1
|
Zheng XL, Gu WJ, Zhang F, Zhao FZ, Li LZ, Huang HY, Li LJ, Yi YH, Yin HY, Xu J. Exosomal miR-127-5p from BMSCs alleviated sepsis-related acute lung injury by inhibiting neutrophil extracellular trap formation. Int Immunopharmacol 2023; 123:110759. [PMID: 37552907 DOI: 10.1016/j.intimp.2023.110759] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Neutrophil extracellular traps (NETs) play an important role in sepsis-related acute lung injury (ALI). Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes and miRNA are becoming promising agents for the treatment of ALI. The current study aimed to elucidate the mechanism by BMSCs-derived exosomes carrying miR-127-5p inhibiting to the formation of NETs in sepsis-related ALI. We successfully isolated exosomes from BMSCs and confirmed that miR-127-5p was enriched in the exosomes. ALI mice treated with BMSCs-derived exosomes histologically improved, and the release of NETs and inflammatory factors in lung tissue and peripheral blood of mice also decreased compared with LPS group, while the protective effect of exosomes was attenuated after the knockdown of miR-127-5p. Using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay, we identified CD64 as a direct target of miR-127-5p. Meanwhile, BMSCs-derived exosomes can synergize with anti-CD64 mab in ALI mice to reduce tissue damage, inhibit the release of inflammatory factors and NETs formation. The synergistic effect of exosomes was attenuated when miR-127-5p was down-regulated. These findings suggest that exosomal miR-127-5p derived from BMSCs is a potential therapeutic agent for treatment of sepsis-induced ALI through reducing NETs formation by targeting CD64.
Collapse
Affiliation(s)
- Xing-Long Zheng
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wan-Jie Gu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Feng Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Feng-Zhi Zhao
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Long-Zhu Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hai-Yan Huang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Li-Jun Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yu-Hu Yi
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hai-Yan Yin
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Jun Xu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Miyao M, Hirotsu A, Tatsumi K, Tanaka T. Prior exposure to stress exacerbates neuroinflammation and causes long-term behavior changes in sepsis. Heliyon 2023; 9:e16904. [PMID: 37484359 PMCID: PMC10360945 DOI: 10.1016/j.heliyon.2023.e16904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/23/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Background Neuroinflammation can occur during sepsis and is now regarded as the main mechanism underlying various related central nervous system (CNS) disorders. Another well-known factor causing neuroinflammation is psychological stress. In the current study, we examined the effects of prior exposure to stress on sepsis-induced neuroinflammation and CNS symptoms. Experimental procedure Balb/c mice were subjected to wet bedding stress for 2 days, then lipopolysaccharide (LPS) was intraperitoneally administered. For examining the neuroinflammation, the expression of proinflammatory cytokines and NF-κB activity in the brain was analyzed by RT-PCR and ELISA-based assay. Additionally, immunohistochemical study using Iba-1 was performed. Finally, behavior tests were examined one month after LPS treatment. Result and conclusion Stress exposure induced the upregulation of IL-1β, IL-6 and TNFα mRNA in the cerebral cortex 4 h after LPS administration. Suggesting an underlying mechanism, LPS-induced NF-κB activation was significantly upregulated with stress in the brain. Histologically, microglia in the cerebral cortex were reactive and became more abundant with stress, while these effects were further increased with LPS injection. Behavioral analysis conducted showed a significant increase of anxiety-like behaviors in the stressed mice. These results suggest that prior exposure to stress exacerbates neuroinflammation during sepsis and induces long-term behavior changes.
