1
|
Wang M, Tang Z, Zeng H, Zhang A, Huang S, Ke J, Gao L, Zhang T, Wang Y, Chang ACY, Zhang J, Chen Q, Gu J, Wang C. Protease activated receptor 2 deficiency retards progression of abdominal aortic aneurysms by modulating phenotypic transformation of vascular smooth muscle cells via ERK signaling. Exp Cell Res 2024; 443:114286. [PMID: 39490888 DOI: 10.1016/j.yexcr.2024.114286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Abdominal aortic aneurysm (AAA) is characterized by localized structural deterioration of the aortic wall, leading to progressive dilatation and rupture. Protease activated receptor 2 (PAR2) dependent signaling has been implicated in the pathophysiology of atherosclerosis through the regulation of smooth muscle cell function. However, its role in AAA remains unclear. This study investigates the function and potential mechanism of PAR2 in AAA progression. Angiotensin II (Ang II) and β-aminopropionitrile (BAPN) were administered to wild type (WT) mice to induce AAA. Increased PAR2 expression was observed in the aneurysmal tissues of these mice and in Ang II-treated vascular smooth muscle cells (VSMCs). We demonstrated that PAR2 deficiency markedly inhibited aorta dilatation and vascular remodeling in the AAA model relative to WT mice. Immunohistochemical staining showed significant upregulation of contractile markers and a reduction in synthetic markers in PAR2 knockout mice. Consistent with in vivo results, PAR2 knockdown diminished the effects of Ang II on VSMCs phenotypic switching, resulting in reduced proliferation and migration. Conversely, a PAR2 agonist (SLIGRL) induced the opposite effect, which was partially mitigated by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor (PD98059). This study suggests that PAR2 deficiency restrains aortic expansion and mitigates adverse vascular remodeling in AAA models, mediated in part by the ERK signaling pathway, indicating that PAR2 could be a potential therapeutic target for mitigating AAA development or progression.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhengde Tang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Huasu Zeng
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Alian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuying Huang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jiahan Ke
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tiantian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Alex Chia Yu Chang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qizhi Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
2
|
Reches G, Piran R. Par2-mediated responses in inflammation and regeneration: choosing between repair and damage. Inflamm Regen 2024; 44:26. [PMID: 38816842 PMCID: PMC11138036 DOI: 10.1186/s41232-024-00338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The protease activated receptor 2 (Par2) plays a pivotal role in various damage models, influencing injury, proliferation, inflammation, and regeneration. Despite extensive studies, its binary roles- EITHER aggravating injury or promoting recovery-make a conclusive translational decision on its modulation strategy elusive. Analyzing two liver regeneration models, autoimmune hepatitis and direct hepatic damage, we discovered Par2's outcome depends on the injury's nature. In immune-mediated injury, Par2 exacerbates damage, while in direct tissue injury, it promotes regeneration. Subsequently, we evaluated the clinical significance of this finding by investigating Par2's expression in the context of autoimmune diabetes. We found that the absence of Par2 in all lymphocytes provided full protection against the autoimmune destruction of insulin-producing β-cells in mice, whereas the introduction of a β-cell-specific Par2 null mutation accelerated the onset of autoimmune diabetes. This pattern led us to hypothesize whether these observations are universal. A comprehensive review of recent Par2 publications across tissues and systems confirms the claim drafted above: Par2's initial activation in the immune system aggravates inflammation, hindering recovery, whereas its primary activation in the damaged tissue fosters regeneration. As a membrane-anchored receptor, Par2 emerges as an attractive drug target. Our findings highlight a crucial translational modulation strategy in regenerative medicine based on injury type.
Collapse
Affiliation(s)
- Gal Reches
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Ron Piran
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel.
