1
|
El-Dehaibi F, Zamora R, Yin J, Namas RA, Billiar TR, Vodovotz Y. NETWORK ANALYSIS OF SINGLE-NUCLEOTIDE POLYMORPHISMS ASSOCIATED WITH ABERRANT INFLAMMATION IN TRAUMA PATIENTS SUGGESTS A ROLE FOR VESICLE-ASSOCIATED INFLAMMATORY PROGRAMS INVOLVING CD55. Shock 2024; 62:663-672. [PMID: 39178207 DOI: 10.1097/shk.0000000000002448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Background: Critical illness stemming from severe traumatic injury is a leading cause of morbidity and mortality worldwide and involves the dysfunction of multiple organ systems, driven, at least in part, by dysregulated inflammation. We and others have shown a key role for genetic predisposition to dysregulated inflammation and downstream adverse critical illness outcomes. Recently, we demonstrated an association among genotypes at the single-nucleotide polymorphism (SNP) rs10404939 in LYPD4 , dysregulated systemic inflammation, and adverse clinical outcomes in a broad sample of ~1,000 critically ill patients. Methods: We sought to gain mechanistic insights into the role of LYPD4 in critical illness by bioinformatically analyzing potential interactions among rs10404939 and other SNPs. We analyzed a dataset of common (i.e., not rare) SNPs previously defined to be associated with genotype-specific, significantly dysregulated systemic inflammation trajectories in trauma patients, in comparison to a control dataset of common SNPs determined to exhibit an absence of genotype-specific inflammatory responses. Results: In the control dataset, this analysis implicated SNPs associated with phosphatidylinositol and various membrane transport proteins, but not LYPD4. In the patient subset with genotypically dysregulated inflammation, our analysis suggested the co-localization to lipid rafts of LYPD4 and the complement receptor CD55, as well as the neurally related CNTNAP2 and RIMS4. Segregation of trauma patients based on genotype of the CD55 SNP rs11117564 showed distinct trajectories of organ dysfunction and systemic inflammation despite similar demographics and injury characteristics. Conclusion: These analyses define novel interactions among SNPs that could enhance our understanding of the response to traumatic injury and critical illness.
Collapse
Affiliation(s)
- Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | |
Collapse
|
2
|
El-Dehaibi F, Zamora R, Radder J, Yin J, Shah AM, Namas RA, Situ M, Zhao Y, Bain W, Morris A, McVerry BJ, Barclay DA, Billiar TR, Zhang Y, Kitsios GD, Vodovotz Y. A common single nucleotide polymorphism is associated with inflammation and critical illness outcomes. iScience 2023; 26:108333. [PMID: 38034362 PMCID: PMC10684809 DOI: 10.1016/j.isci.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Acute inflammation is heterogeneous in critical illness and predictive of outcome. We hypothesized that genetic variability in novel, yet common, gene variants contributes to this heterogeneity and could stratify patient outcomes. We searched algorithmically for significant differences in systemic inflammatory mediators associated with any of 551,839 SNPs in one derivation (n = 380 patients with blunt trauma) and two validation (n = 75 trauma and n = 537 non-trauma patients) cohorts. This analysis identified rs10404939 in the LYPD4 gene. Trauma patients homozygous for the A allele (rs10404939AA; 27%) had different trajectories of systemic inflammation along with persistently elevated multiple organ dysfunction (MOD) indices vs. patients homozygous for the G allele (rs10404939GG; 26%). rs10404939AA homozygotes in the trauma validation cohort had elevated MOD indices, and non-trauma patients displayed more complex inflammatory networks and worse 90-day survival compared to rs10404939GG homozygotes. Thus, rs10404939 emerged as a common, broadly prognostic SNP in critical illness.
Collapse
Affiliation(s)
- Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashti M. Shah
- Physician Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michelle Situ
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanwu Zhao
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Derek A. Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Shah AM, Zamora R, Vodovotz Y. Interleukin-17 as a spatiotemporal bridge from acute to chronic inflammation: Novel insights from computational modeling. WIREs Mech Dis 2023; 15:e1599. [PMID: 36710253 PMCID: PMC10176872 DOI: 10.1002/wsbm.1599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
A systematic review of several acute inflammatory diseases ranging from sepsis and trauma/hemorrhagic shock to the relevant pathology of the decade, COVID-19, points to the cytokine interleukin (IL)-17A as being centrally involved in the propagation of inflammation. We summarize the role of IL-17A in acute inflammation, leveraging insights made possible by biological network analysis and novel computational methodologies aimed at defining the spatiotemporal spread of inflammation in both experimental animal models and humans. These studies implicate IL-17A in the cross-tissue spread of inflammation, a process that appears to be in part regulated through neural mechanisms. Although acute inflammatory diseases are currently considered distinct from chronic inflammatory pathologies, we suggest that chronic inflammation may represent repeated, cyclical episodes of acute inflammation driven by mechanisms involving IL-17A. Thus, insights from computational modeling of acute inflammatory diseases may improve diagnosis and treatment of chronic inflammation; in turn, therapeutics developed for chronic/autoimmune disease may be of benefit in acute inflammation. This article is categorized under: Immune System Diseases > Computational Models.
