1
|
Xue F, Ragno M, Blackburn SA, Fasseas M, Maitra S, Liang M, Rai S, Mastroianni G, Tholozan F, Thompson R, Sellars L, Hall R, Saunter C, Weinkove D, Ezcurra M. New tools to monitor Pseudomonas aeruginosa infection and biofilms in vivo in C. elegans. Front Cell Infect Microbiol 2024; 14:1478881. [PMID: 39737329 PMCID: PMC11683784 DOI: 10.3389/fcimb.2024.1478881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/08/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Antimicrobial resistance is a growing health problem. Pseudomonas aeruginosa is a pathogen of major concern because of its multidrug resistance and global threat, especially in health-care settings. The pathogenesis and drug resistance of P. aeruginosa depends on its ability to form biofilms, making infections chronic and untreatable as the biofilm protects against antibiotics and host immunity. A major barrier to developing new antimicrobials is the lack of in vivo biofilm models. Standard microbiological testing is usually performed in vitro using planktonic bacteria, without representation of biofilms, reducing translatability. Here we develop tools to study both infection and biofilm formation by P. aeruginosa in vivo to accelerate development of strategies targeting infection and pathogenic biofilms. Methods Biofilms were quantified in vitro using Crystal Violet staining and fluorescence biofilm assays. For in vivo assays, C. elegans were infected with P. aeruginosa strains. Pathogenicity was quantified by measuring healthspan, survival and GFP fluorescence. Healthspan assays were performed using the WormGazerTM automated imaging technology. Results Using the nematode Caenorhabditis elegans and P. aeruginosa reporters combined with in vivo imaging we show that fluorescent P. aeruginosa reporters that form biofilms in vitro can be used to visualize tissue infection. Using automated tracking of C. elegans movement, we find that that the timing of this infection corresponds with a decline in health endpoints. In a mutant strain of P. aeruginosa lacking RhlR, a transcription factor that controls quorum sensing and biofilm formation, we find reduced capacity of P. aeruginosa to form biofilms, invade host tissues and negatively impact healthspan and survival. Discussion Our findings suggest that RhlR could be a new antimicrobial target to reduce P. aeruginosa biofilms and virulence in vivo and C. elegans could be used to more effectively screen for new drugs to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Feng Xue
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martina Ragno
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Michael Fasseas
- Magnitude Biosciences Limited, NETPark Plexus, Sedgefield, United Kingdom
| | - Sushmita Maitra
- Magnitude Biosciences Limited, NETPark Plexus, Sedgefield, United Kingdom
| | - Mingzhi Liang
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Subash Rai
- The NanoVision Centre, Queen Mary University of London, London, United Kingdom
| | - Giulia Mastroianni
- The NanoVision Centre, Queen Mary University of London, London, United Kingdom
| | | | - Rachel Thompson
- Perfectus Biomed Group, Sci-Tech Daresbury, Chesire, United Kingdom
| | - Laura Sellars
- Perfectus Biomed Group, Sci-Tech Daresbury, Chesire, United Kingdom
| | - Rebecca Hall
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Chris Saunter
- Magnitude Biosciences Limited, NETPark Plexus, Sedgefield, United Kingdom
| | - David Weinkove
- Magnitude Biosciences Limited, NETPark Plexus, Sedgefield, United Kingdom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
2
|
Bonorino KC, Iria Kraus S, Henrique Cardoso Martins G, Jorge Probst J, Petry Moeke DM, Henrique Dos Santos Sumar A, Reis Casal Y, Rodolfo Moreira Borges Oliveira F, Sordi R, Assreuy J, Duarte da Silva M, de Camargo Hizume Kunzler D. Lung-brain crosstalk: Behavioral disorders and neuroinflammation in septic survivor mice. Brain Behav Immun Health 2024; 40:100823. [PMID: 39252983 PMCID: PMC11381903 DOI: 10.1016/j.bbih.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 09/11/2024] Open
Abstract
Although studies have suggested an association between lung infections and increased risk of neuronal disorders (e.g., dementia, cognitive impairment, and depressive and anxious behaviors), its mechanisms remain unclear. Thus, an experimental mice model of pulmonary sepsis was developed to investigate the relationship between lung and brain inflammation. Male Swiss mice were randomly assigned to either pneumosepsis or control groups. Pneumosepsis was induced by intratracheal instillation of Klebsiella pneumoniae, while the control group received a buffer solution. The model's validation included assessing systemic markers, as well as tissue vascular permeability. Depression- and anxiety-like behaviors and cognitive function were assessed for 30 days in sepsis survivor mice, inflammatory profiles, including cytokine levels (lungs, hippocampus, and prefrontal cortex) and microglial activation (hippocampus), were examined. Pulmonary sepsis damaged distal organs, caused peripheral inflammation, and increased vascular permeability in the lung and brain, impairing the blood-brain barrier and resulting in bacterial dissemination. After sepsis induction, we observed an increase in myeloperoxidase activity in the lungs (up to seven days) and prefrontal cortex (up to 24 h), proinflammatory cytokines in the hippocampus and prefrontal cortex, and percentage of areas with cells positive for ionized calcium-binding adaptor molecule 1 (IBA-1) in the hippocampus. Also, depression- and anxiety-like behaviors and changes in short-term memory were observed even 30 days after sepsis induction, suggesting a crosstalk between inflammatory responses of lungs and brain.