| |
Collapse
|
3
|
Xia P, Marjan M, Liu Z, Zhou W, Zhang Q, Cheng C, Zhao M, Tao Y, Wang Z, Ye Z. Chrysophanol postconditioning attenuated cerebral ischemia-reperfusion injury induced NLRP3-related pyroptosis in a TRAF6-dependent manner. Exp Neurol 2022; 357:114197. [PMID: 35932799 DOI: 10.1016/j.expneurol.2022.114197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/04/2022]
Abstract
Individuals who suffer from post-CA (cardiac arrest) brain injury experience higher mortality and more severe functional disability. Neuroinflammation has been identified as a vital factor in cerebral ischemia-reperfusion injury (CIRI) following CA. Pyroptosis induces neuronal death by triggering an excessive inflammatory injury. Chrysophanol possesses robust anti-inflammatory features, and it is protective against CIRI. The purpose of this research was to assess the effect of Chrysophanol postconditioning on CIRI-induced pyroptotic cell death, and to explore its underlying mechanisms. CIRI was induced in rats by CA and subsequent cardiopulmonary resuscitation, and PC12 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to imitate CIRI in vitro. It was found that post-CA brain injury led to a notable cerebral damage revealed by histopathological changes and neurological outcomes. The existence of pyroptosis was also confirmed in in vivo and in vitro CIRI models. Moreover, we further confirmed that Chrysophanol, the main bioactive ingredient of Rhubarb, significantly suppressed expressions of pyroptosis-associated proteins, e.g., NLRP3, ASC, cleaved-caspase-1 and N-terminal GSDMD, and inhibited the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6). Furthermore, NLRP3 overexpression neutralized the neuroprotection of Chrysophanol postconditioning, suggesting that pyroptosis was the major neuronal death pathway modulated by Chrysophanol postconditioning in OGD/R. Additionally, the neuroprotection of Chrysophanol postconditioning was also abolished by gain-of-function analyses of TRAF6. Finally, the results demonstrated that Chrysophanol postconditioning suppressed the interaction between TRAF6 and NLRP3. Taken together, our findings revealed that Chrysophanol postconditioning was protective against CIRI by inhibiting NLRP3-related pyroptosis in a TRAF6-dependent manner.
Collapse
Affiliation(s)
- Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan Province, China
| | - Murat Marjan
- Department of Anesthesiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 Xinjiang, Uygur Autonomous Region, China
| | - Zhuoyi Liu
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan Province, China
| | - Wanqing Zhou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Qian Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Chen Cheng
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Minxi Zhao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Yuanyuan Tao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Zhihua Wang
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan Province, China.
| |
Collapse
|
4
|
Senthil K, Hefti MM, Singh LN, Morgan RW, Mavroudis CD, Ko T, Gaudio H, Nadkarni VM, Ehinger J, Berg RA, Sutton RM, McGowan FX, Kilbaugh TJ. Transcriptome and metabolome after porcine hemodynamic-directed CPR compared with standard CPR and sham controls. Resusc Plus 2022; 10:100243. [PMID: 35592874 PMCID: PMC9111986 DOI: 10.1016/j.resplu.2022.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The effect of cardiac arrest (CA) on cerebral transcriptomics and metabolomics is unknown. We previously demonstrated hemodynamic-directed CPR (HD-CPR) improves survival with favorable neurologic outcomes versus standard CPR (Std-CPR). We hypothesized HD-CPR would preserve the cerebral transcriptome and metabolome compared to Std-CPR. Design Randomized pre-clinical animal trial. Setting Large animal resuscitation laboratory at an academic children’s hospital. Subjects Four-week-old female piglets (8–11 kg). Interventions Pigs (1-month-old), three groups: 1) HD-CPR (compression depth to systolic BP 90 mmHg, vasopressors to coronary perfusion pressure 20 mmHg); 2) Std-CPR and 3) shams (no CPR). HD-CPR and Std-CPR underwent asphyxia, induced ventricular fibrillation, 10–20 min of CPR and post-resuscitation care. Primary outcomes at 24 h in cerebral cortex: 1) transcriptomic analysis (n = 4 per treatment arm, n = 8 sham) of 1727 genes using differential gene expression and 2) metabolomic analysis (n = 5 per group) of 27 metabolites using one-way ANOVA, post-hoc Tukey HSD. Measurements and main results 65 genes were differentially expressed between HD-CPR and Std-CPR and 72 genes between Std-CPR and sham, but only five differed between HD-CPR and sham. Std-CPR increased the concentration of five AA compared to HD-CPR and sham, including the branched chain amino acids (BCAA), but zero metabolites differed between HD-CPR and sham. Conclusions In cerebral cortex 24 h post CA, Std-CPR resulted in a different transcriptome and metabolome compared with either HD-CPR or sham. HD-CPR preserves the transcriptome and metabolome, and is neuroprotective. Global molecular analyses may be a novel method to assess efficacy of clinical interventions and identify therapeutic targets. Institutional protocol number IAC 16-001023.
