortality rate. Stimulator of interferon genes (STING) is the cytosolic DNA-activated signaling pathway responsible for mediating inflammation and injury. Extracellular cold-inducible RNA-binding protein (eCIRP) activates STING and exacerbates hemorrhagic shock. H151, a novel STING inhibitor, attenuated eCIRP-induced STING activation in vitro and inhibited RIR-induced AKI. H151 shows promise as a therapeutic intervention for RIR-induced AKI.
Collapse
Affiliation(s)
- Zhijian Hu
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Fangming Zhang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| | - Asha Jacob
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| |
Collapse
|
9
|
Abayasekara K, Sullo N. The clinical use of urinary mitochondrial DNA in adult surgical critical care patients with acute kidney injury. Clin Exp Pharmacol Physiol 2023; 50:277-286. [PMID: 36594612 DOI: 10.1111/1440-1681.13746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
Acute kidney injury (AKI) affects 47% of adult surgical critical care patients (ASCCPs). AKI is induced through a common oxidative stress pathway resulting in mitochondrial and tubular cell injury with increased urinary mitochondrial DNA (UmtDNA) excretion. UmtDNA is an emerging and readily sampled novel biomarker for varied surgical critical care cohorts. This review aimed to determine the clinical use of UmtDNA genes (ND1 and COX3) in AKI in ASCCPs. PubMed, MEDLINE and Web of Science databases were searched. Eligibility criteria were based on the patient/problem, intervention, comparison and outcome framework. Methodological quality of studies was assessed with the Newcastle-Ottawa Quality Assessment Scale. WebPlot Digitizer version 4.4 was used to extract UmtDNA data from graphs and UmtDNA ratios were statistically analysed with PRISM version 9.1.0 (GraphPad Software). Six human studies (n = 391) with three translational murine models (n = 112) satisfied inclusion criteria. One sample t test suggested significantly high UmtDNA-ND1 ratios in progressive/severe AKI (or delayed renal transplant graft function) to no AKI (or immediate renal transplant graft function) and increased UmtDNA-COX3 ratios approached significance. Sensitivities and specificities for UmtDNA ranged from 68% to 85% and 52% to 83.6%, respectively, comparable with new biomarkers, neutrophil gelatinase-associated lipocalin and kidney injury molecule-1. Weak correlation was observed with serum creatinine. These findings were complemented in translational murine AKI experiments with significantly elevated ND1 and COX3. From bench to clinical practice, UmtDNA appears to be a promising novel biomarker of progressive/severe AKI (or delayed graft function). Large prospective, multi-centre studies reporting standardised UmtDNA findings should clarify use of UmtDNA in ASCCP-AKI management.
Collapse
Affiliation(s)
| | - Nikol Sullo
- Medical School, Swansea University, Swansea, UK
| |
Collapse
|
10
|
Grigoriev E, Ponasenko AV, Sinitskaya AV, Ivkin AA, Kornelyuk RA. Mitochondrial DNA as a Candidate Marker of Multiple Organ Failure after Cardiac Surgery. Int J Mol Sci 2022; 23:ijms232314748. [PMID: 36499077 PMCID: PMC9737207 DOI: 10.3390/ijms232314748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Assess the level of mitochondrial DNA depending on the presence of multiple organ failure in patients after heart surgery. The study included 60 patients who underwent surgical treatment of valvular heart disease using cardiopulmonary bypass. Uncomplicated patients were included in the 1st group (n = 30), patients with complications and multiple organ failure (MOF) were included in the 2nd group (n = 30). Serum mtDNA levels were determined by quantitative real-time polymerase chain reaction with fluorescent dyes. Mitochondrial DNA gene expression did not differ between group before surgery. Immediately after the intervention, cytochrome B gene expression was higher in the group with MOF, and it remained high during entire follow-up period. A similar trend was observed in cytochrome oxidase gene expression. Increased NADH levels of gene expressions during the first postoperative day were noted in both groups, the expression showed tendency to increase on the third postoperative day. mtDNA gene expression in the "MOF present" group remained at a higher level compared with the group without complications. A positive correlation was reveled between the severity of MOF according to SOFA score and the level of mtDNA (r = 0.45; p = 0.028) for the end-point "First day". The ROC analysis showed that mtDNA circulating in plasma (AUC = 0.605) can be a predictor of MOF development. The level of mtDNA significantly increases in case of MOF, irrespective of its cause. (2) The expression of mtDNA genes correlates with the level of MOF severity on the SOFA score.
Collapse
|
11
|
Jia B, Ye J, Gan L, Li R, Zhang M, Sun D, Weng L, Xiong Y, Xu J, Zhang P, Huang W, Zheng M, Wang T. Mitochondrial antioxidant SkQ1 decreases inflammation following hemorrhagic shock by protecting myocardial mitochondria. Front Physiol 2022; 13:1047909. [PMID: 36467681 PMCID: PMC9709459 DOI: 10.3389/fphys.2022.1047909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
Background: Hemorrhagic shock (HS) is a type of hypovolemic shock characterized by hemodynamic instability, tissue hypoperfusion and cellular hypoxia. In pathophysiology, the gradual accumulation of reactive oxygen species (ROS) damages the mitochondria, leading to irreversible cell damage and the release of endogenous damage-associated molecular patterns (DAMPs) including mitochondrial DAMPs (MTDs), eventually triggering the inflammatory response. The novel mitochondria-targeted antioxidant SkQ1 (Visomitin) effectively eliminate excessive intracellular ROS and exhibits anti-inflammatory effects; however, the specific role of SkQ1 in HS has not yet been explicated. Methods and results: A 40% fixed-blood-loss HS rat model was established in this study. Transmission electron microscopy showed that after HS, the myocardial mitochondrial ultrastructure was damaged and the mtDNA release in circulation was increased and the differentially expressed genes were significantly enriched in mitochondrial and ROS-related pathways. Mitochondria-targeted antioxidant SkQ1 attenuated the increased ROS induced by HS in myocardial tissues and by oxygen-glucose deprivation (OGD) in cardiomyocytes. Ultrastructurally, SkQ1 protected the myocardial mitochondrial structure and reduced the release of the peripheral blood mtDNA after HS. RNA-seq transcriptome analysis showed that 56.5% of the inflammation-related genes, which altered after HS, could be significantly reversed after SkQ1 treatment. Moreover, ELISA indicated that SkQ1 significantly reversed the HS-induced increases in the TNF-α, IL-6, and MCP-1 protein levels in rat peripheral blood. Conclusion: HS causes damage to the rat myocardial mitochondrial structure, increases mtDNA release and ROS contents, activates the mitochondrial and ROS-related pathways, and induces systemic inflammatory response. The mitochondrial antioxidant SkQ1 can improve rat myocardial mitochondria ultrastructure, reduce mtDNA and ROS contents, and decrease inflammation by protecting myocardial mitochondria, thereby playing a novel protective role in HS.