Collapse
Affiliation(s)
- Ashti M Shah
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Zamora R, Forsberg JA, Shah AM, Unselt D, Grey S, Lisboa FA, Billiar TR, Schobel SA, Potter BK, Elster EA, Vodovotz Y. Central role for neurally dysregulated IL-17A in dynamic networks of systemic and local inflammation in combat casualties. Sci Rep 2023; 13:6618. [PMID: 37095162 PMCID: PMC10126120 DOI: 10.1038/s41598-023-33623-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
Dynamic Network Analysis (DyNA) and Dynamic Hypergraphs (DyHyp) were used to define protein-level inflammatory networks at the local (wound effluent) and systemic circulation (serum) levels from 140 active-duty, injured service members (59 with TBI and 81 non-TBI). Interleukin (IL)-17A was the only biomarker elevated significantly in both serum and effluent in TBI vs. non-TBI casualties, and the mediator with the most DyNA connections in TBI wounds. DyNA combining serum and effluent data to define cross-compartment correlations suggested that IL-17A bridges local and systemic circulation at late time points. DyHyp suggested that systemic IL-17A upregulation in TBI patients was associated with tumor necrosis factor-α, while IL-17A downregulation in non-TBI patients was associated with interferon-γ. Correlation analysis suggested differential upregulation of pathogenic Th17 cells, non-pathogenic Th17 cells, and memory/effector T cells. This was associated with reduced procalcitonin in both effluent and serum of TBI patients, in support of an antibacterial effect of Th17 cells in TBI patients. Dysregulation of Th17 responses following TBI may drive cross-compartment inflammation following combat injury, counteracting wound infection at the cost of elevated systemic inflammation.
Collapse
Affiliation(s)
- Ruben Zamora
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jonathan A Forsberg
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
| | - Ashti M Shah
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Desiree Unselt
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Scott Grey
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Felipe A Lisboa
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Seth A Schobel
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Bonaroti J, Abdelhamid S, Kar U, Sperry J, Zamora R, Namas RA, McKinley T, Vodovotz Y, Billiar T. The Use of Multiplexing to Identify Cytokine and Chemokine Networks in the Immune-Inflammatory Response to Trauma. Antioxid Redox Signal 2021; 35:1393-1406. [PMID: 33860683 PMCID: PMC8905234 DOI: 10.1089/ars.2021.0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: The immunoinflammatory responses that follow trauma contribute to clinical trajectory and patient outcomes. While remarkable advances have been made in trauma services and injury management, clarity on how the immune system in humans responds to trauma is lagging. Recent Advances: Multiplexing platforms have transformed our ability to analyze comprehensive immune mediator responses in human trauma. In parallel, with the establishment of large data sets, computational methods have been adapted to yield new insights based on mediator patterns. These efforts have added an important data layer to the emerging multiomic characterization of the human response to injury. Critical Issues: Outcome after trauma is greatly affected by the host immunoinflammatory response. Excessive or sustained responses can contribute to organ damage. Hence, understanding the pathophysiology behind traumatic injury is of vital importance. Future Directions: This review summarizes our work in the study of circulating immune mediators in trauma patients. Our foundational studies into dynamic patterns of inflammatory mediators represent an important contribution to the concepts and computational challenges that these large data sets present. We hope to see further integration and understanding of multiomics strategies in the field of trauma that can aid in patient endotyping and in potentially identifiying certain therapeutic targets in the future. Antioxid. Redox Signal. 35, 1393-1406.