Collapse
Affiliation(s)
- Kumaran Senthil
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
- Corresponding author at: Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Marco M. Hefti
- University of Iowa, Division of Pathology, United States
| | - Larry N. Singh
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Ryan W. Morgan
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Constantine D. Mavroudis
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Cardiothoracic Surgery, United States
| | - Tiffany Ko
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Neurology, United States
| | - Hunter Gaudio
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Vinay M. Nadkarni
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Johannes Ehinger
- Lund University, Mitochondrial Medicine, Sweden
- Skåne University Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Sweden
| | - Robert A. Berg
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Robert M. Sutton
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Francis X. McGowan
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| | - Todd J. Kilbaugh
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Department of Anesthesiology and Critical Care Medicine, United States
| |
Collapse
|
5
|
Zhao JF, Ren T, Li XY, Guo TL, Liu CH, Wang X. Research Progress on the Role of Microglia Membrane Proteins or Receptors in Neuroinflammation and Degeneration. Front Cell Neurosci 2022; 16:831977. [PMID: 35281298 PMCID: PMC8913711 DOI: 10.3389/fncel.2022.831977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Microglia are intrinsic immune cells of the central nervous system and play a dual role (pro-inflammatory and anti-inflammatory) in the homeostasis of the nervous system. Neuroinflammation mediated by microglia serves as an important stage of ischemic hypoxic brain injury, cerebral hemorrhage disease, neurodegeneration and neurotumor of the nervous system and is present through the whole course of these diseases. Microglial membrane protein or receptor is the basis of mediating microglia to play the inflammatory role and they have been found to be upregulated by recognizing associated ligands or sensing changes in the nervous system microenvironment. They can then allosterically activate the downstream signal transduction and produce a series of complex cascade reactions that can activate microglia, promote microglia chemotactic migration and stimulate the release of proinflammatory factor such as TNF-α, IL-β to effectively damage the nervous system and cause apoptosis of neurons. In this paper, several representative membrane proteins or receptors present on the surface of microglia are systematically reviewed and information about their structures, functions and specific roles in one or more neurological diseases. And on this basis, some prospects for the treatment of novel coronavirus neurological complications are presented.
Collapse
Affiliation(s)
- Jun-Feng Zhao
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Tong Ren
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Xiang-Yu Li
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Tian-Lin Guo
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
| | - Chun-Hui Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
- Chun-Hui Liu,
| | - Xun Wang
- Department of Neurosurgery, Affiliated Dalian No. 3 People’s Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Xun Wang,
| |
Collapse
|
6
|
Ousta A, Piao L, Fang YH, Vera A, Nallamothu T, Garcia AJ, Sharp WW. Microglial Activation and Neurological Outcomes in a Murine Model of Cardiac Arrest. Neurocrit Care 2022; 36:61-70. [PMID: 34268646 PMCID: PMC8813848 DOI: 10.1007/s12028-021-01253-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neurological injury following successful resuscitation from sudden cardiac arrest (CA) is common. The pathophysiological basis of this injury remains poorly understood, and treatment options are limited. Microglial activation and neuroinflammation are established contributors to many neuropathologies, such as Alzheimer disease and traumatic brain injury, but their potential role in post-CA injury has only recently been recognized. Here, we hypothesize that microglial activation that occurs following brief asystolic CA is associated with neurological injury and represents a potential therapeutic target. METHODS Adult C57BL/6 male and female mice were randomly assigned to 12-min, KCl-induced asystolic CA, under anesthesia and ventilation, followed by successful cardiopulmonary resuscitation (n = 19) or sham intervention (n = 11). Neurological assessments of mice were performed using standardized neurological scoring, video motion tracking, and sensory/motor testing. Mice were killed at 72 h for histological studies; neuronal degeneration was assessed using Fluoro-Jade C staining. Microglial characteristics were assessed by immunohistochemistry using the marker of ionized calcium binding adaptor molecule 1, followed by ImageJ analyses for cell integrity density and skeletal analyses. RESULTS Neurological injury in post-cardiopulmonary-resuscitation mice vs. sham mice was evident by poorer neurological scores (difference of 3.626 ± 0.4921, 95% confidence interval 2.618-4.634), sensory and motor functions (worsened by sixfold and sevenfold, respectively, compared with baseline), and locomotion (75% slower with a 76% decrease in total distance traveled). Post-CA brains demonstrated evidence of neurodegeneration and neuroinflammatory microglial activation. CONCLUSIONS Extensive microglial activation and neurodegeneration in the CA1 region and the dentate gyrus of the hippocampus are evident following brief asystolic CA and are associated with severe neurological injury.