Collapse
Affiliation(s)
- Bo Jia
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Jingjing Ye
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Lebin Gan
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Rui Li
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Mengwei Zhang
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Diya Sun
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Lin Weng
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Yufei Xiong
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jun Xu
- Department of Gastroenterology, Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Peng Zhang
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Wei Huang
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Ming Zheng
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
12
|
Minimized Extracorporeal Circulation Is Associated with Reduced Plasma Levels of Free-Circulating Mitochondrial DNA Compared to Conventional Cardiopulmonary Bypass: A Secondary Analysis of an Exploratory, Prospective, Interventional Study. J Clin Med 2022; 11:jcm11112994. [PMID: 35683383 PMCID: PMC9181034 DOI: 10.3390/jcm11112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 01/25/2023] Open
Abstract
The use of minimized extracorporeal circulation (MiECC) during cardiac surgery is associated with a reduced inflammatory reaction compared to conventional cardiopulmonary bypass (cCPB). Since it is unknown if MiECC also reduces the amount of free-circulating mitochondrial DNA (mtDNA), this study aims to compare MiECC-induced mtDNA release to that of cCPB as well as to identify potential relations between the plasma levels of mtDNA and an adverse outcome. Overall, 45 patients undergoing cardiac surgery with either cCPB or MiECC were included in the study. MtDNA encoding for NADH dehydrogenase 1 was quantified with quantitative polymerase chain reaction. The plasma amount of mtDNA was significantly lower in patients undergoing cardiac surgery with MiECC compared to cCPB (MiECC: 161.8 (65.5−501.9); cCPB 190.8 (82−705.7); p < 0.001). Plasma levels of mtDNA showed comparable kinetics independently of the study group and peaked during CPB (MiECC preoperative: 68.2 (26.5−104.9); MiECC 60 min after start of CPB: 536.5 (215.7−919.6); cCPB preoperative: 152.5 (80.9−207.6); cCPB 60 min after start of CPB: 1818.0 (844.2−3932.2); all p < 0.001). Patients offering an mtDNA blood concentration of >650 copies/µL after the commencement of CPB had a 5-fold higher risk for postoperative atrial fibrillation independently of the type of cardiopulmonary bypass. An amount of mtDNA being higher than 650 copies/µL showed moderate predictive power (AUROC 0.71 (0.53−071)) for the identification of postoperative atrial fibrillation. In conclusion, plasma levels of mtDNA were lower in patients undergoing cardiac surgery with MiECC compared to cCPB. The amount of mtDNA at the beginning of the CPB was associated with postoperative atrial fibrillation independent of the type of cardiopulmonary bypass.
Collapse
|
13
|
Mitochondrial DNA-Mediated Inflammation in Acute Kidney Injury and Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9985603. [PMID: 34306320 PMCID: PMC8263241 DOI: 10.1155/2021/9985603] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022]
Abstract
The integrity and function of mitochondria are essential for normal kidney physiology. Mitochondrial DNA (mtDNA) has been widely a concern in recent years because its abnormalities may result in disruption of aerobic respiration, cellular dysfunction, and even cell death. Particularly, aberrant mtDNA copy number (mtDNA-CN) is associated with the development of acute kidney injury and chronic kidney disease, and urinary mtDNA-CN shows the potential to be a promising indicator for clinical diagnosis and evaluation of kidney function. Several lines of evidence suggest that mtDNA may also trigger innate immunity, leading to kidney inflammation and fibrosis. In mechanism, mtDNA can be released into the cytoplasm under cell stress and recognized by multiple DNA-sensing mechanisms, including Toll-like receptor 9 (TLR9), cytosolic cGAS-stimulator of interferon genes (STING) signaling, and inflammasome activation, which then mediate downstream inflammatory cascades. In this review, we summarize the characteristics of these mtDNA-sensing pathways mediating inflammatory responses and their role in the pathogenesis of acute kidney injury, nondiabetic chronic kidney disease, and diabetic kidney disease. In addition, we highlight targeting of mtDNA-mediated inflammatory pathways as a novel therapeutic target for these kidney diseases.
Collapse
|
14
|
Liu J, Jia Z, Gong W. Circulating Mitochondrial DNA Stimulates Innate Immune Signaling Pathways to Mediate Acute Kidney Injury. Front Immunol 2021; 12:680648. [PMID: 34248963 PMCID: PMC8264283 DOI: 10.3389/fimmu.2021.680648] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial dysfunction is increasingly considered as a critical contributor to the occurrence and progression of acute kidney injury (AKI). However, the mechanisms by which damaged mitochondria mediate AKI progression are multifactorial and complicated. Mitochondrial DNA (mtDNA) released from damaged mitochondria could serve as a danger-associated molecular pattern (DAMP) and activate the innate immune system through STING, TLR9, NLRP3, and some other adaptors, and further mediate tubular cell inflammation and apoptosis. Accumulating evidence has demonstrated the important role of circulating mtDNA and its related pathways in the progression of AKI, and regulating the proteins involved in these pathways may be an effective strategy to reduce renal tubular injury and alleviate AKI. Here, we aim to provide a comprehensive overview of recent studies on mtDNA-mediated renal pathological events to provide new insights in the setting of AKI.
Collapse
Affiliation(s)
- Jiaye Liu
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Han F, Sun Q, Huang Z, Li H, Ma M, Liao T, Luo Z, Zheng L, Zhang N, Chen N, Hong L, Na N, Sun Q. Donor plasma mitochondrial DNA is associated with antibody-mediated rejection in renal allograft recipients. Aging (Albany NY) 2021; 13:8440-8453. [PMID: 33714205 PMCID: PMC8034952 DOI: 10.18632/aging.202654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 11/25/2022]
Abstract
We previously showed that donor plasma mitochondrial DNA (dmtDNA) levels were correlated with renal allograft function. The aim of the current study was to determine whether dmtDNA levels are associated with the occurrence of antibody-mediated rejection (ABMR). This is a retrospective open cohort study comprised of 167 donors and 323 recipients enrolled from January 2015 to December 2017. We quantified the mtDNA level present in donor plasma using quantitative real-time polymerase chain reaction. The average plasma dmtDNA level in the acute rejection (AR) group was higher than that of the control group (0.156 versus 0.075, p<0.001). Multivariate logistic regression analysis showed that dmtDNA levels were also significantly associated with AR (OR=1.588, 95% CI 1.337-4.561, p<0.001). When the dmtDNA level was >0.156, the probability of AR was 62.9%. The plasma dmtDNA level in the ABMR group was significantly higher than that of the T cell-mediated rejection group (0.185 versus 0.099, p=0.032). The area under the receiver operating characteristic curve of dmtDNA for prediction of ABMR was as high as 0.910 (95% CI 0.843-0.977). We demonstrated that plasma dmtDNA was an independent risk factor for ABMR, which is valuable in organ evaluation. dmtDNA level is a possible first predictive marker for ABMR.