Collapse
Affiliation(s)
| | | | | | - Jéssica Jorge Probst
- Federal University of Santa Catarina, Postgraduate Program in Biochemistry, Brazil
| | | | | | - Yuri Reis Casal
- Neuropathology, Department of Pathology, Medical School Hospital of the São Paulo University, Brazil
| | | | - Regina Sordi
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Brazil
| | | | | |
Collapse
|
3
|
Gu XM, Lu CY, Pan J, Ye JZ, Zhu QH. Alteration of intestinal microbiota is associated with diabetic retinopathy and its severity: Samples collected from southeast coast Chinese. World J Diabetes 2023; 14:862-882. [PMID: 37383585 PMCID: PMC10294055 DOI: 10.4239/wjd.v14.i6.862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Current approaches for the therapy of diabetic retinopathy (DR), which was one of leading causes of visual impairment, have their limitations. Animal experiments revealed that restructuring of intestinal microbiota can prevent retinopathy. AIM To explore the relationship between intestinal microbiota and DR among patients in the southeast coast of China, and provide clues for novel ways to prevention and treatment methods of DR. METHODS The fecal samples of non-diabetics (Group C, n = 15) and diabetics (Group DM, n = 30), including 15 samples with DR (Group DR) and 15 samples without DR (Group D), were analyzed by 16S rRNA sequencing. Intestinal microbiota compositions were compared between Group C and Group DM, Group DR and Group D, as well as patients with proliferative diabetic retinopathy (PDR) (Group PDR, n = 8) and patients without PDR (Group NPDR, n = 7). Spearman correlation analyses were performed to explore the associations between intestinal microbiota and clinical indicators. RESULTS The alpha and beta diversity did not differ significantly between Group DR and Group D as well as Group PDR and Group NPDR. At the family level, Fusobacteriaceae, Desulfovibrionaceae and Pseudomonadaceae were significantly increased in Group DR than in Group D (P < 0.05, respectively). At the genera level, Fusobacterium, Pseudomonas, and Adlercreutzia were increased in Group DR than Group D while Senegalimassilia was decreased (P < 0.05, respectively). Pseudomonas was negatively correlated with NK cell count (r = -0.39, P = 0.03). Further, the abundance of genera Eubacterium (P < 0.01), Peptococcus, Desulfovibrio, Acetanaerobacterium and Negativibacillus (P < 0.05, respectively) were higher in Group PDR compared to Group NPDR, while Pseudomonas, Alloprevotella and Tyzzerella (P < 0.05, respectively) were lower. Acetanaerobacterium and Desulfovibrio were positively correlated with fasting insulin (r = 0.53 and 0.61, respectively, P < 0.05), when Negativibacillus was negatively correlated with B cell count (r = -0.67, P < 0.01). CONCLUSION Our findings indicated that the alteration of gut microbiota was associated with DR and its severity among patients in the southeast coast of China, probably by multiple mechanisms such as producing short-chain fatty acids, influencing permeability of blood vessels, affecting levels of vascular cell adhesion molecule-1, hypoxia-inducible factor-1, B cell and insulin. Modulating gut microbiota composition might be a novel strategy for prevention of DR, particularly PDR in population above.
Collapse
Affiliation(s)
- Xue-Mei Gu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Wenzhou Key Laboratory of Diabetes Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chao-Yin Lu
- Department of Endocrinology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jian Pan
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jian-Zhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Qi-Han Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Wenzhou Key Laboratory of Diabetes Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
4
|
Eustes AS, Dayal S. The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. Int J Mol Sci 2022; 23:7837. [PMID: 35887184 PMCID: PMC9320310 DOI: 10.3390/ijms23147837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs) play important roles in hemostasis and thrombosis. There are three major types of PEVs described based on their size and characteristics, but newer types may continue to emerge owing to the ongoing improvement in the methodologies and terms used to define various types of EVs. As the literature on EVs is growing, there are continuing attempts to standardize protocols for EV isolation and reach consensus in the field. This review provides information on mechanisms of PEV production, characteristics, cellular interaction, and their pathological role, especially in autoimmune and infectious diseases. We also highlight the mechanisms through which PEVs can activate parent cells in a feedback loop.