Collapse
Affiliation(s)
- Jillian Bonaroti
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sultan Abdelhamid
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Upendra Kar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rami Ahmd Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Todd McKinley
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Azhar N, Namas RA, Almahmoud K, Zaaqoq A, Malak OA, Barclay D, Yin J, El-Dehaibi F, Abboud A, Simmons RL, Zamora R, Billiar TR, Vodovotz Y. A putative "chemokine switch" that regulates systemic acute inflammation in humans. Sci Rep 2021; 11:9703. [PMID: 33958628 PMCID: PMC8102583 DOI: 10.1038/s41598-021-88936-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic inflammation is complex and likely drives clinical outcomes in critical illness such as that which ensues following severe injury. We obtained time course data on multiple inflammatory mediators in the blood of blunt trauma patients. Using dynamic network analyses, we inferred a novel control architecture for systemic inflammation: a three-way switch comprising the chemokines MCP-1/CCL2, MIG/CXCL9, and IP-10/CXCL10. To test this hypothesis, we created a logical model comprising this putative architecture. This model predicted key qualitative features of systemic inflammation in patient sub-groups, as well as the different patterns of hospital discharge of moderately vs. severely injured patients. Thus, a rational transition from data to data-driven models to mechanistic models suggests a novel, chemokine-based mechanism for control of acute inflammation in humans and points to the potential utility of this workflow in defining novel features in other complex diseases.
Collapse
Affiliation(s)
- Nabil Azhar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Khalid Almahmoud
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Akram Zaaqoq
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Othman A Malak
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA. .,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA. .,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Cai J, McKinley T, Billiar I, Zenati MS, Gaski G, Vodovotz Y, Gruen DS, Billiar TR, Namas RA. Protective/reparative cytokines are suppressed at high injury severity in human trauma. Trauma Surg Acute Care Open 2021; 6:e000619. [PMID: 33748428 PMCID: PMC7929818 DOI: 10.1136/tsaco-2020-000619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/03/2023] Open
Abstract
Background Trauma elicits a complex inflammatory response that, among multiple presenting factors, is greatly impacted by the magnitude of injury severity. Herein, we compared the changes in circulating levels of mediators with known proinflammatory roles to those with known protective/reparative actions as a function of injury severity in injured humans. Methods Clinical and biobank data were obtained from 472 (trauma database-1 (TD-1), University of Pittsburgh) and 89 (trauma database-2 (TD-2), Indiana University) trauma patients admitted to the intensive care unit (ICU) and who survived to discharge. Injury severity was estimated based on the Injury Severity Score (ISS), and this was used as both a continuous variable and for the purpose of grouping patients into severity-based cohorts. Samples within the first 24 hours were obtained from all patients and then daily up to day 7 postinjury in TD-1. Sixteen cytokines were assayed using Luminex and were analyzed using two-way analysis of variance (p<0.05). Results Patients with higher ISSs had longer ICU and hospital stays, days on mechanical ventilation and higher rates of nosocomial infection when compared with the mild and moderate groups. Time course analysis and correlations with ISS showed that 11 inflammatory mediators correlated positively with injury severity, consistent with previous reports. However, five mediators (interleukin (IL)-9, IL-21, IL-22, IL-23 and IL-17E/25) were suppressed in patients with high ISS and inversely correlated with ISS. Discussion These findings suggest that severe injury is associated with a suppression of a subset of cytokines known to be involved in tissue protection and regeneration (IL-9, IL-22 and IL-17E/25) and lymphocyte differentiation (IL-21 and IL-23), which in turn correlates with adverse clinical outcomes. Thus, patterns of proinflammatory versus protective/reparative mediators diverge with increasing ISS.