Collapse
Affiliation(s)
- Fei Han
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qipeng Sun
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhengyu Huang
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heng Li
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Maolin Ma
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Liao
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zihuang Luo
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingling Zheng
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Nana Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Chen
- Laboratory of Cancer Biomarkers and Liquid Biopsy, Henan University, Kaifeng, China
| | - Liangqing Hong
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Na
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiquan Sun
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Ludes PO, de Roquetaillade C, Chousterman BG, Pottecher J, Mebazaa A. Role of Damage-Associated Molecular Patterns in Septic Acute Kidney Injury, From Injury to Recovery. Front Immunol 2021; 12:606622. [PMID: 33732235 PMCID: PMC7957065 DOI: 10.3389/fimmu.2021.606622] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are a group of immunostimulatory molecules, which take part in inflammatory response after tissue injury. Kidney-specific DAMPs include Tamm-Horsfall glycoprotein, crystals, and uromodulin, released by tubular damage for example. Non-kidney-specific DAMPs include intracellular particles such as nucleus [histones, high-mobility group box 1 protein (HMGB1)] and cytosol parts. DAMPs trigger innate immunity by activating the NRLP3 inflammasome, G-protein coupled class receptors or the Toll-like receptor. Tubular necrosis leads to acute kidney injury (AKI) in either septic, ischemic or toxic conditions. Tubular necrosis releases DAMPs such as histones and HMGB1 and increases vascular permeability, which perpetuates shock and hypoperfusion via Toll Like Receptors. In acute tubular necrosis, intracellular abundance of NADPH may explain a chain reaction where necrosis spreads from cell to cell. The nature AKI in intensive care units does not have preclinical models that meet a variation of blood perfusion or a variation of glomerular filtration within hours before catecholamine infusion. However, the dampening of several DAMPs in AKI could provide organ protection. Research should be focused on the numerous pathophysiological pathways to identify the relative contribution to renal dysfunction. The therapeutic perspectives could be strategies to suppress side effect of DAMPs and to promote renal function regeneration.
Collapse
Affiliation(s)
- Pierre-Olivier Ludes
- Department of Anesthesiology and Intensive Care, Hautepierre Hospital, Strasbourg University Hospital, Strasbourg, France.,EA 3072, Mitochondrie Stress Oxydant et Protection Musculaire, Faculté de Médecine, FRU 6702, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Charles de Roquetaillade
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, DMU Parabol, APHP.Nord, Paris, France.,Inserm U942 MASCOT, Université de Paris, Paris, France
| | - Benjamin Glenn Chousterman
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, DMU Parabol, APHP.Nord, Paris, France.,Inserm U942 MASCOT, Université de Paris, Paris, France
| | - Julien Pottecher
- Department of Anesthesiology and Intensive Care, Hautepierre Hospital, Strasbourg University Hospital, Strasbourg, France.,EA 3072, Mitochondrie Stress Oxydant et Protection Musculaire, Faculté de Médecine, FRU 6702, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Alexandre Mebazaa
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, DMU Parabol, APHP.Nord, Paris, France.,Inserm U942 MASCOT, Université de Paris, Paris, France
| |
Collapse
|
17
|
Gong W, Lu L, Zhou Y, Liu J, Ma H, Fu L, Huang S, Zhang Y, Zhang A, Jia Z. The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction. Am J Physiol Renal Physiol 2021; 320:F608-F616. [PMID: 33615891 DOI: 10.1152/ajprenal.00554.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stimulator of interferon genes (STING) is an important adaptor in cytosolic DNA-sensing pathways. A recent study found that the deletion of STING ameliorated cisplatin-induced acute kidney injury (AKI), suggesting that STING could serve as a potential target for AKI therapy. Up to now, a series of small-molecule STING inhibitors/antagonists have been identified. However, none of the research was performed to explore the role of human STING inhibitors in AKI. Here, we investigated the effect of a newly generated covalent antagonist, H151, which targets both human and murine STING, in cisplatin-induced AKI. We found that H151 treatment significantly ameliorated cisplatin-induced kidney injury as shown by the improvement of renal function, kidney morphology, and renal inflammation. In addition, tubular cell apoptosis and increased renal tubular injury marker neutrophil gelatinase-associated lipocalin induced by cisplatin were also effectively attenuated in H151-treated mice. Moreover, the mitochondrial injury caused by cisplatin was also reversed as evidenced by improved mitochondrial morphology, restored mitochondrial DNA content, and reversed mitochondrial gene expression. Finally, we observed enhanced mitochondrial DNA levels in the plasma of patients receiving platinum-based chemotherapy compared with healthy controls, which could potentially activate STING signaling. Taken together, these findings suggested that H151 could be a potential therapeutic agent for treating AKI possibly through inhibiting STING-mediated inflammation and mitochondrial injury.NEW & NOTEWORTHY Although various stimulator of interferon genes (STING) inhibitors have been identified, no research was performed to investigate the role of human STING inhibitors in AKI. Here, we evaluated the effect of H151 targeting both human and murine STING on cisplatin-induced AKI and observed a protection against renal injury possibly through ameliorating inflammation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Wei Gong
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lingling Lu
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Zhou
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaye Liu
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Haoyang Ma
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lvhan Fu
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Fenner BP, Darden DB, Kelly LS, Rincon J, Brakenridge SC, Larson SD, Moore FA, Efron PA, Moldawer LL. Immunological Endotyping of Chronic Critical Illness After Severe Sepsis. Front Med (Lausanne) 2021; 7:616694. [PMID: 33659259 PMCID: PMC7917137 DOI: 10.3389/fmed.2020.616694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Improved management of severe sepsis has been one of the major health care accomplishments of the last two decades. Due to enhanced recognition and improved management of severe sepsis, in-hospital mortality has been reduced by up to 40%. With that good news, a new syndrome has unfortunately replaced in-hospital multi-organ failure and death. This syndrome of chronic critical illness (CCI) includes sepsis patients who survive the early "cytokine or genomic storm," but fail to fully recover, and progress into a persistent state of manageable organ injury requiring prolonged intensive care. These patients are commonly discharged to long-term care facilities where sepsis recidivism is high. As many as 33% of sepsis survivors develop CCI. CCI is the result, at least in part, of a maladaptive host response to chronic pattern-recognition receptor (PRR)-mediated processes. This maladaptive response results in dysregulated myelopoiesis, chronic inflammation, T-cell atrophy, T-cell exhaustion, and the expansion of suppressor cell functions. We have defined this panoply of host responses as a persistent inflammatory, immune suppressive and protein catabolic syndrome (PICS). Why is this important? We propose that PICS in survivors of critical illness is its own common, unique immunological endotype driven by the constant release of organ injury-associated, endogenous alarmins, and microbial products from secondary infections. While this syndrome can develop as a result of a diverse set of pathologies, it represents a shared outcome with a unique underlying pathobiological mechanism. Despite being a common outcome, there are no therapeutic interventions other than supportive therapies for this common disorder. Only through an improved understanding of the immunological endotype of PICS can rational therapeutic interventions be designed.