Collapse
Affiliation(s)
- Alicia S. Eustes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
5
|
Pre-treatment and continuous administration of simvastatin during sepsis improve metabolic parameters and prevent CNS injuries in survivor rats. Mol Cell Biochem 2022; 477:2657-2667. [DOI: 10.1007/s11010-022-04463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
6
|
Molecular Mechanisms Involved in Pseudomonas aeruginosa Bacteremia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:325-345. [DOI: 10.1007/978-3-031-08491-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
7
|
Zhang CN, Li FJ, Zhao ZL, Zhang JN. The role of extracellular vesicles in traumatic brain injury-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 321:L885-L891. [PMID: 34549593 DOI: 10.1152/ajplung.00023.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute lung injury (ALI), a common complication after traumatic brain injury (TBI), can evolve into acute respiratory distress syndrome (ARDS) and has a mortality rate of 30%-40%. Secondary ALI after TBI exhibits the following typical pathological features: infiltration of neutrophils into the alveolar and interstitial space, alveolar septal thickening, alveolar edema, and hemorrhage. Extracellular vesicles (EVs) were recently identified as key mediators in TBI-induced ALI. Due to their small size and lipid bilayer, they can pass through the disrupted blood-brain barrier (BBB) into the peripheral circulation and deliver their contents, such as genetic material and proteins, to target cells through processes such as fusion, receptor-mediated interactions, and uptake. Acting as messengers, EVs contribute to mediating brain-lung cross talk after TBI. In this review, we aim to summarize the mechanism of EVs in TBI-induced ALI, which may provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Chao-Nan Zhang
- Department of Neurosurgery, Tianjin Institute of Neurology, grid.412645.0Tianjin Medical University General Hospital, Tianjin, China
| | - Fan-Jian Li
- Department of Neurosurgery, Tianjin Institute of Neurology, grid.412645.0Tianjin Medical University General Hospital, Tianjin, China
| | - Zi-Long Zhao
- Department of Neurosurgery, Tianjin Institute of Neurology, grid.412645.0Tianjin Medical University General Hospital, Tianjin, China
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Institute of Neurology, grid.412645.0Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
8
|
Aerobic exercise ameliorates survival, clinical score, lung inflammation, DNA and protein damage in septic mice. Cytokine 2021; 140:155401. [PMID: 33508652 DOI: 10.1016/j.cyto.2020.155401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Sepsis is a potentially deadly organic dysfunction, and one of the main causes of mortality in intensive care units (ICU). Aerobic exercise (AE) is a preventive intervention in the establishment of inflammatory conditions, such as chronic lung diseases, but its effects on sepsis remain unclear. Therefore, this study aimed to evaluate the effects of AE on health condition, mortality, inflammation, and oxidative damage in an experimental model of pneumosepsis induced by Klebsiella pneumoniae (K.p). METHODS Animals were randomly allocated to Control; Exercise (EXE); Pneumosepsis (PS) or Exercise + Pneumosepsis (EPS) groups. Exercised animals were submitted to treadmill exercise for 2 weeks, 30 min/day, prior to pneumosepsis induced by K.p tracheal instillation. RESULTS PS produced a striking decrease in the health condition leading to massive death (85%). AE protected mice, as evidenced by better clinical scores and increased survival (70%). AE alleviated sickness behavior in EPS mice as evaluated in the open field test, and inflammation (nitrite + nitrate, TNF-α and IL-1β levels) in broncoalveolar fluid. Catalase activity, oxidative damage to proteins and DNA was increased by sepsis and prevented by exercise. CONCLUSION Overall, the beneficial effects of exercise in septic animals encompassed a markedly improved clinical score and decreased mortality, along with lower inflammation markers, less DNA and protein damage, as well as preserved antioxidant enzyme activity. Neural network risk analysis revealed exercise had a considerable effect on the overall health condition of septic mice.
Collapse
|
9
|
Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, Moehrlen U, Lode H, Huwer H, Hudel M, Mraheil MA, Toque HAF, Chakraborty T, Hamacher J. Impact of Bacterial Toxins in the Lungs. Toxins (Basel) 2020; 12:toxins12040223. [PMID: 32252376 PMCID: PMC7232160 DOI: 10.3390/toxins12040223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.
Collapse
Affiliation(s)
- Rudolf Lucas
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
| | - Joyce Gonzales
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Thomas Bodmer
- Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland;
| | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland;
| | - Hartmut Lode
- Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany;
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 Voelklingen/Saar, Germany;
| | - Martina Hudel
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Mobarak Abu Mraheil
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Haroldo Alfredo Flores Toque
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Trinad Chakraborty
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, D-66421 Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, D-66421 Homburg, Germany
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| |
Collapse
|
10
|
Yue L, Pang Z, Li H, Yang T, Guo L, Liu L, Mei J, Song X, Xie T, Zhang Y, He X, Lin TJ, Xie Z. CXCL4 contributes to host defense against acute Pseudomonas aeruginosa lung infection. PLoS One 2018; 13:e0205521. [PMID: 30296305 PMCID: PMC6175521 DOI: 10.1371/journal.pone.0205521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Platelets have been implicated in pulmonary inflammation following exposure to bacterial stimuli. The mechanisms involved in the platelet-mediated host response to respiratory bacterial infection remain incompletely understood. In this study, we demonstrate that platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) plays critical roles in a mouse model of acute bacterial pneumonia using Pseudomonas aeruginosa. Platelets are activated during P. aeruginosa infection, and mice depleted of platelets display markedly increased mortality and impaired bacterial clearance. CXCL4 deficiency impairs bacterial clearance and lung epithelial permeability, which correlate with decreased neutrophil recruitment to BALF. Interestingly, CXCL4 deficiency selectively regulates chemokine production, suggesting that CXCL4 has an impact on other chemokine expression. In addition, CXCL4 deficiency reduces platelet-neutrophil interactions in blood following P. aeruginosa infection. Further studies revealed that platelet-derived CXCL4 contributes to the P. aeruginosa-killing of neutrophils. Altogether, these findings demonstrate that CXCL4 is a vital chemokine that plays critical roles in bacterial clearance during P. aeruginosa infection through recruiting neutrophils to the lungs and intracellular bacterial killing.