Collapse
Affiliation(s)
- Jinman Cai
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Todd McKinley
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Isabel Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mazen S Zenati
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Greg Gaski
- Department of Orthopedic Surgery, Inova Fairfax Medical Campus, Falls Church, Virginia, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regenerative Modeling, University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Danielle S Gruen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regenerative Modeling, University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Inflammation and Regenerative Modeling, University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
McKinley TO, Gaski GE, Zamora R, Shen L, Sun Q, Namas RA, Billiar TR, Vodovotz Y. Early dynamic orchestration of immunologic mediators identifies multiply injured patients who are tolerant or sensitive to hemorrhage. J Trauma Acute Care Surg 2021; 90:441-450. [PMID: 33093290 DOI: 10.1097/ta.0000000000002998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiply injured patients (MIPs) are at risk of complications including infections, and acute and prolonged organ dysfunction. The immunologic response to injury has been shown to affect outcomes. Recent advances in computational capabilities have shown that early dynamic coordination of the immunologic response is associated with improved outcomes after trauma. We hypothesized that patients who were sensitive or tolerant of hemorrhage would demonstrate differences in dynamic immunologic orchestration within hours of injury. METHODS We identified two groups of MIPs who demonstrated distinct clinical tolerance to hemorrhage (n = 10) or distinct clinical sensitivity to hemorrhage (n = 9) from a consecutive cohort of 100 MIPs. Hemorrhage was quantified by integrating elevated shock index values for 24 hours after injury (shock volume). Clinical outcomes were quantified by average Marshall Organ Dysfunction Scores from days 2 to 5 after injury. Shock-sensitive patients had high cumulative organ dysfunction after lower magnitude hemorrhage. Shock-tolerant (ST) patients had low cumulative organ dysfunction after higher magnitude hemorrhage. Computational methods were used to analyze a panel of 20 immunologic mediators collected serially over the initial 72 hours after injury. RESULTS Dynamic network analysis demonstrated the ST patients had increased orchestration of cytokines that are reparative and protective including interleukins 9, 17E/25, 21, 22, 23, and 33 during the initial 0- to 8-hour and 8- to 24-hour intervals after injury. Shock-sensitive patients had delayed immunologic orchestration of a network of largely proinflammatory and anti-inflammatory mediators. Elastic net linear regression demonstrated that a group of five mediators could discriminate between shock-sensitive and ST patients. CONCLUSIONS Preliminary evidence from this study suggests that early immunologic orchestration discriminates between patients who are notably tolerant or sensitive to hemorrhage. Early orchestration of a group of reparative/protective mediators was amplified in shock-tolerant patients. LEVEL OF EVIDENCE Prospective clinical outcomes study, level III.
Collapse
Affiliation(s)
- Todd O McKinley
- From the Department of Orthopaedic Surgery, (T.O.M.), Indiana University School of Medicine, Indianapolis, Indiana; Department of Orthopaedic Surgery, INOVA Health System (G.E.G.), Fairfax, Virginia; Department of Surgery, (R.Z., R.A.N., T.R.B., Y.V.), University of Pittsburgh School of Medicine, Pittsburgh; Department of Biostatistics, Epidemiology and Informatics, School of Medicine (L.S.), University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Preventive Medicine, Keck School of Medicine, (Q.S.), University of Southern California, Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
9
|
An Aging-Related Single-Nucleotide Polymorphism is Associated With Altered Clinical Outcomes and Distinct Inflammatory Profiles in Aged Blunt Trauma Patients. Shock 2021; 53:146-155. [PMID: 31318836 DOI: 10.1097/shk.0000000000001411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contribution of individual genetic determinants of aging to the adverse clinical outcomes and altered inflammation mediator networks characteristic of aged trauma patients is unknown. The AA genotype of the aging-related single-nucleotide polymorphism (SNP) rs2075650 in TOMM40 has been associated with longevity, while the AG and GG genotypes are associated with an increased risk of Alzheimer disease. Here, we studied the effect of rs2075650 on clinical outcomes and dynamic biomarker patterns after traumatic injury. Genomic DNA was obtained from blunt trauma patients admitted to the ICU and examined for 551,839 SNPs using an Illumina microarray kit. Plasma was sampled from each patient three times within the first 24 h and daily from day 1 to 7 then assayed for 31 biomarkers using Luminex. Aged patients (65-90 years) were segregated into AA (n = 77) and AG/GG (n = 17) genotypes. Additional comparisons were made with matched groups of young patients (18-30 years), controlling for injury severity score (ISS) and sex ratio, and also segregated into AA (n = 56) and AG/GG (n = 19) genotypes. Aged patients with the AA genotype had a significantly lower requirement for ventilation and fewer days on mechanical ventilation, as well as significantly higher levels of one mediator and lower levels of two mediators. Dynamic Bayesian Network inference revealed IL-23 as a central node in each network regardless of age or genotype, with MIG and IP-10 also as key mediators in the networks of the aged patients. These findings suggest that an aging-related SNP, rs2075650, may influence clinical outcomes and inflammation networks in aged patients following blunt trauma, and thus may serve as a predictive outcome biomarker in the setting of polytrauma.