Collapse
Affiliation(s)
- Alaa Ousta
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Lin Piao
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Yong Hu Fang
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Adrianna Vera
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Thara Nallamothu
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Alfredo J Garcia
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Willard W Sharp
- Section of Emergency Medicine, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
7
|
Yan J, Xu W, Lenahan C, Huang L, Wen J, Li G, Hu X, Zheng W, Zhang JH, Tang J. CCR5 Activation Promotes NLRP1-Dependent Neuronal Pyroptosis via CCR5/PKA/CREB Pathway After Intracerebral Hemorrhage. Stroke 2021; 52:4021-4032. [PMID: 34719258 PMCID: PMC8607924 DOI: 10.1161/strokeaha.120.033285] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/11/2021] [Accepted: 07/30/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE Neuronal pyroptosis is a type of regulated cell death triggered by proinflammatory signals. CCR5 (C-C chemokine receptor 5)-mediated inflammation is involved in the pathology of various neurological diseases. This study investigated the impact of CCR5 activation on neuronal pyroptosis and the underlying mechanism involving cAMP-dependent PKA (protein kinase A)/CREB (cAMP response element binding)/NLRP1 (nucleotide-binding domain leucine-rich repeat pyrin domain containing 1) pathway after experimental intracerebral hemorrhage (ICH). METHODS A total of 194 adult male CD1 mice were used. ICH was induced by autologous whole blood injection. Maraviroc (MVC)-a selective antagonist of CCR5-was administered intranasally 1 hour after ICH. To elucidate the underlying mechanism, a specific CREB inhibitor, 666-15, was administered intracerebroventricularly before MVC administration in ICH mice. In a set of naive mice, rCCL5 (recombinant chemokine ligand 5) and selective PKA activator, 8-Bromo-cAMP, were administered intracerebroventricularly. Short- and long-term neurobehavioral assessments, Western blot, Fluoro-Jade C, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunofluorescence staining were performed. RESULTS The brain expression of CCL5 (chemokine ligand 5), CCR5, PKA-Cα (protein kinase A-Cα), p-CREB (phospho-cAMP response element binding), and NLRP1 was increased, peaking at 24 hours after ICH. CCR5 was expressed on neurons, microglia, and astrocytes. MVC improved the short- and long-term neurobehavioral deficits and decreased neuronal pyroptosis in ipsilateral brain tissues at 24 hours after ICH, which were accompanied by increased PKA-Cα and p-CREB expression, and decreased expression of NLRP1, ASC (apoptosis-associated speck-like protein containing a CARD), C-caspase-1, GSDMD (gasdermin D), and IL (interleukin)-1β/IL-18. Such effects of MVC were abolished by 666-15. At 24 hours after injection in naive mice, rCCL5 induced neurological deficits, decreased PKA-Cα and p-CREB expression in the brain, and upregulated NLRP1, ASC, C-caspase-1, N-GSDMD, and IL-1β/IL-18 expression. Those effects of rCCL5 were reversed by 8-Bromo-cAMP. CONCLUSIONS CCR5 activation promoted neuronal pyroptosis and neurological deficits after ICH in mice, partially through the CCR5/PKA/CREB/NLRP1 signaling pathway. CCR5 inhibition with MVC may provide a promising therapeutic approach in managing patients with ICH.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China (J.Y.)
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (W.X.)
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM (C.L.)
| | - Lei Huang
- Department of Neurosurgery (L.H., J.H.Z.), Loma Linda University, CA
- Department of Physiology and Pharmacology (L.H., J.H.Z., J.T.), Loma Linda University, CA
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China (J.W.)
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China (G.L.)
| | - Xin Hu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China (X.H.)
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, China (W.Z.)