Collapse
Affiliation(s)
- Brittany P Fenner
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - D B Darden
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lauren S Kelly
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar Rincon
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Frederick A Moore
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
19
|
Jansen MPB, Pulskens WPC, Uil M, Claessen N, Nieuwenhuizen G, Standaar D, Hau CM, Nieuwland R, Florquin S, Bemelman FJ, Leemans JC, Roelofs JJTH. Urinary mitochondrial DNA associates with delayed graft function following renal transplantation. Nephrol Dial Transplant 2020; 35:1320-1327. [PMID: 30590723 DOI: 10.1093/ndt/gfy372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ischaemia-reperfusion (IR) injury is an important determinant of delayed graft function (DGF) affecting allograft function. Mitochondrial DNA (mtDNA) is released upon cell death and platelet activation into the extracellular environment and has been suggested to be a biomarker in several diseases. Whether extracellular mtDNA accumulates in plasma and/or urine upon renal IR and predisposes DGF is unknown. METHODS C57BL/6J wild-type mice were subjected to renal IR. In addition, an observational case-control study was set up enrolling 43 patients who underwent kidney transplantation. One day post-IR in mice and a few days following renal transplantation in human, blood and urine were collected. Patients were stratified into DGF and non-DGF groups. RESULTS mtDNA-encoded genes accumulate in urine and plasma in both mice subjected to renal IR injury and in humans following renal transplantation. In human renal transplant recipients, cold ischaemia time and renal function correlate with urinary mtDNA levels. Urinary mtDNA levels but not urinary nuclear DNA levels were significantly higher in the DGF group compared with the non-DGF group. Multiple receiver operating characteristic curves revealed significant diagnostic performance for mtDNA-encoded genes cytochrome c oxidase III (COXIII); nicotinamide adenine dinucleotide hydrogen subunit 1 (NADH-deh); mitochondrially encoded, mitochondrially encoded nicotinamide adenine dinucleotide dehydrogenase 2 (MT-ND2) with an area under the curve of, respectively, 0.71 [P = 0.03; 95% confidence interval (CI) 0.54-0.89], 0.75 (P = 0.01; 95% CI 0.58-0.91) and 0.74 (P = 0.02; 95% CI 0.58-0.89). CONCLUSIONS These data suggest that renal ischaemia time determines the level of mtDNA accumulation in urine, which associates with renal allograft function and the diagnosis of DGF following renal transplantation.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wilco P C Pulskens
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Melissa Uil
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerrie Nieuwenhuizen
- Department of Nephrology, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dorien Standaar
- Department of Nephrology, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Chi M Hau
- Laboratory of Experimental Clinical Chemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederike J Bemelman
- Department of Nephrology, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaklien C Leemans
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Beunders R, Schütz MJ, van Groenendael R, Leijte GP, Kox M, van Eijk LT, Pickkers P. Endotoxemia-Induced Release of Pro-inflammatory Mediators Are Associated With Increased Glomerular Filtration Rate in Humans in vivo. Front Med (Lausanne) 2020; 7:559671. [PMID: 33251227 PMCID: PMC7674961 DOI: 10.3389/fmed.2020.559671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Sepsis is the most prevalent cause of Acute Kidney Injury (AKI). Conversely, in some septic patients the glomerular filtration rate (GFR) is augmented. The role of the inflammatory response and blood pressure to induce this increased GFR is unknown. Herein, we relate inflammatory mediators and blood pressure to the iohexol clearance-derived “true” GFR and kidney injury markers during systemic inflammation in healthy volunteers. Methods: Twelve healthy subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli-derived lipopolysaccharide, LPS). As a gold-standard to determine the GFR, iohexol plasma clearance (GFRiohexol) was calculated during a 6-h period on the day before (baseline) as well as 2 and 24 h after LPS administration. Intra-arterial blood pressure was recorded continuously using a radial artery catheter. Circulating inflammatory mediators and urinary excretion of kidney injury markers were serially measured. Results: Experimental endotoxemia profoundly increased plasma concentrations of inflammatory mediators, including [mean ± SD or median [IQR] peak values (pg/mL) of tumor necrosis factor (TNF)-α: 92 ± 40, interleukin (IL)-6: 1,246 ± 605, IL-8: 374 ± 120, IL-10: 222 ± 119, IL-1 receptor antagonist (RA): 8,955 ± 2,429, macrophage chemoattractant protein (MCP)-1: 2,885 [2,706 – 3,765], vascular adhesion molecule (VCAM)-1: 296,105 ± 34,822, intercellular adhesion molecule (ICAM)-1: 25,0170 ± 41,764]. Mean arterial pressure decreased with 13 ± 11 mmHg (p < 0.0001). No significant increase in the urinary excretion of tubular injury markers was observed following LPS administration. GFRiohexol increased from 97 ± 6 at baseline to 118 ± 10 mL/min/1.73m2 (p < 0.0001) post-LPS administration and returned to baseline levels at 24 h post-LPS (99 ± 9 mL/min/1.73m2). Peak plasma concentrations of IL-6 (R2 = 0.66, p = 0.001) and IL-8 (R2 = 0.51, p = 0.009), MCP-1 (R2 = 0.38, p = 0.03) and VCAM-1 levels (R2 = 0.37, p = 0.04) correlated with the increase in GFRiohexol, whereas a trend was observed for TNF-α (R2 = 0.33, p = 0.0509) and IL-1RA (R2 = 0.28, p = 0.08). None of the kidney injury markers or changes in blood pressure were associated with GFRiohexol. In multiple linear regression analysis, both peak IL-6 (p = 0.002) and IL-8 (p = 0.01) concentrations remained significantly correlated with GFRiohexol, without collinearity. Discussion: Concentrations of pro-inflammatory cytokines, but not blood pressure, are correlated with the endotoxemia-induced increase in GFR in healthy volunteers. These findings may indicate that inflammatory mediators orchestrate the augmented GFR observed in a subgroup of sepsis patients.
Collapse
Affiliation(s)
- Remi Beunders
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maren J Schütz
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roger van Groenendael
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Guus P Leijte
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lucas T van Eijk
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
21
|
Abstract
Physical trauma can affect any individual and is globally accountable for more than one in every ten deaths. Although direct severe kidney trauma is relatively infrequent, extrarenal tissue trauma frequently results in the development of acute kidney injury (AKI). Various causes, including haemorrhagic shock, rhabdomyolysis, use of nephrotoxic drugs and infectious complications, can trigger and exacerbate trauma-related AKI (TRAKI), particularly in the presence of pre-existing or trauma-specific risk factors. Injured, hypoxic and ischaemic tissues expose the organism to damage-associated and pathogen-associated molecular patterns, and oxidative stress, all of which initiate a complex immunopathophysiological response that results in macrocirculatory and microcirculatory disturbances in the kidney, and functional impairment. The simultaneous activation of components of innate immunity, including leukocytes, coagulation factors and complement proteins, drives kidney inflammation, glomerular and tubular damage, and breakdown of the blood-urine barrier. This immune response is also an integral part of the intense post-trauma crosstalk between the kidneys, the nervous system and other organs, which aggravates multi-organ dysfunction. Necessary lifesaving procedures used in trauma management might have ambivalent effects as they stabilize injured tissue and organs while simultaneously exacerbating kidney injury. Consequently, only a small number of pathophysiological and immunomodulatory therapeutic targets for TRAKI prevention have been proposed and evaluated.