Collapse
|
10
|
Schimunek L, Lindberg H, Cohen M, Namas RA, Mi Q, Yin J, Barclay D, El-Dehaibi F, Abboud A, Zamora R, Billiar TR, Vodovotz Y. Computational Derivation of Core, Dynamic Human Blunt Trauma Inflammatory Endotypes. Front Immunol 2021; 11:589304. [PMID: 33537029 PMCID: PMC7848165 DOI: 10.3389/fimmu.2020.589304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 02/03/2023] Open
Abstract
Systemic inflammation ensues following traumatic injury, driving immune dysregulation and multiple organ dysfunction (MOD). While a balanced immune/inflammatory response is ideal for promoting tissue regeneration, most trauma patients exhibit variable and either overly exuberant or overly damped responses that likely drive adverse clinical outcomes. We hypothesized that these inflammatory phenotypes occur in the context of severe injury, and therefore sought to define clinically distinct endotypes of trauma patients based on their systemic inflammatory responses. Using Patient-Specific Principal Component Analysis followed by unsupervised hierarchical clustering of circulating inflammatory mediators obtained in the first 24 h after injury, we segregated a cohort of 227 blunt trauma survivors into three core endotypes exhibiting significant differences in requirement for mechanical ventilation, duration of ventilation, and MOD over 7 days. Nine non-survivors co-segregated with survivors. Dynamic network inference, Fisher Score analysis, and correlations of IL-17A with GM-CSF, IL-10, and IL-22 in the three survivor sub-groups suggested a role for type 3 immunity, in part regulated by Th17 and γδ 17 cells, and related tissue-protective cytokines as a key feature of systemic inflammation following injury. These endotypes may represent archetypal adaptive, over-exuberant, and overly damped inflammatory responses.
Collapse
Affiliation(s)
- Lukas Schimunek
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Haley Lindberg
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maria Cohen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Timothy Robert Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| |
Collapse
|
11
|
Cyr A, Zhong Y, Reis SE, Namas RA, Amoscato A, Zuckerbraun B, Sperry J, Zamora R, Vodovotz Y, Billiar TR. Analysis of the Plasma Metabolome after Trauma, Novel Circulating Sphingolipid Signatures, and In-Hospital Outcomes. J Am Coll Surg 2021; 232:276-287.e1. [PMID: 33453380 DOI: 10.1016/j.jamcollsurg.2020.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Trauma is the leading cause of death and disability for individuals under age 55. Many severely injured trauma patients experience complicated clinical courses despite appropriate initial therapy. We sought to identify novel circulating metabolomic signatures associated with clinical outcomes following trauma. STUDY DESIGN Untargeted metabolomics and circulating plasma immune mediator analysis was performed on plasma collected during 3 post-injury time periods (<6 hours [h], 6 h-24h, day 2-day 5) in critically ill trauma patients enrolled between April 2004 and May 2013 at UPMC Presbyterian Hospital in Pittsburgh, PA. Inclusion criteria were age ≥ 18 years, blunt mechanism, ICU admission, and expected survival ≥ 24 h. Exclusion criteria were isolated head injury, spinal cord injury, and pregnancy. Exploratory endpoints included length of stay (overall and ICU), ventilator requirements, nosocomial infection, and Marshall organ dysfunction (MOD) score. The top 50 metabolites were isolated using repeated measures ANOVA and multivariate empirical Bayesian analysis for further study. RESULTS Eighty-six patients were included for analysis. Sphingolipids were enriched significantly (chi-square, p < 10-6) among the top 50 metabolites. Clustering of sphingolipid patterns identified 3 patient subclasses: nonresponders (no time-dependent change in sphingolipids, n = 41), sphingosine/sphinganine-enhanced (n = 24), and glycosphingolipid-enhanced (n = 21). Compared with the sphingolipid-enhanced subclasses, nonresponders had longer mean length of stay, more ventilator days, higher MOD scores, and higher circulating levels of proinflammatory immune mediators IL-6, IL-8, IL-10, MCP1/CCL2, IP10/CXCL10, and MIG/CXCL9 (all p < 0.05), despite similar Injury Severity Scores (p = 0.12). CONCLUSIONS Metabolomic analysis identified broad alterations in circulating plasma sphingolipids after blunt trauma. Circulating sphingolipid signatures and their association with both clinical outcomes and circulating inflammatory mediators suggest a possible link between sphingolipid metabolism and the immune response to trauma.