| | - John H. Zhang
- Department of Neurosurgery (L.H., J.H.Z.), Loma Linda University, CA
- Department of Physiology and Pharmacology (L.H., J.H.Z., J.T.), Loma Linda University, CA
- Department of Anesthesiology (J.H.Z.), Loma Linda University, CA
| | - Jiping Tang
- Department of Physiology and Pharmacology (L.H., J.H.Z., J.T.), Loma Linda University, CA
| |
Collapse
|
8
|
What's New in Shock, October 2020? Shock 2021; 54:413-415. [PMID: 32925708 DOI: 10.1097/shk.0000000000001626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Zhang L, Liang W, Li Y, Yan J, Xue J, Guo Q, Gao L, Li H, Shi Q. Mild therapeutic hypothermia improves neurological outcomes in a rat model of cardiac arrest. Brain Res Bull 2021; 173:97-107. [PMID: 34022286 DOI: 10.1016/j.brainresbull.2021.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/01/2021] [Accepted: 05/16/2021] [Indexed: 11/30/2022]
Abstract
Cardiac arrest (CA) is the leading cause of death in humans. Research has shown that mild therapeutic hypothermia (MTH) can reduce neurological sequelae and mortality after CA. Nevertheless, the mechanism remains unclear. This study aimed to determine whether MTH promotes neurogenesis, attenuates neuronal damage, and inhibits apoptosis of neurons in rats after CA. Sprague-Dawley rats were divided into the normothermia and mild hypothermia groups. The rats in the normothermia and hypothermia groups were exposed to 2 h of normothermia (36-37℃) and hypothermia (32-33℃), respectively, immediately after resuscitation from 5 min of asphyxial CA. Corresponding control groups not subjected to CA were included. On days 1-6, 5-bromodeoxyuridine (BrdU) 100 mg/kg/day was administered intraperitoneally. The animals were euthanized 1 week after CA. Compared with the normothermia group, the hypothermia group showed a significant increase in the number of doublecortin (DCX) immune-positive cells in the subgranular zone of the hippocampus 1 week after CA. Neurogenesis was assessed using double immunofluorescent labeling of BrdU with neuronal-specific nuclear protein (NeuN)/DCX. There was no marked change in the number of newborn mature (BrdU+-NeuN+) neurons, though there was a significant increase in the number of newborn immature (BrdU+-DCX+) neurons in the hypothermia than in the normothermia group 1 week after CA. Neuronal injury and apoptosis in the CA1 region of the hippocampus, assessed using NeuN immunofluorescence and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays, were significantly reduced in the hypothermia group 1 week after CA. Moreover, mild hypothermia increased the expression of cold-shock protein RNA-binding motif protein 3 (RBM3) in the early stage (24 h/48 h) after CA. These results suggested that mild hypothermia promotes generation of neuronal cells, reduces neuronal injury, and inhibits apoptosis of neurons, which may be related to RBM3 expression.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wei Liang
- Department of Critical Care Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Yiling Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jie Yan
- Department of Human Anatomy and Histoembryology, School of Medicine, Xi'an Jiaotong University, Xian, Shaanxi, China.
| | - Jingwen Xue
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qinyue Guo
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Lan Gao
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Hao Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qindong Shi
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Critical Care Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
10
|
Uray T, Dezfulian C, Palmer AA, Miner KM, Leak RK, Stezoski JP, Janesko-Feldman K, Kochanek PM, Drabek T. Cardiac Arrest Induced by Asphyxia Versus Ventricular Fibrillation Elicits Comparable Early Changes in Cytokine Levels in the Rat Brain, Heart, and Serum. J Am Heart Assoc 2021; 10:e018657. [PMID: 33599149 PMCID: PMC8174297 DOI: 10.1161/jaha.120.018657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Current postresuscitative care after cardiac arrest (CA) does not address the cause of CA. We previously reported that asphyxial CA (ACA) and ventricular fibrillation CA (VFCA) elicit unique injury signatures. We hypothesized that the early cytokine profiles of the serum, heart, and brain differ in response to ACA versus VFCA. Methods and Results Adult male rats were subjected to 10 minutes of either ACA or VFCA. Naives and shams (anesthesia and surgery without CA) served as controls (n=12/group). Asphyxiation produced an ≈4‐minute period of progressive hypoxemia followed by a no‐flow duration of ≈6±1 minute. Ventricular fibrillation immediately induced no flow. Return of spontaneous circulation was achieved earlier after ACA compared with VFCA (42±18 versus 105±22 seconds; P<0.001). Brain cytokines in naives were, in general, low or undetectable. Shams exhibited a modest effect on select cytokines. Both ACA and VFCA resulted in robust cytokine responses in serum, heart, and brain at 3 hours. Significant regional differences pinpointed the striatum as a key location of neuroinflammation. No significant differences in cytokines, neuron‐specific enolase, S100b, and troponin T were observed across CA models. Conclusions Both models of CA resulted in marked systemic, heart, and brain cytokine responses, with similar degrees of change across the 2 CA insults. Changes in cytokine levels after CA were most pronounced in the striatum compared with other brain regions. These collective observations suggest that the amplitude of the changes in cytokine levels after ACA versus VFCA may not mediate the differences in secondary injuries between these 2 CA phenotypes.
