1
|
Wang B, Fields L, Li L. Recent advances in characterization of citrullination and its implication in human disease research: From method development to network integration. Proteomics 2023; 23:e2200286. [PMID: 36546832 PMCID: PMC10285031 DOI: 10.1002/pmic.202200286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Post-translational modifications (PTM) of proteins increase the functional diversity of the proteome and have been implicated in the pathogenesis of numerous diseases. The most widely understood modifications include phosphorylation, methylation, acetylation, O-linked/N-linked glycosylation, and ubiquitination, all of which have been extensively studied and documented. Citrullination is a historically less explored, yet increasingly studied, protein PTM which has profound effects on protein conformation and protein-protein interactions. Dysregulation of protein citrullination has been associated with disease development and progression. Identification and characterization of citrullinated proteins is highly challenging, complicated by the low cellular abundance of citrullinated proteins, making it difficult to identify and quantify the extent of citrullination in samples, coupled with challenges associated with development of mass spectrometry (MS)-based methods, as the corresponding mass shift is relatively small, +0.984 Da, and identical to the mass shift of deamidation. The focus of this review is to discuss recent advancements of citrullination-specific MS approaches and integration of the potential methodology for improved citrullination identification and characterization. In addition, the association of citrullination in disease networks is also highlighted.
Collapse
Affiliation(s)
- Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- School of Pharmacy, Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Ho JW, Quan C, Gauger MA, Alam HB, Li Y. ROLE OF PEPTIDYLARGININE DEIMINASE AND NEUTROPHIL EXTRACELLULAR TRAPS IN INJURIES: FUTURE NOVEL DIAGNOSTICS AND THERAPEUTIC TARGETS. Shock 2023; 59:247-255. [PMID: 36597759 PMCID: PMC9957939 DOI: 10.1097/shk.0000000000002052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT Injuries lead to an early systemic inflammatory state with innate immune system activation. Neutrophil extracellular traps (NETs) are a complex of chromatin and proteins released from the activated neutrophils. Although initially described as a response to bacterial infections, NETs have also been identified in the sterile postinjury inflammatory state. Peptidylarginine deiminases (PADs) are a group of isoenzymes that catalyze the conversion of arginine to citrulline, termed citrullination or deimination. PAD2 and PAD4 have been demonstrated to play a role in NET formation through citrullinated histone 3. PAD2 and PAD4 have a variety of substrates with variable organ distribution. Preclinical and clinical studies have evaluated the role of PADs and NETs in major trauma, hemorrhage, burns, and traumatic brain injury. Neutrophil extracellular trap formation and PAD activation have been shown to contribute to the postinjury inflammatory state leading to a detrimental effect on organ systems. This review describes our current understanding of the role of PAD and NET formation following injury and burn. This is a new field of study, and the emerging data appear promising for the future development of targeted biomarkers and therapies in trauma.
Collapse
Affiliation(s)
- Jessie W. Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Chao Quan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Megan A. Gauger
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hasan B. Alam
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yongqing Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
6
|
Siddiqui AZ, Bhatti UF, Deng Q, Biesterveld BE, Tian Y, Wu Z, Dahl J, Liu B, Xu J, Koike Y, Song J, Zhang J, Li Y, Alam HB, Williams AM. Cl-Amidine Improves Survival and Attenuates Kidney Injury in a Rabbit Model of Endotoxic Shock. Surg Infect (Larchmt) 2021; 22:421-426. [PMID: 32833601 DOI: 10.1089/sur.2020.189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: Sepsis causes millions of deaths on a global scale annually. Activation of peptidylarginine deiminase (PAD) enzymes in sepsis causes citrullination of histones, which results in neutrophil extracellular trap formation and sepsis progression. This study evaluates pan-PAD inhibitor, Cl-amidine, in a model of lipopolysaccharide (LPS)-induced endotoxic shock in rabbits. We hypothesized that Cl-amidine would improve survival and attenuate kidney injury. Methods: In the survival model, rabbits were injected injected intravenously with 1 mg/kg of LPS, and then randomly assigned either to receive dimethyl sulfoxide (DMSO; 1 mcL/g) or Cl-amidine (10 mg/kg diluted in 1 mcL/g DMSO). They were then monitored for 14 days to evaluate survival. In the non-survival experiment, the same insult and treatment were administered, however; the animals were euthanized 12 hours after LPS injection for kidney harvest. Acute kidney injury (AKI) scoring was performed by a histopathologist who was blinded to the group assignment. Serial blood samples were also collected and compared. Results: Rabbits that received Cl-amidine had a higher survival (72%) compared with the rabbits that received DMSO (14%; p < 0.05). Cl-amidine-treated rabbits had lower (p < 0.05) histopathologic AKI scores, as well as plasma creatinine and blood urea nitrogen (BUN) levels 12 hours after insult. Conclusions: Pan-PAD inhibitor Cl-amidine improves survival and attenuates kidney injury in LPS-induced endotoxic shock in rabbits.
Collapse
Affiliation(s)
- Ali Z Siddiqui
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Umar F Bhatti
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Qiufang Deng
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Ben E Biesterveld
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Yuzi Tian
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Zhenyu Wu
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Julia Dahl
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Baoling Liu
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Jie Xu
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Yui Koike
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Jun Song
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Yongqing Li
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Aaron M Williams
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Tian Y, Qu S, Alam HB, Williams AM, Wu Z, Deng Q, Pan B, Zhou J, Liu B, Duan X, Ma J, Mondal S, Thompson PR, Stringer KA, Standiford TJ, Li Y. Peptidylarginine deiminase 2 has potential as both a biomarker and therapeutic target of sepsis. JCI Insight 2020; 5:138873. [PMID: 33055424 PMCID: PMC7605547 DOI: 10.1172/jci.insight.138873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Peptidylarginine deiminases (PADs) are a family of calcium-dependent enzymes that are involved in a variety of human disorders, including cancer and autoimmune diseases. Although targeting PAD4 has shown no benefit in sepsis, the role of PAD2 remains unknown. Here, we report that PAD2 is engaged in sepsis and sepsis-induced acute lung injury in both human patients and mice. Pad2–/– or selective inhibition of PAD2 by a small molecule inhibitor increased survival and improved overall outcomes in mouse models of sepsis. Pad2 deficiency decreased neutrophil extracellular trap (NET) formation. Importantly, Pad2 deficiency inhibited Caspase-11–dependent pyroptosis in vivo and in vitro. Suppression of PAD2 expression reduced inflammation and increased macrophage bactericidal activity. In contrast to Pad2–/–, Pad4 deficiency enhanced activation of Caspase-11–dependent pyroptosis in BM-derived macrophages and displayed no survival improvement in a mouse sepsis model. Collectively, our findings highlight the potential of PAD2 as an indicative marker and therapeutic target for sepsis. Peptidylarginine deiminases 2 (PAD2) regulates neutrophil extracellular trap (NET) formation in sepsis and sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Yuzi Tian
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Shibin Qu
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA.,Department of Hepatobiliary Surgery, Xijing Hospital, Xian, Shanxi, China
| | - Hasan B Alam
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Aaron M Williams
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Zhenyu Wu
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA.,Department of Infectious Disease, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiufang Deng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Baihong Pan
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Jing Zhou
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA.,Trauma Center, Department of Orthopedic and Traumatology, Peking University People's Hospital, Beijing, China
| | - Baoling Liu
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Xiuzhen Duan
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Santanu Mondal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yongqing Li
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|