Collapse
Affiliation(s)
- Mariko Miyao
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akiko Hirotsu
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenichiro Tatsumi
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoharu Tanaka
- Department of Anesthesia, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashi Naniwacho, Amagasaki, Hyogo 660-8550, Japan
| |
Collapse
|
3
|
Ding XF, Liang HY, Sun JY, Liu SH, Kan QC, Wang LX, Sun TW. Adipose-derived mesenchymal stem cells ameliorate the inflammatory reaction in CLP-induced septic acute lung injury rats via sTNFR1. J Cell Physiol 2019; 234:16582-16591. [PMID: 30779123 DOI: 10.1002/jcp.28329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
We hypothesized that the adipose-derived mesenchymal stem cells (ADMSCs), which secrete high amounts of soluble molecules, such as soluble tumor necrosis factor receptor 1 (sTNFR1), may ameliorate sepsis-induced acute lung injury (ALI). A total of 120 male adult Sprague-Dawley rats were separated into four groups: the sham control (SC), sepsis induced by cecal ligation and puncture (CLP), CLP-ADMSCs, and CLP-sTNFR1 small interfering RNA (siRNA) groups; CLP groups underwent CLP and then received 1 × 106 ADMSCs with or without knockdown of sTNFR1 intravenously at 1 hr after surgery. Rats were killed at 3, 6, 24, and 48 hr after the SC or CLP procedures. 5-Ethynyl-2'-deoxyuridine-labeled ADMSCs extensively colonized the lungs at 6, 24, and 72 hr after injection. The lung wet/dry (W/D) weight ratios in the CLP group were higher than those in SC group; however, ADMSCs ameliorated the W/D weight ratios following CLP, and this effect was abolished by sTNFR1 siRNA treatment. The levels of serum sTNFR1 and interleukin-10 (IL-10) were higher in the CLP-ADMSCs group and lower in the SC group than in other groups; interestingly, these levels were higher in CLP and CLP-sTNFR1 siRNA groups than in SC group. Tumor necrosis factor-α and IL-6 levels increased significantly after CLP, and ADMSCs could alleviate these changes, but the effect was weakened by sTNFR1 siRNA treatment. The lung cell apoptosis and edema levels were consistent with IL-6 levels among all groups. Therapeutically administered ADMSCs secrete sTNFR1, which most likely protects against ALI in septic rats by ameliorating inflammation and lung edema.
Collapse
Affiliation(s)
- Xian-Fei Ding
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University Translational Medicine platform, Zhengzhou, China
| | - Huo-Yan Liang
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University Translational Medicine platform, Zhengzhou, China
| | - Jun-Yi Sun
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University Translational Medicine platform, Zhengzhou, China
| | - Shao-Hua Liu
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
| | - Quan-Cheng Kan
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Tong-Wen Sun
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University Translational Medicine platform, Zhengzhou, China
| |
Collapse
|
4
|
|
5
|
Guo N, Xu Y, Cao Z. Absinthin attenuates LPS-induced ALI through MIP-1α-mediated inflammatory cell infiltration. Exp Lung Res 2016; 41:514-24. [PMID: 26495959 DOI: 10.3109/01902148.2015.1093566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acute lung injury (ALI) is characterized by severe lung inflammation, and anti-inflammatory treatment is proposed to be a pertinent therapeutic strategy for the disease. Absinthin is a triterpene, extracted from a Chinese herb, with anti-inflammatory properties. The aim of this study was to evaluate whether absinthin can attenuate ALI in a mouse model of lung injury. Mice were treated with various concentrations (20 mg/kg, 40 mg/kg, and 80mg/kg) of absinthin, and lipopolysaccharide (LPS) to induce ALI. We found that the administration of absinthin relieved LPS-induced acute lung injury, as suggested by reduced histological scores, wet-to-dry ratio, myeloperoxidase activity, and accumulation of inflammatory cells in lung bronchoalveolar lavage fluid. Moreover, we demonstrated that absinthin significantly enhanced the expression of matrix metalloproteinase-8 (MMP-8); this effect could inhibit the accumulation of inflammatory cells in lung tissues through a mechanism dependent on MMP-8-mediated inactivation of macrophage inflammatory protein-1α. Therefore, we propose that absinthin is a promising novel therapeutic candidate for the treatment of ALI.
Collapse
Affiliation(s)
- Nailiang Guo
- a Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University , Shanghai , China
| | - Yinghua Xu
- a Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University , Shanghai , China
| | - Zhongqiang Cao
- a Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University , Shanghai , China
| |
Collapse
|
6
|
Abstract
Paraquat (PQ) is a widely used herbicide associated with a high mortality rate, yet, there are no effective treatments for PQ poisoning. PQ may damage alveolar type II cells leading to moderate to severe acute respiratory distress syndrome (ARDS). The present study was undertaken to show that PQ causes alveolar type II (A549) cell death and to evaluate whether chloroquine (CQ) can protect A549 cells against PQ-induced cell death. The results showed that high concentrations of PQ resulted in toxicity, as indicated by a decrease in cell viability. More importantly, for the first time, CQ was found to improve cell viability of PQ treated A549 cells. Moreover, our data demonstrated that CQ increased lysosome-associated membrane protein-1, lysosome-associated membrane protein-2 and light chain-3 expressions, suggesting that the mechanism by which CQ rescues PQ-induced cytotoxicity may be through protection of the lysosomal membrane or up-regulation of autophagy. In conclusion, our study indicates that CQ may be used as a potential drug to rescue PQ-induced ARDS.