Collapse
Affiliation(s)
- Lei Yue
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hua Li
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Ting Yang
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Lei Guo
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Longding Liu
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Junjie Mei
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xia Song
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Tianhong Xie
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Ye Zhang
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xin He
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Tong-Jun Lin
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- * E-mail: (ZX); (TJL)
| | - Zhongping Xie
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
- * E-mail: (ZX); (TJL)
| |
Collapse
|
11
|
Gonçalves MC, Horewicz VV, Lückemeyer DD, Prudente AS, Assreuy J. Experimental Sepsis Severity Score Associated to Mortality and Bacterial Spreading is Related to Bacterial Load and Inflammatory Profile of Different Tissues. Inflammation 2018; 40:1553-1565. [PMID: 28567497 DOI: 10.1007/s10753-017-0596-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pneumonia-induced sepsis is responsible for about 50% of cases in the world. Patients who develop severe sepsis and septic shock present organ dysfunction and elevated plasma cytokine levels, which may lead to death. Clinical scores are important to evaluate the framework of septic patients and are used to predict the syndrome progress, prognostics, and mortality. The objective of the present study was to verify the applicability of a murine clinical score system to experimental sepsis (pneumonia-induced sepsis in male mice) and to correlate it with mortality and bacterial dissemination in different organs. Results demonstrated that animals which present higher clinical scores (>3) are more likely to die. Animals presenting high clinical scores exhibited transient bacteremia and displayed bacterial spreading to different organs such as heart, kidney, liver, and brain. There is a correlation between clinical score and bacterial dissemination and consequently greater risk of death. In addition, animals which showed bacterial dissemination in more than three organs and high clinical scores presented high levels of cytokines (TNF-α, MCP-1, IL-6, and IL-10) in plasma, lung, heart, liver, kidney, and brain. Therefore, our study suggests that (1) severity scores have predictive power in experimental models of sepsis and (2) high concentrations of tissue cytokines may contribute to localized inflammation and be one of the factors responsible for the systemic inflammatory syndrome of sepsis.
Collapse
Affiliation(s)
- Muryel Carvalho Gonçalves
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Verônica Vargas Horewicz
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora Denardin Lückemeyer
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Arthur Silveira Prudente
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil. .,Department of Pharmacology, Block D/CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
12
|
Casasanta MA, Yoo CC, Smith HB, Duncan AJ, Cochrane K, Varano AC, Allen-Vercoe E, Slade DJ. A chemical and biological toolbox for Type Vd secretion: Characterization of the phospholipase A1 autotransporter FplA from Fusobacterium nucleatum. J Biol Chem 2017; 292:20240-20254. [PMID: 29021252 PMCID: PMC5724010 DOI: 10.1074/jbc.m117.819144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
Fusobacterium nucleatum is an oral pathogen that is linked to multiple human infections and colorectal cancer. Strikingly, F. nucleatum achieves virulence in the absence of large, multiprotein secretion systems (Types I, II, III, IV, and VI), which are widely used by Gram-negative bacteria for pathogenesis. By contrast, F. nucleatum strains contain genomic expansions of Type V secreted effectors (autotransporters) that are critical for host cell adherence, invasion, and biofilm formation. Here, we present the first characterization of an F. nucleatum Type Vd phospholipase class A1 autotransporter (strain ATCC 25586, gene FN1704) that we hereby rename Fusobacterium phospholipase autotransporter (FplA). Biochemical analysis of multiple Fusobacterium strains revealed that FplA is expressed as a full-length 85-kDa outer membrane–embedded protein or as a truncated phospholipase domain that remains associated with the outer membrane. Whereas the role of Type Vd secretion in bacteria remains unidentified, we show that FplA binds with high affinity to host phosphoinositide-signaling lipids, revealing a potential role for this enzyme in establishing an F. nucleatum intracellular niche. To further analyze the role of FplA, we developed an fplA gene knock-out strain, which will guide future in vivo studies to determine its potential role in F. nucleatum pathogenesis. In summary, using recombinant FplA constructs, we have identified a biochemical toolbox that includes lipid substrates for enzymatic assays, potent inhibitors, and chemical probes to detect, track, and characterize the role of Type Vd secreted phospholipases in Gram-negative bacteria.
Collapse
Affiliation(s)
- Michael A Casasanta
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Christopher C Yoo
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Hans B Smith
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Alison J Duncan
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Kyla Cochrane
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, Simon Fraser University, Vancouver, British Columbia V5A 1S6, Canada
| | - Ann C Varano
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061.
| |
Collapse
|
13
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
14
|
Plotkowski MC, Estato V, Santos SA, da Silva MCA, Miranda AS, de Miranda PE, Pinho V, Tibiriça E, Morandi V, Teixeira MM, Vianna A, Saliba AM. Contribution of the platelet activating factor signaling pathway to cerebral microcirculatory dysfunction during experimental sepsis by ExoU producing Pseudomonas aeruginosa. Pathog Dis 2015; 73:ftv046. [PMID: 26187894 DOI: 10.1093/femspd/ftv046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/18/2022] Open
Abstract
Intravital microscopy was used to assess the involvement of ExoU, a Pseudomonas aeruginosa cytotoxin with phospholipase A2 activity, in dysfunction of cerebral microcirculation during experimental pneumosepsis. Cortical vessels from mice intratracheally infected with low density of the ExoU-producing PA103 P. aeruginosa strain exhibited increased leukocyte rolling and adhesion to venule endothelium, decreased capillar density and impaired arteriolar response to vasoactive acetylcholine. These phenomena were mediated by the platelet activating factor receptor (PAFR) pathway because they were reversed in mice treated with a PAFR antagonist prior to infection. Brains from PA103-infected animals exhibited a perivascular inflammatory infiltration that was not detected in animals infected with an exoU deficient mutant or in mice treated with the PAFR antagonist and infected with the wild type bacteria. No effect on brain capillary density was detected in mice infected with the PAO1 P. aeruginosa strain, which do not produce ExoU. Finally, after PA103 infection, mice with a targeted deletion of the PAFR gene exhibited higher brain capillary density and lower leukocyte adhesion to venule endothelium, as well as lower increase of systemic inflammatory cytokines, when compared to wild-type mice. Altogether, our results establish a role for PAFR in mediating ExoU-induced cerebral microvascular failure in a murine model of sepsis.
