1
|
Adigbli D, Liu R, Meyer J, Cohen J, Di Tanna GL, Gianacas C, Bhattacharya A, Hammond N, Walsham J, Venkatesh B, Hotchkiss R, Finfer S. EARLY PERSISTENT LYMPHOPENIA AND RISK OF DEATH IN CRITICALLY ILL PATIENTS WITH AND WITHOUT SEPSIS. Shock 2024; 61:197-203. [PMID: 38151771 DOI: 10.1097/shk.0000000000002284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Purpose: To examine the relationship of early persistent lymphopenia with hospital survival in critically ill patients with and without sepsis to assess whether it can be considered a treatable trait. Methods: Retrospective database analysis of patients with nonelective admission to intensive care units (ICUs) during January 2015 to December 2018. Patients were classified as having sepsis if the Acute Physiology and Chronic Health Evaluation III admission diagnostic code included sepsis or coded for an infection combined with a Sequential Organ Failure Assessment score of ≥2. We defined early persistent lymphopenia at two thresholds (absolute lymphocyte count [ALC] <1.0 and <0.75 × 10 9 /L) based on two qualifying values recorded during the first 4 days in ICU. The main outcome measure was time to in-hospital death. Results: Of 8,507 eligible patients, 7,605 (89.4%) had two ALCs recorded during their first 4 days in ICU; of these, 1,482 (19.5%) had sepsis. Persistent lymphopenia (ALC <1.0) was present in 728 of 1,482 (49.1%) and 2,302 of 6,123 (37.6%) patients with and without sepsis, respectively. For ALC <0.75, the results were 487 of 1,482 (32.9%) and 1,125 of 6,123 (18.4%), respectively. Of 3,030 patients with persistent lymphopenia (ALC <1.0), 562 (18.5%) died compared with 439 of 4,575 (9.6%) without persistent lymphopenia. Persistent lymphopenia was an independent risk factor for in-hospital death in all patients. The hazard ratios for death at ALC <1.0 were 1.89 (95% confidence interval, 1.32-2.71; P = 0.0005) and 1.17 (95% confidence interval, 1.02-1.35; P = 0.0246) in patients with and without sepsis respectively. Conclusions: Early persistent lymphopenia is common in critically ill patients and associated with increased risk of death in patients with and without sepsis. Although the association is stronger in patients with sepsis, lymphopenia is a candidate to be considered a treatable trait; drugs that reverse lymphopenia should be trialed in critically ill patients.
Collapse
Affiliation(s)
| | - Rebecca Liu
- Department of Anaesthesiology, Washington University School of Medicine, St Louis, Missouri
| | - Jason Meyer
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | | - Christopher Gianacas
- Biostatistics and Data Science Division, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Amritendu Bhattacharya
- Biostatistics and Data Science Division, The George Institute for Global Health, New Delhi, India
| | - Naomi Hammond
- Critical Care Division, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Richard Hotchkiss
- Department of Anaesthesiology, Washington University School of Medicine, St Louis, Missouri
| | | |
Collapse
|
2
|
Xie WW, Ding YJ, Bhandari S, Li H, Chen HS, Jin SW, Weng HX, Hao Y. CLINICAL VALUE OF SYNDECAN-1 LEVELS IN TRAUMA BRAIN INJURY: A META-ANALYSIS. Shock 2024; 61:49-54. [PMID: 37878479 DOI: 10.1097/shk.0000000000002255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Background: Traumatic brain injury (TBI) is a head trauma usually associated with death and endothelial glycocalyx damage. Syndecan-1 (SDC-1)-a biomarker of glycocalyx degradation-has rarely been reported in meta-analyses to determine the clinical prognostic value in TBI patients. Methods: We looked into PubMed, EMBASE, Cochrane Library, and Web of Science databases from January 1, 1990, to May 1, 2023, to identify eligible studies. A meta-analysis was conducted using RevMan 5.4 and Stata 16.0 with the search terms "SDC-1" and "traumatic brain injury." Results: The present study included five studies with a total of 640 enrolled patients included. Syndecan-1 concentrations