Collapse
Affiliation(s)
- Lingjie Xu
- a Department of Emergency Medicine , Peking Union Medical College Hospital, Peking Union Medical College , Beijing , China and
| | - Zhong Wang
- b Beijing Tsinghua Hospital, Tsinghua University , Beijing , China
| |
Collapse
|
7
|
Zhai Y, Zhou X, Dai Q, Fan Y, Huang X. Hydrogen-rich saline ameliorates lung injury associated with cecal ligation and puncture-induced sepsis in rats. Exp Mol Pathol 2015; 98:268-76. [PMID: 25746665 DOI: 10.1016/j.yexmp.2015.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/16/2014] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
AIMS Although hydrogen has been proved to be a novel therapeutic medical gas in several lung injury animal models, to our knowledge, it has not been tested yet in acute lung injury (ALI) induced by cecal ligation and puncture (CLP). This study was to investigate the hypothesis that hydrogen could ameliorate CLP-induced lung injury in rats. METHODS AND RESULTS Our experiments exhibited that gas exchange dysfunction and lung tissue inflammation were observed in animals exposed to CLP. Hydrogen-rich saline treatment significantly attenuated lung injury as indicated by significantly improved gas exchange and histological changes in the lung and significantly reduced lung water content (LWC) and neutrophil infiltration 8h after CLP. Lipid peroxidation and DNA oxidation in the lung tissue were significantly reduced along with a decreased nitrotyrosine content and maintained superoxide dismutase activity in the presence of hydrogen, demonstrating antioxidant role of hydrogen in CLP-induced ALI. Importantly, hydrogen-rich saline treatment significantly inhibited the activation of p-p38 and NF-κB while suppressing the production of several proinflammatory mediators. CONCLUSIONS This observation indicated that hydrogen-rich saline peritoneal injection improves histological and functional assessment in rat model of CLP-induced ALI. The therapeutic effects of hydrogen-rich saline may be related to antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Yu Zhai
- Department of basic medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China
| | - Xiaohong Zhou
- Department of basic medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China
| | - Qingchun Dai
- Department of intensive care unit, Cangzhou Central Hospital, Cangzhou 061001, PR China
| | - Yamin Fan
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xinli Huang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
8
|
Alanyl-glutamine resolves lipopolysaccharide-induced lung injury in mice by modulating the polarization of regulatory T cells and T helper 17 cells. J Nutr Biochem 2013; 24:1555-63. [DOI: 10.1016/j.jnutbio.2013.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/07/2013] [Accepted: 01/11/2013] [Indexed: 12/22/2022]
|
9
|
Huang XL, Liu Y, Zhou JL, Qin YC, Ren XB, Zhou XH, Cao H. Role of Sulfur Dioxide in Acute Lung Injury Following Limb Ischemia/Reperfusion in Rats. J Biochem Mol Toxicol 2013; 27:389-97. [PMID: 23801594 DOI: 10.1002/jbt.21492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/01/2013] [Accepted: 04/14/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Xin-Li Huang
- Department of Pathophysiology; Hebei Medical University; Shijiazhuang; People's Republic of China
| | - Yang Liu
- Department of Orthopedics; Beijing Chaoyang Hospital, Capital Medical University; Beijing; People's Republic of China
| | - Jun-Lin Zhou
- Department of Orthopedics; Beijing Chaoyang Hospital, Capital Medical University; Beijing; People's Republic of China
| | - Yong-Chao Qin
- Department of Orthopedics; Beijing Chaoyang Hospital, Capital Medical University; Beijing; People's Republic of China
| | - Xiao-Bao Ren
- Department of Emergency, Southwestern Hospital; Third Military Medical University; Chongqing; People's Republic of China
| | - Xiao-Hong Zhou
- Department of Pathophysiology; Hebei Medical University; Shijiazhuang; People's Republic of China
| | - Hua Cao
- Department of Pathophysiology; Hebei Medical University; Shijiazhuang; People's Republic of China
| |
Collapse
|
10
|