Collapse
Affiliation(s)
- Maria Cristina Plotkowski
- Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, 20551-30 Rio de Janeiro, Brazil
| | - Vanessa Estato
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Rio de Janeiro, 21045-900, Brazil
| | - Sabrina Alves Santos
- Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, 20551-30 Rio de Janeiro, Brazil
| | | | - Aline Silva Miranda
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Pedro Elias de Miranda
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Vanessa Pinho
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Eduardo Tibiriça
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Rio de Janeiro, 21045-900, Brazil
| | - Verônica Morandi
- Department of Cell Biology, State University of Rio de Janeiro, Rio de Janeiro, 20550-013, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Albanita Vianna
- Department of Pathology, State University of Rio de Janeiro, Rio de Janeiro, 22551-030, Brazil
| | - Alessandra Mattos Saliba
- Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, 20551-30 Rio de Janeiro, Brazil
| |
Collapse
|
15
|
da Cunha LG, Ferreira MF, de Moraes JA, Reis PA, Castro-Faria-Neto HC, Barja-Fidalgo C, Plotkowski MC, Saliba AM. ExoU-induced redox imbalance and oxidative stress in airway epithelial cells during Pseudomonas aeruginosa pneumosepsis. Med Microbiol Immunol 2015; 204:673-80. [PMID: 25904542 PMCID: PMC7100071 DOI: 10.1007/s00430-015-0418-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 04/12/2015] [Indexed: 12/14/2022]
Abstract
ExoU is a potent proinflammatory toxin produced by Pseudomonas aeruginosa, a major agent of severe lung infection and sepsis. Because inflammation is usually associated with oxidative stress, we investigated the effect of ExoU on free radical production and antioxidant defense mechanisms during the course of P. aeruginosa infection. In an experimental model of acute pneumonia, ExoU accounted for increased lipid peroxidation in mice lungs as soon as 3 h after intratracheal instillation of PA103 P. aeruginosa strain. The contribution of airway cells to the generation of a redox imbalance was assessed by in vitro tests carried out with A549 airway epithelial cells. Cultures infected with the ExoU-producing PA103 P. aeruginosa strain produced significantly increased concentrations of lipid hydroperoxides, 8-isoprostane, reactive oxygen intermediates, peroxynitrite and nitric oxide (NO), when compared to cells infected with exoU-deficient mutants. Overproduction of NO by PA103-infected cells likely resulted from overexpression of both inducible and endothelial NO synthase isoforms. PA103 infection was also associated with a significantly increased activity of superoxide dismutase (SOD) and decreased levels of reduced glutathione (GSH), a major antioxidant compound. Our findings unveil another potential mechanism of tissue damage during infection by ExoU-producing P. aeruginosa strains.
Collapse
Affiliation(s)
- Luiz Gonzaga da Cunha
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, Rio de Janeiro, RJ, 20.551-030, Brazil
| | - Miriam Francisca Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, Rio de Janeiro, RJ, 20.551-030, Brazil
| | - João Alfredo de Moraes
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia Alves Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria-Cristina Plotkowski
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, Rio de Janeiro, RJ, 20.551-030, Brazil
| | - Alessandra Mattos Saliba
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, Rio de Janeiro, RJ, 20.551-030, Brazil.
| |
Collapse
|
16
|
Sawa T, Shimizu M, Moriyama K, Wiener-Kronish JP. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:668. [PMID: 25672496 PMCID: PMC4331484 DOI: 10.1186/s13054-014-0668-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pseudomonas aeruginosa uses a complex type III secretion system to inject the toxins ExoS, ExoT, ExoU, and ExoY into the cytosol of target eukaryotic cells. This system is regulated by the exoenzyme S regulon and includes the transcriptional activator ExsA. Of the four toxins, ExoU is characterized as the major virulence factor responsible for alveolar epithelial injury in patients with P. aeruginosa pneumonia. Virulent strains of P. aeruginosa possess the exoU gene, whereas non-virulent strains lack this particular gene. The mechanism of virulence for the exoU+ genotype relies on the presence of a pathogenic gene cluster (PAPI-2) encoding exoU and its chaperone, spcU. The ExoU toxin has a patatin-like phospholipase domain in its N-terminal, exhibits phospholipase A2 activity, and requires a eukaryotic cell factor for activation. The C-terminal of ExoU has a ubiquitinylation mechanism of activation. This probably induces a structural change in enzymatic active sites required for phospholipase A2 activity. In P. aeruginosa clinical isolates, the exoU+ genotype correlates with a fluoroquinolone resistance phenotype. Additionally, poor clinical outcomes have been observed in patients with pneumonia caused by exoU+-fluoroquinolone-resistant isolates. Therefore, the potential exists to improve clinical outcomes in patients with P. aeruginosa pneumonia by identifying virulent and antimicrobial drug-resistant strains through exoU genotyping or ExoU protein phenotyping or both.