Collapse
Affiliation(s)
- Anthony Cyr
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Yanjun Zhong
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Critical Care, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Steven E Reis
- Clinical and Translational Science Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Andrew Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | | | - Jason Sperry
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Clinical and Translational Science Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Clinical and Translational Science Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
12
|
Cohen M, Lamparello AJ, Schimunek L, El-Dehaibi F, Namas RA, Xu Y, Kaynar AM, Billiar TR, Vodovotz Y. Quality Control Measures and Validation in Gene Association Studies: Lessons for Acute Illness. Shock 2020; 53:256-268. [PMID: 31365490 PMCID: PMC6989353 DOI: 10.1097/shk.0000000000001409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute illness is a complex constellation of responses involving dysregulated inflammatory and immune responses, which are ultimately associated with multiple organ dysfunction. Gene association studies have associated single-nucleotide polymorphisms (SNPs) with clinical and pharmacological outcomes in a variety of disease states, including acute illness. With approximately 4 to 5 million SNPs in the human genome and recent studies suggesting that a large portion of SNP studies are not reproducible, we suggest that the ultimate clinical utility of SNPs in acute illness depends on validation and quality control measures. To investigate this issue, in December 2018 and January 2019 we searched the literature for peer-reviewed studies reporting data on associations between SNPs and clinical outcomes and between SNPs and pharmaceuticals (i.e., pharmacogenomics) published between January 2011 to February 2019. We review key methodologies and results from a variety of clinical and pharmacological gene association studies, including trauma and sepsis studies, as illustrative examples on current SNP association studies. In this review article, we have found three key points which strengthen the potential accuracy of SNP association studies in acute illness and other diseases: providing evidence of following a protocol quality control method such as the one in Nature Protocols or the OncoArray QC Guidelines; enrolling enough patients to have large cohort groups; and validating the SNPs using an independent technique such as a second study using the same SNPs with new patient cohorts. Our survey suggests the need to standardize validation methods and SNP quality control measures in medicine in general, and specifically in the context of complex disease states such as acute illness.
Collapse
Affiliation(s)
- Maria Cohen
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
| | | | - Lukas Schimunek
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yan Xu
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
| | - A Murat Kaynar
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15261
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
13
|
Liu D, Namas RA, Vodovotz Y, Peitzman AB, Simmons RL, Yuan H, Mi Q, Billiar TR. Unsupervised Clustering Analysis Based on MODS Severity Identifies Four Distinct Organ Dysfunction Patterns in Severely Injured Blunt Trauma Patients. Front Med (Lausanne) 2020; 7:46. [PMID: 32161760 PMCID: PMC7053419 DOI: 10.3389/fmed.2020.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose: We sought to identify a MODS score parameter that highly correlates with adverse outcomes and then use this parameter to test the hypothesis that multiple severity-based MODS clusters could be identified after blunt trauma. Methods: MOD score across days (D) 2-5 was subjected to Fuzzy C-means Clustering Analysis (FCM) followed by eight Clustering Validity Indices (CVI) to derive organ dysfunction patterns among 376 blunt trauma patients admitted to the intensive care unit (ICU) who survived to discharge. Thirty-one inflammation biomarkers were assayed (Luminex™) in serial blood samples (3 samples within the first 24 h and then daily up to D 5) and were analyzed using Two-Way ANOVA and Dynamic Network analysis (DyNA). Results: The FCM followed by CVI suggested four distinct clusters based on MOD score magnitude between D2 and D5. Distinct patterns of organ dysfunction emerged in each of the four clusters and exhibited statistically significant differences with regards to in-hospital outcomes. Interleukin (IL)-6, MCP-1, IL-10, IL-8, IP-10, sST2, and MIG were elevated differentially over time across the four clusters. DyNA identified remarkable differences in inflammatory network interconnectivity. Conclusion: These results suggest the existence of four distinct organ failure patterns based on MOD score magnitude in blunt trauma patients admitted to the ICU who survive to discharge.