were higher in the isotrauma TBI group than in the non-TBI group (standardized mean difference [SMD] = 0.52; 95% CI: 0.03-1.00; P = 0.04). Subgroup analysis revealed statistical significance when comparing the SDC-1 level of multitrauma TBI (TBI + other injuries) group with the isotrauma TBI group (SMD = 0.74; 95% CI: 0.42-1.05; P < 0.001), and the SDC-1 level of the TBI coagulopathy (+) group (TBI with early coagulopathy) with the TBI coagulopathy (-) group (SMD = 1.75; 95% CI: 0.41-3.10; P = 0.01). Isotrauma TBI patients with higher SDC-1 level were at a higher risk of 30-day in-hospital mortality (odds ratio = 3.32; 95% CI: 1.67-6.60; P = 0.0006). Conclusion: This meta-analysis suggests that SDC-1 could be a biomarker of endotheliopathy and coagulopathy in TBI, as it was increased in isotrauma TBI patients and was higher in multitrauma TBI patients. There is a need for additional research into the use of SDC-1 as a prognostic biomarker in TBI, especially in isotrauma TBI patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hai-Xu Weng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | | |
Collapse
|
3
|
Elçioğlu ZC, Errington L, Metes B, Sendama W, Powell J, Simpson AJ, Rostron AJ, Hellyer TP. Pooled prevalence of lymphopenia in all-cause hospitalisations and association with infection: a systematic review and meta-analysis. BMC Infect Dis 2023; 23:848. [PMID: 38042792 PMCID: PMC10693046 DOI: 10.1186/s12879-023-08845-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Lymphopenia is defined as a decrease below normal value (often 1.0 x 109 cells/L) of blood circulating lymphocyte count. In the general population, lymphopenia is associated with an increased risk of hospitalisation secondary to infection, independent of traditional clinical risk factors. In hospital, lymphopenia is associated with increased risk of healthcare-associated infection and mortality. By summarising lymphopenia's prevalence and impact on clinical outcomes, we can identify an at-risk population and inform future studies of immune dysfunction following severe illness. METHODS Peer-reviewed search strategy was performed on three databases. Primary objective was to summarise the pooled prevalence of lymphopenia. Primary outcome was infection including pre-existing lymphopenia as a risk factor for admission with infection and as an in-hospital risk factor for healthcare-associated infection. Secondary outcomes were length of stay and mortality. Mortality data extracted included in-hospital, 28/30-day ('early'), and 90-day/1-year ('late') mortality. Meta-analysis was carried out using random-effects models for each outcome measure. Heterogeneity was assessed using I2 statistic. Joanna Briggs Institute checklist for cohort studies was used to assess risk of bias. The protocol was published on PROSPERO. RESULTS Fifteen observational studies were included. The pooled prevalence of lymphopenia in all-cause hospitalisations was 38% (CI 0.34-0.42, I2= 97%, p< 0.01). Lymphopenia was not associated with an infection diagnosis at hospital admission and healthcare associated infection (RR 1.03; 95% CI 0.26-3.99, p=0.97, I2 = 55% and RR 1.31; 95% CI 0.78-2.20, p=0.31, I2=97%, respectively), but was associated with septic shock (RR 2.72; 95% CI 1.02-7.21, p=0.04, I2 =98%). Lymphopenia was associated with higher in-hospital mortality and higher 'early' mortality rates (RR 2.44; 95% CI 1.71-3.47, p < 0.00001, I2 = 89% and RR 2.05; 95% CI 1.64-2.56, p < 0.00001, I2 = 29%, respectively). Lymphopenia was associated with higher 'late' mortality (RR 1.59; 1.33-1.90, p < 0.00001, I2 = 0%). CONCLUSIONS This meta-analysis demonstrates the high prevalence of lymphopenia across all-cause hospitalisations and associated increased risk of septic shock, early and late mortality. Lymphopenia is a readily available marker that may identify immune dysfunctional patients. Greater understanding of immune trajectories following survival may provide insights into longer-term poor clinical outcomes.