Collapse
|
17
|
Mallet de Lima CD, da Conceição Costa J, de Oliveira Lima Santos SA, Carvalho S, de Carvalho L, Albano RM, Teixeira MM, Plotkowski MCM, Saliba AM. Central role of PAFR signalling in ExoU-induced NF-κB activation. Cell Microbiol 2014; 16:1244-54. [PMID: 24612488 DOI: 10.1111/cmi.12280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/30/2014] [Accepted: 02/14/2014] [Indexed: 01/01/2023]
Abstract
ExoU is an important virulence factor in acute Pseudomonas aeruginosa infections. Here, we unveiled the mechanisms of ExoU-driven NF-κB activation by using human airway cells and mice infected with P. aeruginosa strains. Several approaches showed that PAFR was crucially implicated in the activation of the canonical NF-κB pathway. Confocal microscopy of lungs from infected mice revealed that PAFR-dependent NF-κB activation occurred mainly in respiratory epithelial cells, and reduced p65 nuclear translocation was detected in mice PAFR-/- or treated with the PAFR antagonist WEB 2086. Several evidences showed that ExoU-induced NF-κB activation regulated PAFR expression. First, ExoU increased p65 occupation of PAFR promoter, as assessed by ChIP. Second, luciferase assays in cultures transfected with different plasmid constructs revealed that ExoU promoted p65 binding to the three κB sites in PAFR promoter. Third, treatment of cell cultures with the NF-κB inhibitor Bay 11-7082, or transfection with IκBα negative-dominant, significantly decreased PAFR mRNA. Finally, reduction in PAFR expression was observed in mice treated with Bay 11-7082 or WEB 2086 prior to infection. Together, our data demonstrate that ExoU activates NF-κB by PAFR signalling, which in turns enhances PAFR expression, highlighting an important mechanism of amplification of response to this P. aeruginosa toxin.
Collapse
|
18
|
Freitas C, Assis MC, Saliba AM, Morandi VM, Figueiredo CC, Pereira M, Plotkowski MC. The infection of microvascular endothelial cells with ExoU-producing Pseudomonas aeruginosa triggers the release of von Willebrand factor and platelet adhesion. Mem Inst Oswaldo Cruz 2013; 107:728-34. [PMID: 22990960 DOI: 10.1590/s0074-02762012000600004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/09/2012] [Indexed: 01/12/2023] Open
Abstract
An increased plasma concentration of von Willebrand factor (vWF) is detected in individuals with many infectious diseases and is accepted as a marker of endothelium activation and prothrombotic condition. To determine whether ExoU, a Pseudomonas aeruginosa cytotoxin with proinflammatory activity, enhances the release of vWF, microvascular endothelial cells were infected with the ExoU-producing PA103 P. aeruginosa strain or an exoU-deficient mutant. Significantly increased vWF concentrations were detected in conditioned medium and subendothelial extracellular matrix from cultures infected with the wild-type bacteria, as determined by enzyme-linked immunoassays. PA103-infected cells also released higher concentrations of procoagulant microparticles containing increased amounts of membrane-associated vWF, as determined by flow cytometric analyses of cell culture supernatants. Both flow cytometry and confocal microscopy showed that increased amounts of vWF were associated with cytoplasmic membranes from cells infected with the ExoU-producing bacteria. PA103-infected cultures exposed to platelet suspensions exhibited increased percentages of cells with platelet adhesion. Because no modulation of the vWF mRNA levels was detected by reverse transcription-polymerase chain reaction assays in PA103-infected cells, ExoU is likely to have induced the release of vWF from cytoplasmic stores rather than vWF gene transcription. Such release is likely to modify the thromboresistance of microvascular endothelial cells.
Collapse
Affiliation(s)
- Carla Freitas
- Departamento de Microbiologia e Imunologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | | | |
Collapse
|
19
|
Azzopardi EA, Ferguson EL, Thomas DW. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J Antimicrob Chemother 2012; 68:257-74. [PMID: 23054997 DOI: 10.1093/jac/dks379] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multidrug-resistant, Gram-negative infection is a major global determinant of morbidity, mortality and cost of care. The advent of nanomedicine has enabled tailored engineering of macromolecular constructs, permitting increasingly selective targeting, alteration of volume of distribution and activity/toxicity. Macromolecules tend to passively and preferentially accumulate at sites of enhanced vascular permeability and are then retained. This enhanced permeability and retention (EPR) effect, whilst recognized as a major breakthrough in anti-tumoral targeting, has not yet been fully exploited in infection. Shared pathophysiological pathways in both cancer and infection are evident and a number of novel nanomedicines have shown promise in selective, passive, size-mediated targeting to infection. This review describes the similarities and parallels in pathophysiological pathways at molecular, cellular and circulatory levels between inflammation/infection and cancer therapy, where use of this principle has been established.
Collapse
Affiliation(s)
- Ernest A Azzopardi
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK.
| | | | | |
Collapse
|
20
|
McVey M, Tabuchi A, Kuebler WM. Microparticles and acute lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 303:L364-81. [PMID: 22728467 DOI: 10.1152/ajplung.00354.2011] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathophysiology of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), is characterized by increased vascular and epithelial permeability, hypercoagulation and hypofibrinolysis, inflammation, and immune modulation. These detrimental changes are orchestrated by cross talk between a complex network of cells, mediators, and signaling pathways. A rapidly growing number of studies have reported the appearance of distinct populations of microparticles (MPs) in both the vascular and alveolar compartments in animal models of ALI/ARDS or respective patient populations, where they may serve as diagnostic and prognostic biomarkers. MPs are small cytosolic vesicles with an intact lipid bilayer that can be released by a variety of vascular, parenchymal, or blood cells and that contain membrane and cytosolic proteins, organelles, lipids, and RNA supplied from and characteristic for their respective parental cells. Owing to this endowment, MPs can effectively interact with other cell types via fusion, receptor-mediated interaction, uptake, or mediator release, thereby acting as intrinsic stimulators, modulators, or even attenuators in a variety of disease processes. This review summarizes current knowledge on the formation and potential functional role of different MPs in inflammatory diseases with a specific focus on ALI/ARDS. ALI has been associated with the formation of MPs from such diverse cellular origins as platelets, neutrophils, monocytes, lymphocytes, red blood cells, and endothelial and epithelial cells. Because of their considerable heterogeneity in terms of origin and functional properties, MPs may contribute via both harmful and beneficial effects to the characteristic pathological features of ALI/ARDS. A better understanding of the formation, function, and relevance of MPs may give rise to new promising therapeutic strategies to modulate coagulation, inflammation, endothelial function, and permeability either through removal or inhibition of "detrimental" MPs or through administration or stimulation of "favorable" MPs.