Collapse
|
22
|
Zhang WZ, Rice MC, Hoffman KL, Oromendia C, Barjaktarevic IZ, Wells JM, Hastie AT, Labaki WW, Cooper CB, Comellas AP, Criner GJ, Krishnan JA, Paine R, Hansel NN, Bowler RP, Barr RG, Peters SP, Woodruff PG, Curtis JL, Han MK, Ballman KV, Martinez FJ, Choi AM, Nakahira K, Cloonan SM, Choi ME. Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort. JCI Insight 2020; 5:133984. [PMID: 31895696 DOI: 10.1172/jci.insight.133984] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDMitochondrial dysfunction, a proposed mechanism of chronic obstructive pulmonary disease (COPD) pathogenesis, is associated with the leakage of mitochondrial DNA (mtDNA), which may be detected extracellularly in various bodily fluids. Despite evidence for the increased prevalence of chronic kidney disease in COPD subjects and for mitochondrial dysfunction in the kidneys of murine COPD models, whether urine mtDNA (u-mtDNA) associates with measures of disease severity in COPD is unknown.METHODSCell-free u-mtDNA, defined as copy number of mitochondrially encoded NADH dehydrogenase-1 (MTND1) gene, was measured by quantitative PCR and normalized to urine creatinine in cell-free urine samples from participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort. Urine albumin/creatinine ratios (UACR) were measured in the same samples. Associations between u-mtDNA, UACR, and clinical disease parameters - including FEV1 % predicted, clinical measures of exercise tolerance, respiratory symptom burden, and chest CT measures of lung structure - were examined.RESULTSU-mtDNA and UACR levels were measured in never smokers (n = 64), smokers without airflow obstruction (n = 109), participants with mild/moderate COPD (n = 142), and participants with severe COPD (n = 168). U-mtDNA was associated with increased respiratory symptom burden, especially among smokers without COPD. Significant sex differences in u-mtDNA levels were observed, with females having higher u-mtDNA levels across all study subgroups. U-mtDNA associated with worse spirometry and CT emphysema in males only and with worse respiratory symptoms in females only. Similar associations were not found with UACR.CONCLUSIONU-mtDNA levels may help to identify distinct clinical phenotypes and underlying pathobiological differences in males versus females with COPD.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov ( NCT01969344).FUNDINGUS NIH, National Heart, Lung and Blood Institute, supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune, Bayer, Bellerophon Therapeutics, Boehringer-Ingelheim Pharmaceuticals Inc., Chiesi Farmaceutici S.p.A., Forest Research Institute Inc., GlaxoSmithKline, Grifols Therapeutics Inc., Ikaria Inc., Novartis Pharmaceuticals Corporation, Nycomed GmbH, ProterixBio, Regeneron Pharmaceuticals Inc., Sanofi, Sunovion, Takeda Pharmaceutical Company, and Theravance Biopharma and Mylan.
Collapse
Affiliation(s)
- William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Michelle C Rice
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, and
| | - Katherine L Hoffman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Clara Oromendia
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Igor Z Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, California, USA
| | - J Michael Wells
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Annette T Hastie
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Christopher B Cooper
- Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, California, USA
| | - Alejandro P Comellas
- Division of Pulmonary and Critical Care, University of Iowa, Iowa City, Iowa, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - R Graham Barr
- Columbia University Medical Center, New York, New York, USA
| | - Stephen P Peters
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Prescott G Woodruff
- Division of Pulmonary and Critical Care Medicine, UCSF, School of Medicine, San Francisco, California, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.,Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Meilan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Karla V Ballman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA
| | - Mary E Choi
- New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA.,Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, and
| | | |
Collapse
|
23
|
Persistently increased cell-free DNA concentrations only modestly contribute to outcome and host response in sepsis survivors with chronic critical illness. Surgery 2019; 167:646-652. [PMID: 31898953 DOI: 10.1016/j.surg.2019.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Although early survival from sepsis has improved with timely resuscitation and source control, survivors frequently experience persistent inflammation and develop chronic critical illness. We examined whether increased copy number of endogenous alarmins, mitochondrial DNA, and nuclear DNA are associated with the early "genomic storm" in blood leukocytes and the development of chronic critical illness in hospitalized patients with surgical sepsis. METHODS A prospective, observational, cohort study of critically ill septic patients was performed at a United States tertiary health care center. Blood samples were obtained at multiple time points after the onset of sepsis. Droplet Digital polymerase chain reaction (Bio-Rad Laboratories, Hercules, CA) was performed to quantify RHO (nuclear DNA) and MT-CO2 (mitochondrial DNA) copies in plasma. Leukocyte transcriptomic expression of 63 genes was also measured in whole blood. RESULTS We enrolled 112 patients with surgical sepsis. Two experienced early death, 69 recovered rapidly, and 41 developed chronic critical illness. Both mitochondrial DNA and nuclear DNA copy number were increased in all sepsis survivors, but early nuclear DNA, and not mitochondrial DNA, copy number was further increased in patients who developed chronic critical illness. Cell-free DNA copy number was associated with in-hospital but not long-term (180-day and 365-day) mortality and were only weakly correlated with leukocyte transcriptomics. CONCLUSION Increased cell-free DNA copy number persists in survivors of sepsis but is not strongly associated with leukocyte transcriptomics. Nuclear DNA but not mitochondrial DNA copy number is associated with adverse, short-term, clinical trajectories and outcomes.
Collapse
|
24
|
Minor Glomerular Abnormalities are Associated with Deterioration of Long-Term Kidney Function and Mitochondrial Injury. J Clin Med 2019; 9:jcm9010033. [PMID: 31877839 PMCID: PMC7019622 DOI: 10.3390/jcm9010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Minor glomerular abnormalities (MGAs) are unclassified glomerular lesions indicated by the presence of minor structural abnormalities that are insufficient for a specific pathological diagnosis. The long-term clinical outcomes and pathogenesis have not been examined. We hypothesized that MGAs would be associated with the deterioration of long-term kidney function and increased urinary mitochondrial DNA (mtDNA) copy numbers. We retrospectively enrolled patients with MGAs, age-/sex-/estimated glomerular filtration rate (eGFR)-matched patients with immunoglobulin A nephropathy (IgAN), and similarly matched healthy controls (MHCs; n = 49 each). We analyzed the time × group interaction effects of the eGFR and compared mean annual eGFR decline rates between the groups. We prospectively enrolled patients with MGAs, age- and sex-matched patients with IgAN, and MHCs (n = 15 each) and compared their urinary mtDNA copy numbers. Compared to the MHC group, the MGA and IgAN groups displayed differences in the time × group effects of eGFR, higher mean annual rates of eGFR decline, and higher urinary mtDNA copy numbers; however, these groups did not significantly differ from each other. The results indicate that MGAs are associated with deteriorating long-term kidney function, and mitochondrial injury, despite few additional pathological changes. We suggest that clinicians conduct close long-term follow-up of patients with MGAs.
Collapse
|
25
|
IgA nephropathy is associated with elevated urinary mitochondrial DNA copy numbers. Sci Rep 2019; 9:16068. [PMID: 31690796 PMCID: PMC6831703 DOI: 10.1038/s41598-019-52535-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial injury plays important roles in the pathogenesis of various kidney diseases. However, mitochondrial injury in IgA nephropathy (IgAN) remains largely unexplored. Here, we examined the associations among mitochondrial injury, IgAN, and treatment outcomes. We prospectively enrolled patients with IgAN and age-/sex-matched healthy volunteers (HVs) as controls (n = 31 each). Urinary copy numbers of the mitochondrial DNA (mtDNA) genes cytochrome-c oxidase-3 (COX3) and nicotinamide adenine dinucleotide dehydrogenase subunit-1 (ND1) were measured. Urinary mtDNA levels were elevated in the IgAN group compared with that in HVs (p < 0.001). Urinary ND1 levels were significantly higher in the low proteinuria group than in the high proteinuria group (p = 0.027). Changes in urinary levels of ND1 and COX3 were positively correlated with changes in proteinuria (p = 0.038 and 0.024, respectively) and inversely correlated with changes in the estimated glomerular filtration rate (p = 0.033 and 0.017, respectively) after medical treatment. Mitochondrial injury played important roles in IgAN pathogenesis and may be involved in early-stage glomerular inflammation, prior to pathological changes and increased proteinuria. The correlation between changes in urinary mtDNA and proteinuria suggest that these factors may be promising biomarkers for treatment outcomes in IgAN.