Collapse
Affiliation(s)
- Dongmei Liu
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew B. Peitzman
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard L. Simmons
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hong Yuan
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Schimunek L, Namas RA, Yin J, Barclay D, Liu D, El-Dehaibi F, Abboud A, Cohen M, Zamora R, Billiar TR, Vodovotz Y. MPPED2 Polymorphism Is Associated With Altered Systemic Inflammation and Adverse Trauma Outcomes. Front Genet 2019; 10:1115. [PMID: 31781170 PMCID: PMC6857553 DOI: 10.3389/fgene.2019.01115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Trauma is a leading cause of morbidity and mortality. It is unclear why some trauma victims follow a complicated clinical course and die, while others, with apparently similar injury characteristics, do not. Interpatient genomic differences, in the form of single nucleotide polymorphisms (SNPs), have been associated previously with adverse outcomes after trauma. Recently, we identified seven novel SNPs associated with mortality following trauma. The aim of the present study was to determine if one or more of these SNPs was also associated with worse clinical outcomes and altered inflammatory trajectories in trauma survivors. Accordingly, of 413 trauma survivors, DNA samples, full blood samples, and clinical data were collected at multiple time points in the first 24 h and then daily over 7 days following hospital admission. Subsequently, single-SNP groups were created and outcomes, such as hospital length of stay (LOS), ICU LOS, and requirement for mechanical ventilation, were compared. Across a broad range of Injury Severity Scores (ISS), patients carrying the rs2065418 TT SNP in the metallophosphoesterase domain-containing 2 (MPPED2) gene exhibited higher Marshall MODScores vs. the control group of rs2065418 TG/GG patients. In patients with high-severity trauma (ISS ≥ 25, n = 94), those carrying the rs2065418 TT SNP in MPPED2 exhibited higher Marshall MODScores, longer hospital LOS (21.8 ± 2 days), a greater requirement for mechanical ventilation (9.2 ± 1.4 days on ventilator, DOV), and higher creatinine plasma levels over 7 days vs. the control group of rs2065418 TG/GG high-severity trauma patients (LOS: 15.9 ± 1.2 days, p = 0.03; DOV: 5.7 ± 1 days, p = 0.04; plasma creatinine; p < 0.0001 MODScore: p = 0.0003). Furthermore, rs2065418 TT patients with ISS ≥ 25 had significantly different plasma levels of nine circulating inflammatory mediators and elevated dynamic network complexity. These studies suggest that the rs2065418 TT genotype in the MPPED2 gene is associated with altered systemic inflammation, increased organ dysfunction, and greater hospital resource utilization. A screening for this specific SNP at admission might stratify severely injured patients regarding their lung and kidney function and clinical complications.
Collapse
Affiliation(s)
- Lukas Schimunek
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dongmei Liu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maria Cohen
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Blood purification by nonselective hemoadsorption prevents death after traumatic brain injury and hemorrhagic shock in rats. J Trauma Acute Care Surg 2019; 85:1063-1071. [PMID: 30211852 DOI: 10.1097/ta.0000000000002069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Patients who sustain traumatic brain injury (TBI) and concomitant hemorrhagic shock (HS) are at high risk of high-magnitude inflammation which can lead to poor outcomes and death. Blood purification by hemoadsorption (HA) offers an alternative intervention to reduce inflammation after injury. We tested the hypothesis that HA would reduce mortality in a rat model of TBI and HS. METHODS Male Sprague Dawley rats were subjected to a combined injury of a controlled cortical impact to their brain and pressure-controlled HS. Animals were subsequently instrumented with an extracorporeal blood circuit that passed through a cartridge for sham or experimental treatment. In experimental animals, the treatment cartridge was filled with proprietary beads (Cytosorbents, Monmouth Junction, NJ) that removed circulating molecules between 5 kDa and 60 kDa. Sham rats had equivalent circulation but no blood purification. Serial blood samples were analyzed with multiplex technology to quantify changes in a trauma-relevant panel of immunologic mediators. The primary outcome was survival to 96 hours postinjury. RESULTS Hemoadsorption improved survival from 47% in sham-treated rats to 86% in HA-treated rats. There were no treatment-related changes in histologic appearance. Hemoadsorption affected biomarker concentrations both during the treatment and over the ensuing 4 days after injury. Distinct changes in biomarker concentrations were also measured in survivor and nonsurvivor rats from the entire cohort of rats indicating biomarker patterns associated with survival and death after injury. CONCLUSION Blood purification by nonselective HA is an effective intervention to prevent death in a combined TBI/HS rat model. Hemoadsorption changed circulating concentrations of multiple inmmunologically active mediators during the treatment time frame and after treatment. Hemoadsorption has been safely implemented in human patients with sepsis and may be a treatment option after injury.
Collapse
|
16
|
Lamparello AJ, Namas RA, Constantine G, McKinley TO, Elster E, Vodovotz Y, Billiar TR. A conceptual time window-based model for the early stratification of trauma patients. J Intern Med 2019; 286:2-15. [PMID: 30623510 DOI: 10.1111/joim.12874] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Progress in the testing of therapies targeting the immune response following trauma, a leading cause of morbidity and mortality worldwide, has been slow. We propose that the design of interventional trials in trauma would benefit from a scheme or platform that could support the identification and implementation of prognostic strategies for patient stratification. Here, we propose a stratification scheme based on defined time periods or windows following the traumatic event. This 'time-window' model allows for the incorporation of prognostic variables ranging from circulating biomarkers and clinical data to patient-specific information such as gene variants to predict adverse short- or long-term outcomes. A number of circulating biomarkers, including cell injury markers and damage-associated molecular patterns (DAMPs), and inflammatory mediators have been shown to correlate with adverse outcomes after trauma. Likewise, several single nucleotide polymorphisms (SNPs) associate with complications or death in trauma patients. This review summarizes the status of our understanding of the prognostic value of these classes of variables in predicting outcomes in trauma patients. Strategies for the incorporation of these prognostic variables into schemes designed to stratify trauma patients, such as our time-window model, are also discussed.