Kastis GA, Toumpanakis D, Loverdos K, Anaplioti A, Samartzis A, Argyriou P, Loudos G, Karavana V, Tzouda V, Datseris I, Rontogianni D, Roussos C, Theocharis SE, Vassilakopoulos T. Dose- and time-dependent effects of lipopolysaccharide on technetium-99-m-labeled diethylene-triamine pentaacetatic acid clearance, respiratory system mechanics and pulmonary inflammation. Exp Biol Med (Maywood) 2013; 238:209-22. [PMID: 23576803 DOI: 10.1258/ebm.2012.012313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Intratracheal administration of lipopolysaccharide (LPS) in animals is a commonly used model of acute lung injury, characterized by increased alveolar-capillary membrane permeability causing protein-rich edema, inflammation, deterioration of lung mechanical function and impaired gas exchange. Technetium-99-m-labeled diethylene-triamine pentaacetatic acid ((99m)Tc-DTPA) scintigraphy is a non-invasive technique to assess lung epithelial permeability. We hypothesize that the longer the exposure and the higher the dose of LPS the greater the derangement of the various indices of lung injury. After 3, 6 and 24 h of 5 or 40 μg LPS intratracheally administration, (99m)Tc-DTPA was instilled in the lung. Images were acquired for 90 min with a γ-camera and the radiotracer clearance was estimated. In another subgroup, the mechanical properties of the respiratory system were estimated with the forced oscillation technique and static pressure-volume curves, 4.5, 7.5 and 25.5 h post-LPS (iso-times with the end of (99m)Tc-DTPA scintigraphy). Bronchoalveolar lavage (BAL) was performed and a lung injury score was estimated by histology. Lung myeloperoxidase (MPO) activity was measured. (99m)Tc-DTPA clearance increased in all LPS challenged groups compared with control. DTPA clearance presented a U-shape time course at the lower dose, while LPS had a declining effect over time at the larger dose. At 7.5 and 25.5 h post-LPS, tissue elasticity was increased and static compliance decreased at both doses. Total protein in the BAL fluid increased at both doses only at 4.5 h Total lung injury score and MPO activity were elevated in all LPS-treated groups. There is differential time- and dose-dependency of the various indices of lung injury after intratracheally LPS instillation in rats.
Collapse
Affiliation(s)
- George A Kastis
- Department of Critical Care and Pulmonary Services, G.P. Livanos, M. Simou and Experimental Surgery Laboratories, University of Athens, Medical School, Evangelismos Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fu PK, Yang CY, Tsai TH, Hsieh CL. Moutan cortex radicis improves lipopolysaccharide-induced acute lung injury in rats through anti-inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1206-1215. [PMID: 22921747 DOI: 10.1016/j.phymed.2012.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/01/2012] [Accepted: 07/15/2012] [Indexed: 05/27/2023]
Abstract
Moutan cortex radicis (MCR) is a Chinese herbal medicine that was widely used over a long period as an analgesic, antipyretic, and anti-inflammatory agent in China. Lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rat models is considered similar to adult respiratory distress syndrome (ARDS) in humans. Therefore, the present study investigates the effect of MCR on ALI. The ALI model was developed through the intra-tracheal (IT) administration of LPS (16mg/kg) to Sprague-Dawley (SD) rats, which formed the LPS group. MCR was orally administered before and after LPS was introduced into rats (MCR-LPS group and LPS-MCR group, respectively). In the MCR-LPS group, rats received MCR 2g/kg/times 3 times before LPS challenge; the LPS-MCR group received MCR 2g/kg/times 3 times after LPS challenge. The results of this experiment indicate that the number of total cells and neutrophils and the concentration of protein exudation in bronchoalveolar lavage fluid (BALF) significantly decreased in the MCR-LPS group. Cytokine levels, including levels of interleukin (IL)-1β, macrophage-inflammatory peptide (MIP)-2, IL-6, and IL-10, in BALF were also significantly inhibited at 16h after LPS administration in the MCR-LPS group. Myeloperoxidase (MPO) activity in lung tissue was reduced in the MCR-LPS and LPS-MCR groups at 16h after LPS administration. Furthermore, leukocyte infiltration and protein exudation in the alveolar space were less severe in the MCR-LPS group than in the LPS group. Therefore, the findings of this study suggest that the administration of MCR prior to LPS improves ALI, possibly mediating ALI through anti-inflammation.