Collapse
Affiliation(s)
- Mark McVey
- The Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
21
|
Gendrin C, Contreras-Martel C, Bouillot S, Elsen S, Lemaire D, Skoufias DA, Huber P, Attree I, Dessen A. Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa. PLoS Pathog 2012; 8:e1002637. [PMID: 22496657 PMCID: PMC3320612 DOI: 10.1371/journal.ppat.1002637] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/25/2012] [Indexed: 11/30/2022] Open
Abstract
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative pathogens to inject effectors directly into the cytoplasm of eukaryotic cells. ExoU from the opportunistic pathogen Pseudomonas aeruginosa is one of the most aggressive toxins injected by a T3SS, leading to rapid cell necrosis. Here we report the crystal structure of ExoU in complex with its chaperone, SpcU. ExoU folds into membrane-binding, bridging, and phospholipase domains. SpcU maintains the N-terminus of ExoU in an unfolded state, required for secretion. The phospholipase domain carries an embedded catalytic site whose position within ExoU does not permit direct interaction with the bilayer, which suggests that ExoU must undergo a conformational rearrangement in order to access lipids within the target membrane. The bridging domain connects catalytic domain and membrane-binding domains, the latter of which displays specificity to PI(4,5)P2. Both transfection experiments and infection of eukaryotic cells with ExoU-secreting bacteria show that ExoU ubiquitination results in its co-localization with endosomal markers. This could reflect an attempt of the infected cell to target ExoU for degradation in order to protect itself from its aggressive cytotoxic action. Pseudomonas aeruginosa is a leading cause of nosocomial infections and is a particular threat for cystic fibrosis and immunodepressed patients. One of the most aggressive toxins in its arsenal is ExoU, injected directly into target cells by a needle-like complex located on the surface of the bacterium, the type III secretion system. P. aeruginosa strains that express ExoU cause rapid cell death as a consequence of the membrane-destruction (phospholipase) potential of the toxin. In this work, we report the three-dimensional structure of ExoU in complex with a partner molecule, SpcU. ExoU contains three distinct regions, and the fold suggests how ExoU binds to the membrane or other molecules within the target cell and becomes activated. In addition, we also show that once it is translocated into the cell, ExoU co-localizes with intracellular organelles of the endosomal pathway, potentially in an attempt of the target cell to destroy the toxin. This work provides new insight into the cellular destruction mechanism of this aggressive toxin and could be a basis for the development of new inhibitors of P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Claire Gendrin
- Bacterial Pathogenesis Group, Institut de Biologie Structurale (IBS), Université Grenoble I, Grenoble, France
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
| | - Carlos Contreras-Martel
- Bacterial Pathogenesis Group, Institut de Biologie Structurale (IBS), Université Grenoble I, Grenoble, France
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
| | - Stéphanie Bouillot
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Bacterial Pathogenesis and Cellular Responses, iRTSV, Université Grenoble I, Grenoble, France
- INSERM UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
| | - Sylvie Elsen
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Bacterial Pathogenesis and Cellular Responses, iRTSV, Université Grenoble I, Grenoble, France
- INSERM UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
| | - David Lemaire
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Laboratoire des Interactions Protéine Métal, IBEB, Université Aix-Marseille II, Saint Paul Lez Durance, France
| | - Dimitrios A. Skoufias
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Viral Infection and Cancer Group, IBS, Grenoble, France
| | - Philippe Huber
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Bacterial Pathogenesis and Cellular Responses, iRTSV, Université Grenoble I, Grenoble, France
- INSERM UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
| | - Ina Attree
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Bacterial Pathogenesis and Cellular Responses, iRTSV, Université Grenoble I, Grenoble, France
- INSERM UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
| | - Andréa Dessen
- Bacterial Pathogenesis Group, Institut de Biologie Structurale (IBS), Université Grenoble I, Grenoble, France
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- * E-mail:
| |
Collapse
|
22
|
Pseudomonas aeruginosa toxin ExoU induces a PAF-dependent impairment of alveolar fibrin turnover secondary to enhanced activation of coagulation and increased expression of plasminogen activator inhibitor-1 in the course of mice pneumosepsis. Respir Res 2011; 12:104. [PMID: 21819560 PMCID: PMC3163543 DOI: 10.1186/1465-9921-12-104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/05/2011] [Indexed: 01/31/2023] Open
Abstract
Background ExoU, a Pseudomonas aeruginosa cytotoxin with phospholipase A2 activity, was shown to induce vascular hyperpermeability and thrombus formation in a murine model of pneumosepsis. In this study, we investigated the toxin ability to induce alterations in pulmonary fibrinolysis and the contribution of the platelet activating factor (PAF) in the ExoU-induced overexpression of plasminogen activator inhibitor-1 (PAI-1). Methods Mice were intratracheally instilled with the ExoU producing PA103 P. aeruginosa or its mutant with deletion of the exoU gene. After 24 h, animal bronchoalveolar lavage fluids (BALF) were analyzed and lung sections were submitted to fibrin and PAI-1 immunohistochemical localization. Supernatants from A549 airway epithelial cells and THP-1 macrophage cultures infected with both bacterial strains were also analyzed at 24 h post-infection. Results In PA103-infected mice, but not in control animals or in mice infected with the bacterial mutant, extensive fibrin deposition was detected in lung parenchyma and microvasculature whereas mice BALF exhibited elevated tissue factor-dependent procoagulant activity and PAI-1 concentration. ExoU-triggered PAI-1 overexpression was confirmed by immunohistochemistry. In in vitro assays, PA103-infected A549 cells exhibited overexpression of PAI-1 mRNA. Increased concentration of PAI-1 protein was detected in both A549 and THP-1 culture supernatants. Mice treatment with a PAF antagonist prior to PA103 infection reduced significantly PAI-1 concentrations in mice BALF. Similarly, A549 cell treatment with an antibody against PAF receptor significantly reduced PAI-1 mRNA expression and PAI-1 concentrations in cell supernatants, respectively. Conclusion ExoU was shown to induce disturbed fibrin turnover, secondary to enhanced procoagulant and antifibrinolytic activity during P. aeruginosa pneumosepsis, by a PAF-dependent mechanism. Besides its possible pathophysiological relevance, in vitro detection of exoU gene in bacterial clinical isolates warrants investigation as a predictor of outcome of patients with P. aeruginosa pneumonia/sepsis and as a marker to guide treatment strategies.