Collapse
Affiliation(s)
- A J Lamparello
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - G Constantine
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - T O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IU Health Methodist Hospital, Indianapolis, IN, USA
| | - E Elster
- Department of Surgery, University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Y Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - T R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Early Immunologic Response in Multiply Injured Patients With Orthopaedic Injuries Is Associated With Organ Dysfunction. J Orthop Trauma 2019; 33:220-228. [PMID: 31008819 DOI: 10.1097/bot.0000000000001437] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To quantify the acute immunologic biomarker response in multiply injured patients with axial and lower extremity fractures and to explore associations with adverse short-term outcomes including organ dysfunction and nosocomial infection (NI). DESIGN Prospective cohort study. SETTING Level 1 academic trauma center. PATIENTS Consecutive multiply injured patients, 18-55 years of age, with major pelvic and lower extremity orthopaedic injuries (all pelvic/acetabular fractures, operative femur and tibia fractures) that presented as a trauma activation and admitted to the intensive care unit from April 2015 through October 2016. Sixty-one patients met inclusion criteria. INTERVENTION Blood was collected upon presentation to the hospital and at the following time points: 8, 24, 48 hours, and daily during intensive care unit admission. Blood was processed by centrifugation, separation into 1.0-mL plasma aliquots, and cryopreserved within 2 hours of collection. MAIN OUTCOME MEASUREMENTS Plasma analyses of protein levels of cytokines/chemokines were performed using a Luminex panel Bioassay of 20 immunologic mediators. Organ dysfunction was measured by the Marshall Multiple Organ Dysfunction score (MODScore) and nosocomial infection (NI) was recorded. Patients were stratified into low (MODS ≤ 4; n = 34) and high (MODS > 4; n = 27) organ dysfunction groups. RESULTS The MODS >4 group had higher circulating levels of interleukin (IL)-6, IL-8, IL-10, monocyte chemoattractant protein-1 (MCP-1), IL-1 receptor antagonist (IL-1RA), and monokine induced by interferon gamma (MIG) compared with the MODS ≤4 group at nearly all time points. MODS >4 exhibited lower levels of IL-21 and IL-22 compared with MODS ≤4. Patients who developed NI (n = 24) had higher circulating concentrations of IL-10, MIG, and high mobility group box 1 (HMGB1) compared with patients who did not develop NI (n = 37). CONCLUSIONS Temporal quantification of immune mediators identified 8 biomarkers associated with greater levels of organ dysfunction in polytrauma patients with major orthopaedic injuries. LEVEL OF EVIDENCE Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.
Collapse
|
18
|
Sud V, Abboud A, Tohme S, Vodovotz Y, Simmons RL, Tsung A. IL-17A - A regulator in acute inflammation: Insights from in vitro, in vivo and in silico studies. Cytokine 2018; 139:154344. [PMID: 29954675 DOI: 10.1016/j.cyto.2018.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/23/2022]
Abstract
Acute inflammation following sterile injury is both inevitable and necessary to restore homeostasis and promote tissue repair. However, when excessive, inflammation can jeopardize the viability of organs and cause detrimental systemic effects. Identifying key-regulators of the immune cascade induced by surgery is vital to attenuating excessive inflammation and its subsequent effects. In this review, we describe the emerging role of IL-17A as a key-regulator in acute inflammation. The role of IL-17A in chronic disease states, such as rheumatoid arthritis, psoriasis and cancer has been well documented, but its significance in acute inflammation following surgery, sepsis, or traumatic injury has not been well studied. We aim to highlight the role of IL-17A in acute inflammation caused by trauma, liver ischemia, and organ transplantation, as well as in post-operative surgical infections. Further investigation of the roles of this cytokine in acute inflammation may stimulate novel therapies or diagnostic modalities.
Collapse
Affiliation(s)
- Vikas Sud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
19
|
Stanojcic M, Jeschke MG. What's New in Shock, March 2018? Shock 2018; 49:239-242. [PMID: 29432388 DOI: 10.1097/shk.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Surgery, Division of Plastic Surgery, University of Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|