Collapse
Affiliation(s)
- Thomas Uray
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of Medicine Pittsburgh PA.,Department of Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh PA.,Department of Emergency Medicine Vienna General HospitalMedical University of Vienna Vienna Austria
| | - Cameron Dezfulian
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of Medicine Pittsburgh PA.,Department of Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh PA
| | - Abigail A Palmer
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of Medicine Pittsburgh PA.,Lake Erie College of Osteopathic Medicine Erie PA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences Duquesne University Pittsburgh PA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences Duquesne University Pittsburgh PA
| | - Jason P Stezoski
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of Medicine Pittsburgh PA.,Department of Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh PA.,Department of Anesthesiology and Perioperative Medicine University of Pittsburgh School of Medicine Pittsburgh PA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of Medicine Pittsburgh PA.,Department of Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh PA
| | - Patrick M Kochanek
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of Medicine Pittsburgh PA.,Department of Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh PA
| | - Tomas Drabek
- Safar Center for Resuscitation ResearchUniversity of Pittsburgh School of Medicine Pittsburgh PA.,Department of Anesthesiology and Perioperative Medicine University of Pittsburgh School of Medicine Pittsburgh PA
| |
Collapse
|
11
|
Ocak U, Eser Ocak P, Huang L, Xu W, Zuo Y, Li P, Gamdzyk M, Zuo G, Mo J, Zhang G, Zhang JH. Inhibition of mast cell tryptase attenuates neuroinflammation via PAR-2/p38/NFκB pathway following asphyxial cardiac arrest in rats. J Neuroinflammation 2020; 17:144. [PMID: 32366312 PMCID: PMC7199326 DOI: 10.1186/s12974-020-01808-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cardiac arrest survivors suffer from neurological dysfunction including cognitive impairment. Cerebral mast cells, the key regulators of neuroinflammation contribute to neuroinflammation-associated cognitive dysfunction. Mast cell tryptase was demonstrated to have a proinflammatory effect on microglia via the activation of microglial protease-activated receptor-2 (PAR-2). This study investigated the potential anti-neuroinflammatory effect of mast cell tryptase inhibition and the underlying mechanism of PAR-2/p-p38/NFκB signaling following asphyxia-induced cardiac arrest in rats. Methods Adult male Sprague-Dawley rats resuscitated from 10 min of asphyxia-induced cardiac arrest were randomized to four separate experiments including time-course, short-term outcomes, long-term outcomes and mechanism studies. The effect of mast cell tryptase inhibition on asphyxial cardiac arrest outcomes was examined after intranasal administration of selective mast cell tryptase inhibitor (APC366; 50 μg/rat or 150 μg/rat). AC55541 (selective PAR-2 activator; 30 μg/rat) and SB203580 (selective p38 inhibitor; 300 μg/rat) were used for intervention. Short-term neurocognitive functions were evaluated using the neurological deficit score, number of seizures, adhesive tape removal test, and T-maze test, while long-term cognitive functions were evaluated using the Morris water maze test. Hippocampal neuronal degeneration was evaluated by Fluoro-Jade C staining. Results Mast cell tryptase and PAR-2 were dramatically increased in the brain following asphyxia-induced cardiac arrest. The inhibition of mast cell tryptase by APC366 improved both short- and long-term neurological outcomes in resuscitated rats. Such behavioral benefits were associated with reduced expressions of PAR-2, p-p38, NFκB, TNF-α, and IL-6 in the brain as well as less hippocampal neuronal degeneration. The anti-neuroinflammatory effect of APC366 was abolished by AC55541, which when used alone, indeed further exacerbated neuroinflammation, hippocampal neuronal degeneration, and neurologic deficits following cardiac arrest. The deleterious effects aggregated by AC55541 were minimized by p38 inhibitor. Conclusions The inhibition of mast cell tryptase attenuated neuroinflammation, led to less hippocampal neuronal death and improved neurological deficits following cardiac arrest. This effect was at least partly mediated via inhibiting the PAR-2/p-p38/NFκB signaling pathway. Thus, mast cell tryptase might be a novel therapeutic target in the management of neurological impairment following cardiac arrest.
Collapse
Affiliation(s)
- Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Emergency Medicine, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, 16310, Bursa, Turkey.,Department of Emergency Medicine, Bursa City Hospital, 16110, Bursa, Turkey
| | - Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Uludag University School of Medicine, 16069, Bursa, Turkey
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Yuchun Zuo
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Peng Li
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Suzhou, Taicang, 215400, Jiangsu, China
| | - Jun Mo
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Guangyu Zhang
- Mass Spectrometry Core Facility, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|