Collapse
|
26
|
Essandoh K, Wang X, Huang W, Deng S, Gardner G, Mu X, Li Y, Kranias EG, Wang Y, Fan GC. Tumor susceptibility gene 101 ameliorates endotoxin-induced cardiac dysfunction by enhancing Parkin-mediated mitophagy. J Biol Chem 2019; 294:18057-18068. [PMID: 31619520 DOI: 10.1074/jbc.ra119.008925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Cardiac mitochondrial damage and subsequent inflammation are hallmarks of endotoxin-induced myocardial depression. Activation of the Parkin/PTEN-induced kinase 1 (PINK1) pathway has been shown to promote autophagy of damaged mitochondria (mitophagy) and to protect from endotoxin-induced cardiac dysfunction. Tumor susceptibility gene 101 (TSG101) is a key member of the endosomal recycling complexes required for transport, which may affect autophagic flux. In this study, we investigated whether TSG101 regulates mitophagy and influences the outcomes of endotoxin-induced myocardial dysfunction. TSG101 transgenic and knockdown mice underwent endotoxin/lipopolysaccharide treatment (10 μg/g) and were assessed for survival, cardiac function, systemic/local inflammation, and activity of mitophagy mediators in the heart. Upon endotoxin challenge and compared with WT mice, TSG101 transgenic mice exhibited increased survival, preserved cardiac contractile function, reduced inflammation, and enhanced mitophagy activation in the heart. By contrast, TSG101 knockdown mice displayed opposite phenotypes during endotoxemia. Mechanistically, both coimmunoprecipitation assays and coimmunofluorescence staining revealed that TSG101 directly binds to Parkin in the cytosol of myocytes and facilitates translocation of Parkin from the cytosol to the mitochondria. Our results indicate that TSG101 elevation could protect against endotoxin-triggered myocardial injury by promoting Parkin-induced mitophagy.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Shan Deng
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - George Gardner
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Xingjiang Mu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Yutian Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267.
| |
Collapse
|
27
|
Extracellular Mitochondrial DNA and N-Formyl Peptides in Trauma and Critical Illness: A Systematic Review. Crit Care Med 2019; 46:2018-2028. [PMID: 30113320 DOI: 10.1097/ccm.0000000000003381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Extracellular mitochondrial DNA and N-formyl peptides released following tissue damage may contribute to systemic inflammation through stimulation of the innate immune system. In this review, we evaluate existing in vivo human data regarding a role for mitochondrial DNA and N-formyl peptides in producing systemic inflammation in trauma and critical illness, investigate the utility of these molecules in risk prediction and clinical decision support, and provide suggestions for standardization of future research. DATA SOURCES PubMed, Embase (1971-2017). STUDY SELECTION Studies measuring extracellular mitochondrial DNA and/or N-formyl peptides in acutely ill patients. DATA EXTRACTION Fifty-four studies were analyzed. Data extracted included article characteristics, methods, results, and performance in clinical prediction. DATA SYNTHESIS The most common patient types investigated were trauma (19 studies) and sepsis (eight). In studies comparing patient mitochondrial DNA or N-formyl peptide levels to healthy controls, 38 (90.5%) reported significantly elevated mitochondrial DNA levels in patients at first reported time point, as did the one study making this comparison for N-formyl peptides. Nine studies (81.8%) reported significantly elevated plasma/serum mitochondrial DNA levels in at least one time point in patients who developed inflammatory complications of their primary pathology compared with patients without inflammatory complications. For the ability of mitochondrial DNA to predict complications or outcomes, the area under the curve was 0.7 or greater in 84.6% of receiver operating characteristic curves, and 92.9% of odds, adjusted odds, risk, and hazard ratios were statistically significant. CONCLUSIONS Extracellular mitochondrial DNA levels are elevated early in patients' hospital courses in many acute illnesses and are higher in patients who develop inflammatory complications. Elevated mitochondrial DNA levels may be clinically useful in risk prediction and clinical decision support systems. Further research is needed to determine the role of extracellular N-formyl peptides in systemic inflammation and their possible clinical utility.
Collapse
|
28
|
Abstract
Acute kidney injury (AKI), a major public health problem associated with high mortality and increased risk of progression towards end-stage renal disease, is characterized by the activation of intra-renal haemostatic and inflammatory processes. Platelets, which are present in high numbers in the circulation and can rapidly release a broad spectrum of bioactive mediators, are important acute modulators of inflammation and haemostasis, as they are the first cells to arrive at sites of acute injury, where they interact with endothelial cells and leukocytes. Diminished control of platelet reactivity by endothelial cells and/or an increased release of platelet-activating mediators can lead to uncontrolled platelet activation in AKI. As increased platelet sequestration and increased expression levels of the markers P-selectin, thromboxane A2, CC-chemokine ligand 5 and platelet factor 4 on platelets have been reported in kidneys following AKI, platelet activation likely plays a part in AKI pathology. Results from animal models and some clinical studies highlight the potential of antiplatelet therapies in the preservation of renal function in the context of AKI, but as current strategies also affect other cell types and non-platelet-derived mediators, additional studies are required to further elucidate the extent of platelet contribution to the pathology of AKI and to determine the best therapeutic approach by which to specifically target related pathogenic pathways.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
29
|
Harrington JS, Huh JW, Schenck EJ, Nakahira K, Siempos II, Choi AMK. Circulating Mitochondrial DNA as Predictor of Mortality in Critically Ill Patients: A Systematic Review of Clinical Studies. Chest 2019; 156:1120-1136. [PMID: 31381882 DOI: 10.1016/j.chest.2019.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/05/2019] [Accepted: 07/13/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite numerous publications on mitochondrial DNA (mtDNA) in the last decade it remains to be seen whether mtDNA can be used clinically. We conducted a systematic review to assess circulating cell-free mtDNA as a biomarker of mortality in critically ill patients. METHODS This systematic review was registered with PROSPERO (CRD42016046670). PubMed, CINAHL, the Cochrane Library, Embase, Scopus, and Web of Science, and reference lists of retrieved articles were searched. Studies measuring circulating cell-free mtDNA and reporting on all-cause mortality in critically ill adult and pediatric patients were included. The primary and secondary outcomes were mortality and morbidity, respectively. RESULTS Of the 1,566 initially retrieved publications, 40 studies were included, accounting for 3,450 critically ill patients. Substantial differences between studies were noted in how mtDNA was isolated and measured. Sixteen of the 40 included studies (40%) explored the association between mtDNA levels and mortality; of those 16 studies, 11 (68.8%) reported a statistically significant association. The area under the receiver operating characteristic (AUROC) curve for mtDNA and mortality was calculated for 10 studies and ranged from 0.61 to 0.95. CONCLUSIONS There is growing interest in mtDNA as a predictor of mortality in critically ill patients. Most studies are small, lack validation cohorts, and utilize different protocols to measure mtDNA. When reported, AUROC analysis usually suggests a statistically significant association between mtDNA and mortality. Standardization of mtDNA protocols and the completion of a large, prospective, multicenter trial may be warranted to firmly establish the clinical usefulness of mtDNA.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY
| | - Jin-Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Edward J Schenck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY; Department of Pharmacology, Nara Medical University, Kashihara, Nara, Japan
| | - Ilias I Siempos
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY; First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, University of Athens Medical School, Athens, Greece
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
30
|
Jansen MPB, Roelofs JJTH, Leemans JC. Mitochondrial DNA: Innocent in Plasma, but Guilty in Urine? Shock 2019; 51:267. [PMID: 30645207 DOI: 10.1097/shk.0000000000001143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
31
|
|
32
|
Wu J, Ren J, Liu Q, Hu Q, Wu X, Wang G, Hong Z, Ren H, Li J. Effects of Changes in the Levels of Damage-Associated Molecular Patterns Following Continuous Veno-Venous Hemofiltration Therapy on Outcomes in Acute Kidney Injury Patients With Sepsis. Front Immunol 2019; 9:3052. [PMID: 30666251 PMCID: PMC6330765 DOI: 10.3389/fimmu.2018.03052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022] Open
Abstract
Background: We investigated the association of damage-associated molecular pattern (DAMP) removal with mortality in sepsis patients undergoing continuous veno–venous hemofiltration (CVVH). Methods: Circulating levels of DAMPs [mitochondrial DNA (mtDNA); nuclear DNA (nDNA); heat shock protein 70 (HSP70); and high mobility group box 1 (HMGB1)] and cytokines were measured at baseline, 6 and 12 h after initiation of CVVH. Urinary DNA levels were analyzed at baseline and end of CVVH. The expression of human leukocyte antigen (HLA)-DR was assayed at 0, 3, and 7 days after initiation of CVVH. Moreover, the effects of HSP70 and HMGB1 clearance on survival were analyzed. Results: We evaluated 43 patients with acute kidney injury (AKI) (33 sepsis patients). Twenty-two sepsis patients (67%) and three non-sepsis patients (30%) expired (P = 0.046). Significant reductions in the levels of circulating interleukin-6 (P = 0.046) and tumor necrosis factor-α (P = 0.008) were found in the sepsis group. The levels of mtDNA were increased (ND2, P = 0.035; D-loop, P = 0.003), whereas that of HSP70 was reduced (P = 0.000) in all patients during the first 12 h. The levels of DAMPs in the plasma were markedly increased after blood passage from the inlet through the dialyzer in survivor sepsis patients. The clearance rates of HSP70 and HMGB1 were good predictors of mortality [area under the curve (AUC) = 0.937, P = 0.000; AUC = 0.90, P = 0.001, respectively]. The level of HLA-DR was increased in response to higher HSP70 clearance (P = 0.006). Survival was significantly worse in groups with higher clearance rates of HSP70 and HMGB1 than the cut-off value (log-rank test: P = 0.000 for both). Higher HSP70 clearance was a significant independent predictor of mortality (odds ratio = 1.025, 95% confidence interval [CI]: 1.012–1.039, P = 0.000). The urinary nDNA (β-globin) level before CVVH was an independent risk factor for the duration of CVVH in patients with sepsis (sRE = 0.460, 95% CI: 1.720–8.857, P = 0.005). Conclusion: CVVH removes inflammatory factors, reduces urinary DAMPs, and removes plasma DAMPs. However, survival decreases in response to higher HSP70 clearance.
Collapse
Affiliation(s)
- Jie Wu
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianan Ren
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qinjie Liu
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiongyuan Hu
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gefei Wang
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiwu Hong
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huajian Ren
- Department of Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jieshou Li
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Martin JL, Gruszczyk AV, Beach TE, Murphy MP, Saeb-Parsy K. Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. Pediatr Nephrol 2019; 34:1167-1174. [PMID: 29860579 PMCID: PMC6366561 DOI: 10.1007/s00467-018-3984-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) remains a major problem in critically unwell children and young adults. Ischaemia reperfusion (IR) injury is a major contributor to the development of AKI in a significant proportion of these cases and mitochondria are increasingly recognised as being central to this process through generation of a burst of reactive oxygen species early in reperfusion. Mitochondria have additionally been shown to have key roles in downstream processes including activation of the immune response, immunomodulation, and apoptosis and necrosis. The recognition of the central role of mitochondria in IR injury and an increased understanding of the pathophysiology that undermines these processes has resulted in identification of novel therapeutic targets and potential biomarkers. This review summarises a variety of therapeutic approaches that are currently under exploration and may have potential in ameliorating AKI in children in the future.
Collapse
Affiliation(s)
- Jack L Martin
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anja V Gruszczyk
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Timothy E Beach
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
34
|
Plasma mtDNA Analysis Aids in Predicting Pancreatic Necrosis in Acute Pancreatitis Patients: A Pilot Study. Dig Dis Sci 2018; 63:2975-2982. [PMID: 30094625 DOI: 10.1007/s10620-018-5227-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Specific plasma biomarkers in predicting pancreatic necrosis (PNec) are needed in treating acute pancreatitis (AP). AIMS To investigate the prognostic value of plasma mitochondrial DNA fragments (mtDNA) in patient with AP for PNec. METHODS AP patients with symptoms onset within 72 h were prospectively enrolled from June 2015 through June 2017 and were assessed for PNec using contrast-enhanced CT scan. Plasma mtDNA concentration (specific mitochondrial gene ND1) was measured using qRT-PCR. RESULTS Of the 74 AP patients included, significant higher median level of plasma mtDNA was found in severe AP patients than in mild AP patients and healthy controls, but not in moderately severe AP patients. Patients with PNec had higher level of plasma mtDNA than those without PNec (774.2 [IQR 397.6-2205.0] vs. 169.5 [IQR 73.6-683.4] pg/ml, P < 0.05). The area under the receiver operator characteristic curve (ROC-AUC) of mtDNA for predicting PNec was higher than that of CRP (0.813 [95% CI 0.705-0.895] vs. 0.678 [95% CI 0.558-0.783]). Using a cutoff value of 302.5 pg/ml, the sensitivity and specificity for diagnosing PNec were 90.9 and 68.3%, respectively. Finally, plasma mtDNA levels decreased significantly after continuous renal replacement therapy (717.7 [IQR 307.00-1370.00] vs. 237.5 [IQR 117.20-464.80] pg/ml, P < 0.01). CONCLUSIONS Elevated plasma mtDNA content in AP patients may be used as a more accurate early predictor of PNec in contrast to traditional CRP.