Collapse
|
23
|
What's new in Shock, March 2010? Shock 2010; 33:227-8. [PMID: 20160608 DOI: 10.1097/shk.0b013e3181ce984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Abstract
Platelets interact with bacterial pathogens through a wide array of cellular and molecular mechanisms. The consequences of this interaction may significantly influence the balance between infection and immunity. On the one hand, recent data indicate that certain bacteria may be capable of exploiting these interactions to gain a virulence advantage. Indeed, certain bacterial pathogens appear to have evolved specific ways in which to subvert activated platelets. Hence, it is conceivable that some bacterial pathogens exploit platelet responses. On the other hand, platelets are now known to possess unambiguous structures and functions of host defense effector cells. Recent discoveries emphasize critical features enabling such functions, including expression of toll-like receptors that detect hallmark signals of bacterial infection, an array of microbicidal peptides, as well as other host defense molecules and functions. These concepts are consistent with increased risk and severity of bacterial infection as correlates of clinical abnormalities in platelet quantity and quality. In these respects, the molecular and cellular roles of platelets in host defense against bacterial pathogens are explored with attention on advances in platelet immunobiology.
Collapse
Affiliation(s)
- Michael R Yeaman
- Division of Infectious Diseases, St. John's Cardiovascular Research Center, Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA 90502, USA.
| |
Collapse
|
25
|
Cunha LG, Assis MC, Machado GB, Assef AP, Marques EA, Leão RS, Saliba AM, Plotkowski MC. Potential mechanisms underlying the acute lung dysfunction and bacterial extrapulmonary dissemination during Burkholderia cenocepacia respiratory infection. Respir Res 2010; 11:4. [PMID: 20082687 PMCID: PMC2817657 DOI: 10.1186/1465-9921-11-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/18/2010] [Indexed: 01/06/2023] Open
Abstract
Background Burkholderia cenocepacia, an opportunistic pathogen that causes lung infections in cystic fibrosis (CF) patients, is associated with rapid and usually fatal lung deterioration due to necrotizing pneumonia and sepsis, a condition known as cepacia syndrome. The key bacterial determinants associated with this poor clinical outcome in CF patients are not clear. In this study, the cytotoxicity and procoagulant activity of B. cenocepacia from the ET-12 lineage, that has been linked to the cepacia syndrome, and four clinical isolates recovered from CF patients with mild clinical courses were analysed in both in vitro and in vivo assays. Methods B. cenocepacia-infected BEAS-2B epithelial respiratory cells were used to investigate the bacterial cytotoxicity assessed by the flow cytometric detection of cell staining with propidium iodide. Bacteria-induced procoagulant activity in cell cultures was assessed by a colorimetric assay and by the flow cytometric detection of tissue factor (TF)-bearing microparticles in cell culture supernatants. Bronchoalveolar lavage fluids (BALF) from intratracheally infected mice were assessed for bacterial proinflammatory and procoagulant activities as well as for bacterial cytotoxicity, by the detection of released lactate dehydrogenase. Results ET-12 was significantly more cytotoxic to cell cultures but clinical isolates Cl-2, Cl-3 and Cl-4 exhibited also a cytotoxic profile. ET-12 and CI-2 were similarly able to generate a TF-dependent procoagulant environment in cell culture supernatant and to enhance the release of TF-bearing microparticles from infected cells. In the in vivo assay, all bacterial isolates disseminated from the mice lungs, but Cl-2 and Cl-4 exhibited the highest rates of recovery from mice livers. Interestingly, Cl-2 and Cl-4, together with ET-12, exhibited the highest cytotoxicity. All bacteria were similarly capable of generating a procoagulant and inflammatory environment in animal lungs. Conclusion B. cenocepacia were shown to exhibit cytotoxic and procoagulant activities potentially implicated in bacterial dissemination into the circulation and acute pulmonary decline detected in susceptible CF patients. Improved understanding of the mechanisms accounting for B. cenocepacia-induced clinical decline has the potential to indicate novel therapeutic strategies to be included in the care B. cenocepacia-infected patients.
Collapse
Affiliation(s)
- Luiz G Cunha
- Departamento de Microbiologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|