Collapse
Affiliation(s)
- Pin-Kuei Fu
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | |
Collapse
|
12
|
Anti-inflammatory and anticoagulative effects of paeonol on LPS-induced acute lung injury in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:837513. [PMID: 22454687 PMCID: PMC3291481 DOI: 10.1155/2012/837513] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/27/2011] [Accepted: 10/27/2011] [Indexed: 01/11/2023]
Abstract
Paeonol is an active component of Moutan Cortex Radicis and is widely used as an analgesic, antipyretic, and anti-inflammatory agent in traditional Chinese medicine. We wanted to determine the role of paeonol in treating adult respiratory distress syndrome (ARDS). We established an acute lung injury (ALI) model in Sprague-Dawley rats, which was similar to ARDS in humans, using intratracheal administration of lipopolysaccharide (LPS). The intraperitoneal administration of paeonol successfully reduced histopathological scores and attenuated myeloperoxidase-reactive cells as an index of polymorphonuclear neutrophils infiltration and also reduces inducible nitric oxide synthase expression in the lung tissue, at 16 h after LPS administration. In addition, paeonol reduced proinflammatory cytokines in bronchoalveolar lavage fluid, including tumor-necrosis factor-α, interleukin-1β, interleukin-6, and plasminogen-activated inhibition factor-1. These results indicated that paeonol successfully attenuates inflammatory and coagulation reactions to protect against ALI.
Collapse
|
13
|
Does activation of the FcgammaRIIa play a role in the pathogenesis of the acute lung injury/acute respiratory distress syndrome? Clin Sci (Lond) 2010; 118:519-26. [PMID: 20088831 PMCID: PMC2811426 DOI: 10.1042/cs20090422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ALI (acute lung injury) and its more severe form ARDS (acute respiratory distress syndrome) are inflammatory diseases of the lung characterized by hypoxaemia and diffuse bilateral infiltrates. Disruption of epithelial integrity and injury to endothelium are contributing factors of the development of ALI/ARDS, and alveolar damage is the most pronounced feature of ALI/ARDS. The resulting increase in lung microvascular permeability promotes influx of inflammatory cells to the alveolar spaces. Oedema fluid contains pro-nflammatory mediators and plasma proteins, including Igs (immunoglobulins). Moreover, several reports describe the presence of autoantibodies and immune complexes [anti-IL-8 (interleukin-8) autoantibody/IL-8 complexes] in lung fluids (oedema and bronchoalveolar lavage fluids) from patients with ALI/ARDS. These immune complexes associate with FcgammaRIIa (Fcgamma IIa receptor) in lungs of patients with ARDS. Furthermore, the expression of FcgammaRIIa is substantially elevated in lungs of these patients. FcgammaRIIa appears on virtually all myeloid cells, platelets and endothelial cells. It is a low-affinity receptor for IgG that preferentially binds aggregated immunoglobulins and immune complexes. FcgammaRs regulate phagocytosis and cell-mediated cytotoxicity, and initiate the release of inflammatory mediators. It should be noted that immune complexes formed between either anti-neutrophil autoantibodies and their specific antigens or anti-HLA (human leucocyte antigen) antibodies and target antigens are implicated in the pathogenesis of TRALI (transfusion-related acute lung injury), and importantly, animal studies indicate that FcgammaRs are essential for these complexes to cause damage to the lungs. Therefore, we hypothesize that FcgammaRs such as FcgammaRIIa could contribute to the pathogenesis of ALI/ARDS.
Collapse
|
14
|
|
15
|
Delay of LPS-induced acute lung injury resolution by soluble immune complexes is neutrophil dependent. Shock 2009; 33:106; author reply 106-7. [PMID: 19996919 DOI: 10.1097/shk.0b013e3181ac9a53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
WHAT'S NEW IN SHOCK, SEPTEMBER 2009? Shock 2009; 32:237-8. [DOI: 10.1097/shk.0b013e3181ad5b84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|