Collapse
|
35
|
Hawkins RB, Raymond SL, Stortz JA, Horiguchi H, Brakenridge SC, Gardner A, Efron PA, Bihorac A, Segal M, Moore FA, Moldawer LL. Chronic Critical Illness and the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Front Immunol 2018; 9:1511. [PMID: 30013565 PMCID: PMC6036179 DOI: 10.3389/fimmu.2018.01511] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Dysregulated host immune responses to infection often occur, leading to sepsis, multiple organ failure, and death. Some patients rapidly recover from sepsis, but many develop chronic critical illness (CCI), a debilitating condition that impacts functional outcomes and long-term survival. The “Persistent Inflammation, Immunosuppression, and Catabolism Syndrome” (PICS) has been postulated as the underlying pathophysiology of CCI. We propose that PICS is initiated by an early genomic and cytokine storm in response to microbial invasion during the early phase of sepsis. However, once source control, antimicrobial coverage, and supportive therapies have been initiated, we propose that the persistent inflammation in patients developing CCI is a result of ongoing endogenous alarmin release from damaged organs and loss of muscle mass. This ongoing alarmin and danger-associated molecular pattern signaling causes chronic inflammation and a shift in bone marrow stem cell production toward myeloid cells, contributing to chronic anemia and lymphopenia. We propose that therapeutic interventions must target the chronic organ injury and lean tissue wasting that contribute to the release of endogenous alarmins and the expansion and deposition of myeloid progenitors that are responsible for the propagation and persistence of CCI.
Collapse
Affiliation(s)
- Russell B Hawkins
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Steven L Raymond
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hiroyuki Horiguchi
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Anna Gardner
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Azra Bihorac
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mark Segal
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Frederick A Moore
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
36
|
Wei PZ, Kwan BCH, Chow KM, Cheng PMS, Luk CCW, Lai KB, Li PKT, Szeto CC. Urinary mitochondrial DNA level in non-diabetic chronic kidney diseases. Clin Chim Acta 2018; 484:36-39. [PMID: 29778542 DOI: 10.1016/j.cca.2018.05.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/26/2018] [Accepted: 05/16/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondrial dysfunction plays an important role in the pathogenesis and progression of chronic kidney disease (CKD). We study the relation between urinary mitochondrial DNA (mtDNA) levels and renal dysfunction in non-diabetic CKD. METHODS We recruited 32 CKD patients (20 had hypertensive nephrosclerosis, 12 had IgA nephropathy). Urinary supernatant mtDNA level was measured and compared to baseline clinical and pathological parameters. The patients were followed 57.8 ± 30.5 months for renal function decline. RESULTS The average urinary supernatant mtDNA level was 222.0 ± 210.3 copy/μL. There was a modest but significant correlation between urinary mtDNA level and proteinuria (Spearman's r = 0.387, p = 0.035), but not any other baseline clinical or pathological parameter. Urinary mtDNA level had a significant inverse correlation with the slope of GFR decline (r = -0.402, p = 0.023). Urinary mtDNA level is a predictor of renal survival even after adjusting for baseline proteinuria with multivariate Cox analysis. In this model, every increase in urinary mtDNA by 100 copy/μL confers a 25.0% increase in risk of doubling of serum creatinine or need of dialysis (95%CI, 0.7% to 55.1%). CONCLUSION Mitochondrial DNA is readily detectable in the urinary supernatant of non-diabetic CKD, and its level correlates with the rate of renal function decline and predicts the risk of doubling of serum creatinine or need of dialysis. Further studies are needed to determine the value of urinary supernatant mtDNA level as a prognostic indicator of non-diabetic CKD.
Collapse
Affiliation(s)
- Pascal Zhongping Wei
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Bonnie Ching-Ha Kwan
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Kai Ming Chow
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Phyllis Mei-Shan Cheng
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Cathy Choi-Wan Luk
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Ka-Bik Lai
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Philip Kam-To Li
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Cheuk Chun Szeto
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.
| |
Collapse
|
37
|
Urinary Mitochondrial DNA Identifies Renal Dysfunction and Mitochondrial Damage in Sepsis-Induced Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8074936. [PMID: 29682165 PMCID: PMC5846356 DOI: 10.1155/2018/8074936] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/18/2018] [Indexed: 12/29/2022]
Abstract
Background Recent animal studies have shown that mitochondrial dysfunction initiates and accelerates renal injury in sepsis, but its role in sepsis remains unknown. Mitochondrial stress or dying cells can lead to fragmentation of the mitochondrial genome, which is considered a surrogate marker of mitochondrial dysfunction. Therefore, we evaluated the efficiency of urinary mitochondrial DNA (UmtDNA) as a marker of renal dysfunction during sepsis-induced acute kidney injury (AKI). Methods We isolated DNA from plasma and urine of patients. mtDNA levels were quantified by quantitative PCR. Sepsis patients were divided into no AKI, mild AKI, and severe AKI groups according to RIFLE criteria. Additionally, cecal ligation and puncture (CLP) was established in rats to evaluate the association between UmtDNA and mitochondrial function. Results A total of 52 (49.5%) developed AKI among enrolled sepsis patients. Increased systemic mtDNA did not correlate with systemic inflammation or acute renal dysfunction in sepsis patients, while AKI did not have an additional effect on circulating mtDNA levels. In contrast, UmtDNA was significantly enriched in severe AKI patients compared with that in the mild AKI or no AKI group, positively correlated with plasma creatinine, urinary neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1, and inversely with the estimated glomerular filtration rate. Additionally, UmtDNA increased in rats following CLP-induced sepsis. UmtDNA was predictive of AKI development and correlated with plasma creatinine and blood urea nitrogen in the rat sepsis model. Finally, the UmtDNA level was inversely correlated with the cortical mtDNA copy number and relative expression of mitochondrial gene in the kidney. Conclusion An elevated UmtDNA level correlates with mitochondrial dysfunction and renal injury in sepsis patients, indicating renal mitochondrial injury induced by sepsis. Therefore, UmtDNA may be regarded as a valuable biomarker for the occurrence of AKI and the development of mitochondria-targeted therapies following sepsis-induced AKI.
Collapse
|
38
|
Stanojcic M, Jeschke MG. What's New in Shock, March 2018? Shock 2018; 49:239-242. [PMID: 29432388 DOI: 10.1097/shk.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Surgery, Division of Plastic Surgery, University of Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Cell-free DNA: the role in pathophysiology and as a biomarker in kidney diseases. Expert Rev Mol Med 2018; 20:e1. [PMID: 29343314 DOI: 10.1017/erm.2017.12] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free DNA (cfDNA) is present in various body fluids and originates mostly from blood cells. In specific conditions, circulating cfDNA might be derived from tumours, donor organs after transplantation or from the foetus during pregnancy. The analysis of cfDNA is mainly used for genetic analyses of the source tissue -tumour, foetus or for the early detection of graft rejection. It might serve also as a nonspecific biomarker of tissue damage in critical care medicine. In kidney diseases, cfDNA increases during haemodialysis and indicates cell damage. In patients with renal cell carcinoma, cfDNA in plasma and its integrity is studied for monitoring of tumour growth, the effects of chemotherapy and for prognosis. Urinary cfDNA is highly fragmented, but the technical hurdles can now be overcome and urinary cfDNA is being evaluated as a potential biomarker of renal injury and urinary tract tumours. Beyond its diagnostic application, cfDNA might also be involved in the pathogenesis of diseases affecting the kidneys as shown for systemic lupus, sepsis and some pregnancy-related pathologies. Recent data suggest that increased cfDNA is associated with acute kidney injury. In this review, we discuss the biological characteristics, sources of cfDNA, its potential use as a biomarker as well as its role in the pathogenesis of renal and urinary diseases.
Collapse
|
40
|
|