Collapse
Affiliation(s)
- Z C Elçioğlu
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - L Errington
- Faculty of Medical Sciences Library, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - B Metes
- Faculty of Medical Sciences Library, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - W Sendama
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Department of Respiratory Medicine, Royal Victoria Infirmary, Newcastle-upon-Tyne, NE1 4LP, UK
| | - J Powell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - A J Simpson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Department of Respiratory Medicine, Royal Victoria Infirmary, Newcastle-upon-Tyne, NE1 4LP, UK
| | - A J Rostron
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Integrated Critical Care Unit, Sunderland Royal Hospital, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, SR4 7TP, UK
| | - T P Hellyer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
- Department of Critical Care Medicine, Royal Victoria Infirmary, Newcastle-upon-Tyne, NE1 4LP, UK.
| |
Collapse
|
4
|
Lorrey SJ, Waibl Polania J, Wachsmuth LP, Hoyt-Miggelbrink A, Tritz ZP, Edwards R, Wolf DM, Johnson AJ, Fecci PE, Ayasoufi K. Systemic immune derangements are shared across various CNS pathologies and reflect novel mechanisms of immune privilege. Neurooncol Adv 2023; 5:vdad035. [PMID: 37207119 PMCID: PMC10191195 DOI: 10.1093/noajnl/vdad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Background The nervous and immune systems interact in a reciprocal manner, both under physiologic and pathologic conditions. Literature spanning various CNS pathologies including brain tumors, stroke, traumatic brain injury and de-myelinating diseases describes a number of associated systemic immunologic changes, particularly in the T-cell compartment. These immunologic changes include severe T-cell lymphopenia, lymphoid organ contraction, and T-cell sequestration within the bone marrow. Methods We performed an in-depth systematic review of the literature and discussed pathologies that involve brain insults and systemic immune derangements. Conclusions In this review, we propose that the same immunologic changes hereafter termed 'systemic immune derangements', are present across CNS pathologies and may represent a novel, systemic mechanism of immune privilege for the CNS. We further demonstrate that systemic immune derangements are transient when associated with isolated insults such as stroke and TBI but persist in the setting of chronic CNS insults such as brain tumors. Systemic immune derangements have vast implications for informed treatment modalities and outcomes of various neurologic pathologies.
Collapse
Affiliation(s)
- Selena J Lorrey
- Department of Immunology, Duke University, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
| | - Jessica Waibl Polania
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | - Lucas P Wachsmuth
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Medical Scientist Training Program, Duke University, Durham, NC, USA
| | - Alexandra Hoyt-Miggelbrink
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | | | - Ryan Edwards
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
| | - Delaney M Wolf
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | - Peter E Fecci
- Department of Immunology, Duke University, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | | |
Collapse
|
5
|
Dobson GP, Morris JL, Letson HL. Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Front Med (Lausanne) 2022; 9:968453. [PMID: 36111108 PMCID: PMC9468749 DOI: 10.3389/fmed.2022.968453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/20/2022] Open
Abstract
When a traumatic injury exceeds the body's internal tolerances, the innate immune and inflammatory systems are rapidly activated, and if not contained early, increase morbidity and mortality. Early deaths after hospital admission are mostly from central nervous system (CNS) trauma, hemorrhage and circulatory collapse (30%), and later deaths from hyperinflammation, immunosuppression, infection, sepsis, acute respiratory distress, and multiple organ failure (20%). The molecular drivers of secondary injury include damage associated molecular patterns (DAMPs), pathogen associated molecular patterns (PAMPs) and other immune-modifying agents that activate the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic stress response. Despite a number of drugs targeting specific anti-inflammatory and immune pathways showing promise in animal models, the majority have failed to translate. Reasons for failure include difficulty to replicate the heterogeneity of humans, poorly designed trials, inappropriate use of specific pathogen-free (SPF) animals, ignoring sex-specific differences, and the flawed practice of single-nodal targeting. Systems interconnectedness is a major overlooked factor. We argue that if the CNS is protected early after major trauma and control of cardiovascular function is maintained, the endothelial-glycocalyx will be protected, sufficient oxygen will be delivered, mitochondrial energetics will be maintained, inflammation will be resolved and immune dysfunction will be minimized. The current challenge is to develop new systems-based drugs that target the CNS coupling of whole-body function.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | |
Collapse
|